1
|
Kathyola T, Chang SY, Willneff EA, Willis CJ, Cibin G, Wilson P, Kroner AB, Shotton EJ, Dowding PJ, Schroeder SL. X-ray Absorption Spectroscopy as a Process Analytical Technology: Reaction Studies for the Manufacture of Sulfonate-Stabilized Calcium Carbonate Particles. Ind Eng Chem Res 2023; 62:16198-16206. [PMID: 37841415 PMCID: PMC10571072 DOI: 10.1021/acs.iecr.3c02540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023]
Abstract
Process analytical technologies are widely used to inform process control by identifying relationships between reagents and products. Here, we present a novel process analytical technology system for operando XAS on multiphase multicomponent synthesis processes based on the combination of a conventional lab-scale agitated reactor with a liquid-jet cell. The preparation of sulfonate-stabilized CaCO3 particles from polyphasic Ca(OH)2 dispersions was monitored in real time by Ca K-edge XAS to identify changes in Ca speciation in the bulk solution/dispersion as a function of time and process conditions. Linear combination fitting of the spectra quantitatively resolved composition changes from the initial conversion of Ca(OH)2 to the Ca(R-SO3)2 surfactant to the ultimate formation of nCaCO3·mCa(R- SO3)2 particles. The system provides a novel tool with strong chemical specificity for probing multiphase synthesis processes at a molecular level, providing an avenue to establishing the relationships between critical quality attributes of a process and the quality and performance of the product.
Collapse
Affiliation(s)
- Thokozile
A. Kathyola
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
- Diamond
Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Sin-Yuen Chang
- Diamond
Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | | | - Colin J. Willis
- Infineum
UK Ltd., Milton Hill Business & Technology Centre, Abingdon, Oxfordshire OX13 6BB, U.K.
| | - Giannantonio Cibin
- Diamond
Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Paul Wilson
- Infineum
UK Ltd., Milton Hill Business & Technology Centre, Abingdon, Oxfordshire OX13 6BB, U.K.
| | - Anna B. Kroner
- Diamond
Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Elizabeth J. Shotton
- Diamond
Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Peter J. Dowding
- Infineum
UK Ltd., Milton Hill Business & Technology Centre, Abingdon, Oxfordshire OX13 6BB, U.K.
| | - Sven L.M. Schroeder
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
- Diamond
Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| |
Collapse
|
2
|
Zhu Y, Lu M, Gao F, Zhou C, Jia C, Wang J. Role of Tailor-Made Additives in Crystallization from Solution: A Review. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Affiliation(s)
- Yin Zhu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Meijin Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Feng Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Chunli Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Chenyang Jia
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Jingtao Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
3
|
Xiouras C, Cameli F, Quilló GL, Kavousanakis ME, Vlachos DG, Stefanidis GD. Applications of Artificial Intelligence and Machine Learning Algorithms to Crystallization. Chem Rev 2022; 122:13006-13042. [PMID: 35759465 DOI: 10.1021/acs.chemrev.2c00141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Artificial intelligence and specifically machine learning applications are nowadays used in a variety of scientific applications and cutting-edge technologies, where they have a transformative impact. Such an assembly of statistical and linear algebra methods making use of large data sets is becoming more and more integrated into chemistry and crystallization research workflows. This review aims to present, for the first time, a holistic overview of machine learning and cheminformatics applications as a novel, powerful means to accelerate the discovery of new crystal structures, predict key properties of organic crystalline materials, simulate, understand, and control the dynamics of complex crystallization process systems, as well as contribute to high throughput automation of chemical process development involving crystalline materials. We critically review the advances in these new, rapidly emerging research areas, raising awareness in issues such as the bridging of machine learning models with first-principles mechanistic models, data set size, structure, and quality, as well as the selection of appropriate descriptors. At the same time, we propose future research at the interface of applied mathematics, chemistry, and crystallography. Overall, this review aims to increase the adoption of such methods and tools by chemists and scientists across industry and academia.
Collapse
Affiliation(s)
- Christos Xiouras
- Chemical Process R&D, Crystallization Technology Unit, Janssen R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Fabio Cameli
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Gustavo Lunardon Quilló
- Chemical Process R&D, Crystallization Technology Unit, Janssen R&D, Turnhoutseweg 30, 2340 Beerse, Belgium.,Chemical and BioProcess Technology and Control, Department of Chemical Engineering, Faculty of Engineering Technology, KU Leuven, Gebroeders de Smetstraat 1, 9000 Ghent, Belgium
| | - Mihail E Kavousanakis
- School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, 15780 Zografou, Greece
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Georgios D Stefanidis
- School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, 15780 Zografou, Greece.,Laboratory for Chemical Technology, Ghent University; Tech Lane Ghent Science Park 125, B-9052 Ghent, Belgium
| |
Collapse
|
4
|
Rehman GU, Vetter T, Martin PA. Design, Development, and Analysis of an Automated Sampling Loop for Online Monitoring of Chiral Crystallization. Org Process Res Dev 2022; 26:1063-1077. [PMID: 35573034 PMCID: PMC9098190 DOI: 10.1021/acs.oprd.1c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 11/28/2022]
Abstract
![]()
Enantiomeric
purity is of prime importance for several industries,
specifically in the production of pharmaceuticals. Crystallization
processes can be used to obtain pure enantiomers in a suitable solid
form. However, some process variants inherently rely on kinetic enhancement
(preferential crystallization) of the desired enantiomer or on complex
interactions of several phenomena (e.g., attrition-enhanced deracemization
and Viedma ripening). Thus, a process analytical technology able to
measure the enantiomeric composition of both the solid phase and the
liquid phase would be valuable to track and eventually control such
processes. This study presents the design and development of a novel
automated analytical monitoring system that achieves this. The designed
setup tracks the enantiomeric excess (ee) using a
continuous closed-loop sampling loop that is coupled to a polarimeter
and an attenuated total reflection Fourier transform infrared spectroscopy
spectrometer. By heating the loop and alternately sampling either
the liquid or the suspension, the combination of these measurements
allows tracking of the ee of both the liquid and
the solid. This work demonstrates a proof of concept of both the experimental
and theoretical aspects of the new system.
Collapse
Affiliation(s)
- Ghufran ur Rehman
- Department of Chemical Engineering and Analytical Science, University of Manchester, M13 9PL Manchester, U.K
| | - Thomas Vetter
- Department of Chemical Engineering and Analytical Science, University of Manchester, M13 9PL Manchester, U.K
| | - Philip A. Martin
- Department of Chemical Engineering and Analytical Science, University of Manchester, M13 9PL Manchester, U.K
| |
Collapse
|
5
|
Wen T, Wang H, Li C, Xu J, Zhang C. Insight into the role of hydrochloric acid in the thermodynamics and nucleation kinetics behavior of Arbidol hydrochloride monohydrate from metastable zone widths. CrystEngComm 2022. [DOI: 10.1039/d1ce01426a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Contributions of hydrochloric acid to thermodynamics and nucleation kinetics of AHM were revealed by metastable zone width and modified Sangwal's theory, implying the nucleation rate monotonously increases with increment of hydrochloric acid.
Collapse
Affiliation(s)
- Ting Wen
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Hairong Wang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Chunrong Li
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Jikun Xu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Chuntao Zhang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| |
Collapse
|
6
|
Wan Osman WNA, Mat Nawi NI, Samsuri S, Bilad MR, Wibisono Y, Hernández Yáñez E, Md Saad J. A Review on Recent Progress in Membrane Distillation Crystallization. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wan Nur Aisyah Wan Osman
- Universiti Teknologi PETRONAS Department of Chemical Engineering 32610 Bandar Seri Iskandar Malaysia
- Universiti Teknologi PETRONAS HICoE Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building Department of Chemical Engineering 32610 Bandar Seri Iskandar Malaysia
| | - Normi Izati Mat Nawi
- Universiti Teknologi PETRONAS Department of Chemical Engineering 32610 Bandar Seri Iskandar Malaysia
| | - Shafirah Samsuri
- Universiti Teknologi PETRONAS Department of Chemical Engineering 32610 Bandar Seri Iskandar Malaysia
- Universiti Teknologi PETRONAS HICoE Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building Department of Chemical Engineering 32610 Bandar Seri Iskandar Malaysia
| | - Muhammad Roil Bilad
- Universiti Brunei Darussalam Faculty of Integrated Technologies BE1410 Gadong Brunei
| | - Yusuf Wibisono
- Brawijaya University Department of Bioprocess Engineering 65141 Malang Indonesia
| | - Eduard Hernández Yáñez
- Universitat Politècnica de Catalunya (UPC) Barcelona TECH, Department of Agrifood Engineering and Biotechnology 08860 Castelldefels Spain
| | - Juniza Md Saad
- Universiti Putra Malaysia Department of Science and Technology 97008 Bintulu Malaysia
| |
Collapse
|
7
|
Dynamic response surface methodology using Lasso regression for organic pharmaceutical synthesis. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2061-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Enhancing the Physiochemical Properties of Puerarin via L-Proline Co-Crystallization: Synthesis, Characterization, and Dissolution Studies of Two Phases of Pharmaceutical Co-Crystals. Int J Mol Sci 2021; 22:ijms22020928. [PMID: 33477727 PMCID: PMC7832312 DOI: 10.3390/ijms22020928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Puerarin (PUE) is a Chinese traditional medicine known to enhance glucose uptake into the insulin cells to downregulate the blood glucose levels in the treatment of type II diabetes. Nevertheless, the bioavailability of pristine PUE is limited due to its poor solubility and low intestinal permeability. In this work, we demonstrate that the solubility of PUE can be significantly enhanced via its co-crystallization with L-Proline (PRO). Two crystalline phases, namely, the solvate-free form [PUE][PRO] (I) and the solvated form [PUE]2[PRO]∙EtOH∙(H2O)2 (II) are isolated. These two phases are characterized by single-crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), Fourier-transformed infrared (FT-IR) spectra, nuclear magnetic resonance (NMR), and thermogravimetric analysis in association with differential scanning calorimetry (TGA-DSC). The solubility and dissolution rate of both I and II in water, gastrointestinal tract at pH 1.2, and phosphate buffer at pH 6.8 indicates a nearly doubled increase as compared to the pristine PUE. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay of pristine PUE, I and II against murine colon cancer cell lines CT-26 and human kidney cell lines HEK-293 indicated that neither compound exhibits obvious cytotoxicity after 24 h. This work showcases that the readily available and biocompatible PRO can be a promising adjuvant to enhance the physicochemical properties of PUE toward orally administered drug formulation with improved pharmacokinetics.
Collapse
|
9
|
Kukor AJ, Guy MA, Hawkins JM, Hein JE. A robust new tool for online solution-phase sampling of crystallizations. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00284h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dynamically flushed filter allows for sampling of crystallizations.
Collapse
Affiliation(s)
- Andrew J. Kukor
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Mason A. Guy
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Joel M. Hawkins
- Pfizer Global Research & Development, Groton, Connecticut, 06371, USA
| | - Jason E. Hein
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
10
|
Cruz P, Rocha F, Ferreira A. Crystallization of paracetamol from mixtures of ethanol and water in a planar oscillatory flow crystallizer: effect of the oscillation conditions on the crystal growth kinetics. CrystEngComm 2021. [DOI: 10.1039/d1ce00858g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystal growth kinetic data is reported for a planar oscillatory flow crystallizer.
Collapse
Affiliation(s)
- Patrícia Cruz
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Fernando Rocha
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - António Ferreira
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
11
|
Kruschitz A, Nidetzky B. Downstream processing technologies in the biocatalytic production of oligosaccharides. Biotechnol Adv 2020; 43:107568. [DOI: 10.1016/j.biotechadv.2020.107568] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/27/2020] [Accepted: 05/17/2020] [Indexed: 12/22/2022]
|
12
|
He Y, Gao Z, Zhang T, Sun J, Ma Y, Tian N, Gong J. Seeding Techniques and Optimization of Solution Crystallization Processes. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yang He
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, and Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China
| | - Zhenguo Gao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, and Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China
| | - Teng Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, and Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China
| | - Jie Sun
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, and Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China
| | - Yiming Ma
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, and Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China
| | - Ningning Tian
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, and Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, and Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China
| |
Collapse
|
13
|
A Novel Shadowgraphic Inline Measurement Technique for Image-Based Crystal Size Distribution Analysis. CRYSTALS 2020. [DOI: 10.3390/cryst10090740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A novel shadowgraphic inline probe to measure crystal size distributions (CSD), based on acquired greyscale images, is evaluated in terms of elevated temperatures and fragile crystals, and compared to well-established, alternative online and offline measurement techniques, i.e., sieving analysis and online microscopy. Additionally, the operation limits, with respect to temperature, supersaturation, suspension, and optical density, are investigated. Two different substance systems, potassium dihydrogen phosphate (prisms) and thiamine hydrochloride (needles), are crystallized for this purpose at 25 L scale. Crystal phases of the well-known KH2PO4/H2O system are measured continuously by the inline probe and in a bypass by the online microscope during cooling crystallizations. Both measurement techniques show similar results with respect to the crystal size distribution, except for higher temperatures, where the bypass variant tends to fail due to blockage. Thiamine hydrochloride, a substance forming long and fragile needles in aqueous solutions, is solidified with an anti-solvent crystallization with ethanol. The novel inline probe could identify a new field of application for image-based crystal size distribution measurements, with respect to difficult particle shapes (needles) and elevated temperatures, which cannot be evaluated with common techniques.
Collapse
|
14
|
Sun JK, Sobolev YI, Zhang W, Zhuang Q, Grzybowski BA. Enhancing crystal growth using polyelectrolyte solutions and shear flow. Nature 2020; 579:73-79. [DOI: 10.1038/s41586-020-2042-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 12/02/2019] [Indexed: 11/10/2022]
|
15
|
Lou XY, Xu Z, Bai AP, Resina-Gallego M, Ji ZG. Separation and Recycling of Concentrated Heavy Metal Wastewater by Tube Membrane Distillation Integrated with Crystallization. MEMBRANES 2020; 10:E19. [PMID: 31968616 PMCID: PMC7022982 DOI: 10.3390/membranes10010019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 01/16/2023]
Abstract
Tube membrane distillation (MD) integrated with a crystallization method is used in this study for the concurrent productions of pure water and salt crystals from concentrated single and mixed system solutions. The effects of concentrated Zn2+ and Ni2+ on performance in terms of membrane flux, permeate conductivity, crystal recovery rates, and crystal grades are investigated. Preferred crystallization and co-crystallization determinations were performed for mixed solutions. The results revealed that membrane fluxes remained at 2.61 kg·m-2·h-1 and showed a sharp decline until the saturation increased to 1.38. Water yield conductivity was below 10 μs·cm-1. High concentrated zinc and nickel did not have a particular effect on the rejection of the membrane process. For the mixed solutions, membrane flux showed a sharp decrease due to the high saturation, while the conductivity of permeate remained below 10 μs·cm-1 during the whole process. Co-crystallization has been proven to be a better method due to the existence of the SO42- common-ion effect. Membrane fouling studies have suggested that the membrane has excellent resistance to fouling from highly concentrated solutions. The MD integrated with crystallization proves to be a promising technology for treating highly concentrated heavy metal solutions.
Collapse
Affiliation(s)
- Xiang-Yang Lou
- National Engineering Lab. of Biohydrometallurgy, GRINM Technology Group Co., Ltd., Beijing 101407, China; (X.-Y.L.); (Z.X.)
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08290 Bellaterra, Spain;
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Zheng Xu
- National Engineering Lab. of Biohydrometallurgy, GRINM Technology Group Co., Ltd., Beijing 101407, China; (X.-Y.L.); (Z.X.)
- GRINM Resources and Environmental Tech. Co., Ltd., Beijing 101407, China
| | - An-Ping Bai
- Beijing Vocational College of Labor and Social Security, Beijing 102200, China;
| | - Montserrat Resina-Gallego
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08290 Bellaterra, Spain;
| | - Zhong-Guang Ji
- National Engineering Lab. of Biohydrometallurgy, GRINM Technology Group Co., Ltd., Beijing 101407, China; (X.-Y.L.); (Z.X.)
- GRINM Resources and Environmental Tech. Co., Ltd., Beijing 101407, China
| |
Collapse
|
16
|
Hussain MN, Jordens J, John JJ, Braeken L, Van Gerven T. Enhancing pharmaceutical crystallization in a flow crystallizer with ultrasound: Anti-solvent crystallization. ULTRASONICS SONOCHEMISTRY 2019; 59:104743. [PMID: 31479884 DOI: 10.1016/j.ultsonch.2019.104743] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 05/24/2023]
Abstract
Continuous crystallization is a fast growing application domain in the pharmaceutical industry. Application of ultrasound has been proven to have positive effects like reduction in induction time and Metastable Zone Width (MSZW) in both batch and flow systems. Further understanding of flow-based sonocrystallization is required to achieve industrial level scale up. This work investigates the sonocrystallization of pharmaceutical compounds in a tubular flow crystallizer. Acetyl Salicylic Acid (ASA-Aspirin) is used as a model compound with ethanol and water as solvent and anti-solvent, respectively. Experiments were conducted in silent and sonicated conditions to study the MSZW. Ultrasound made it possible to achieve crystallization within the crystallizer which was not possible in silent conditions, under the tested conditions. Continuous crystallization was achieved at as low as 48 wt% of anti-solvent and crystallization was already seen at a supersaturation of 1.02. In some experiments, temperature rise with ultrasound caused the crystals to re-dissolve within the channels. Better crystallization - no re-dissolution - was achieved by using low ultrasonic power without any loss in the yield. Particle sizes of product crystals were in the range of 4-46 µm. In conclusion, ultrasound was highly effective in enabling anti-solvent crystallization of a pharmaceutical compound in a tubular flow crystallizer.
Collapse
Affiliation(s)
- M N Hussain
- Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium
| | - J Jordens
- Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium
| | - J J John
- Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium
| | - L Braeken
- Faculty of Engineering Technology, KU Leuven, Agoralaan Building B Box 8, 3590 Diepenbeek, Belgium
| | - T Van Gerven
- Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium.
| |
Collapse
|
17
|
Wiedenbeck E, Kovermann M, Gebauer D, Cölfen H. Flüssige metastabile Vorstufen von Ibuprofen als Zwischenprodukt der Nukleation in wässriger Lösung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910986] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Eduard Wiedenbeck
- Physical ChemistryUniversity of Konstanz Universitätsstraße 10 78457 Konstanz Deutschland
| | - Michael Kovermann
- Physical ChemistryUniversity of Konstanz Universitätsstraße 10 78457 Konstanz Deutschland
| | - Denis Gebauer
- Leibniz University of Hannover, Institut für Anorganische Chemie Callinstraße 9 30167 Hannover Deutschland
| | - Helmut Cölfen
- Physical ChemistryUniversity of Konstanz Universitätsstraße 10 78457 Konstanz Deutschland
| |
Collapse
|
18
|
Wiedenbeck E, Kovermann M, Gebauer D, Cölfen H. Liquid Metastable Precursors of Ibuprofen as Aqueous Nucleation Intermediates. Angew Chem Int Ed Engl 2019; 58:19103-19109. [PMID: 31556970 PMCID: PMC6972611 DOI: 10.1002/anie.201910986] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 01/25/2023]
Abstract
The nucleation mechanism of crystals of small organic molecules, postulated based on computer simulations, still lacks experimental evidence. In this study we designed an experimental approach to monitor the early stages of the crystallization of ibuprofen as a model system for small organic molecules. Ibuprofen undergoes liquid–liquid phase separation prior to nucleation. The binodal and spinodal limits of the corresponding liquid–liquid miscibility gap were analyzed and confirmed. An increase in viscosity sustains the kinetic stability of the dense liquid intermediate. Since the distances between ibuprofen molecules within the dense liquid phase are similar to those in the crystal forms, this dense liquid phase is identified as a precursor phase in the nucleation of ibuprofen, in which densification is followed by generation of structural order. This discovery may make it possible to enrich poorly soluble pharmaceuticals beyond classical solubility limitations in aqueous environments.
Collapse
Affiliation(s)
- Eduard Wiedenbeck
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Michael Kovermann
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Denis Gebauer
- Leibniz University of Hannover, Institute of Inorganic Chemistry, Callinstraße 9, 30167, Hannover, Germany
| | - Helmut Cölfen
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| |
Collapse
|
19
|
Zhang S, Huang Y, Zhou L, Yang Y, Xie C, Wang Z, Hou B, Hao H, Bao Y, Yin Q. Novel Technology for Separation of Binary Eutectic-Forming Mixture by Cocrystallization into Different Sizes Combined with Particle Size Fraction. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Yoon H, Lee J, Kim S, Yoon J. Review of concepts and applications of electrochemical ion separation (EIONS) process. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.071] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Ramisetty KA, Kumar KV, Rasmuson ÅC. Advanced Size Distribution Control in Batch Cooling Crystallization Using Ultrasound. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Kiran A. Ramisetty
- Department of Chemical and Environmental Science, Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, University of Limerick, Limerick, Ireland
| | - K. Vasanth Kumar
- Department of Chemical and Environmental Science, Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, University of Limerick, Limerick, Ireland
| | - Åke C. Rasmuson
- Department of Chemical and Environmental Science, Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
22
|
Steps of fronts in chemical engineering: An overview of the publications of FCSE. Front Chem Sci Eng 2018. [DOI: 10.1007/s11705-018-1789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Tuo L, Ruan X, Xiao W, Li X, He G, Jiang X. A novel hollow fiber membrane-assisted antisolvent crystallization for enhanced mass transfer process control. AIChE J 2018. [DOI: 10.1002/aic.16438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Linghan Tuo
- State Key Laboratory of Fine Chemicals, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, School of Chemical Engineering; Dalian University of Technology; Dalian, 116024 Liaoning China
| | - Xuehua Ruan
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering; Dalian University of Technology at Panjin; Panjin, 124221 Liaoning China
| | - Wu Xiao
- State Key Laboratory of Fine Chemicals, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, School of Chemical Engineering; Dalian University of Technology; Dalian, 116024 Liaoning China
| | - Xiangcun Li
- State Key Laboratory of Fine Chemicals, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, School of Chemical Engineering; Dalian University of Technology; Dalian, 116024 Liaoning China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, School of Chemical Engineering; Dalian University of Technology; Dalian, 116024 Liaoning China
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering; Dalian University of Technology at Panjin; Panjin, 124221 Liaoning China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, School of Chemical Engineering; Dalian University of Technology; Dalian, 116024 Liaoning China
| |
Collapse
|
24
|
Multiobjective optimization and experimental validation for batch cooling crystallization of citric acid anhydrate. Comput Chem Eng 2018. [DOI: 10.1016/j.compchemeng.2018.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Huo Y, Liu T, Wang XZ, Ma CY, Ni X. Online Detection of Particle Agglomeration during Solution Crystallization by Microscopic Double-View Image Analysis. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02439] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan Huo
- Institute
of Advanced Control Technology, Dalian University of Technology, Dalian 116024, China
| | - Tao Liu
- Institute
of Advanced Control Technology, Dalian University of Technology, Dalian 116024, China
| | - Xue Z. Wang
- School
of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, U.K
- School
of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Cai Y. Ma
- School
of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, U.K
| | - Xiongwei Ni
- School
of Engineering and Physical Science, Heriot-Watt University, Edinburgh, EH14 4AS, U.K
| |
Collapse
|
26
|
Separating NaCl and AlCl3·6H2O Crystals from Acidic Solution Assisted by the Non-Equilibrium Phase Diagram of AlCl3-NaCl-H2O(-HCl) Salt-Water System at 353.15 K. CRYSTALS 2017. [DOI: 10.3390/cryst7080244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Zhou L, Wang Z, Zhang M, Guo M, Xu S, Yin Q. Determination of metastable zone and induction time of analgin for cooling crystallization. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2016.05.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
A study of membrane distillation and crystallization for lithium recovery from high-concentrated aqueous solutions. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.01.033] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Wu Z, Yang S, Wu W. Application of temperature cycling for crystal quality control during crystallization. CrystEngComm 2016. [DOI: 10.1039/c5ce02522b] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Roy S, Bauza A, Frontera A, Schaper F, Banik R, Purkayastha A, Reddy BM, Sridhar B, Drew MG, Das SK, Das S. Structural diversity and non-covalent interactions in Cd(II) and Zn(II) complexes derived from 3,5-dinitrobenzoic acid and pyridine: Experimental and theoretical aspects. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2015.10.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Jiang X, Lu D, Xiao W, Ruan X, Fang J, He G. Membrane assisted cooling crystallization: Process model, nucleation, metastable zone, and crystal size distribution. AIChE J 2015. [DOI: 10.1002/aic.15069] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaobin Jiang
- State Key Laboratory of Fine Chemicals; R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology; Dalian 116024 P.R. China
| | - Dapeng Lu
- State Key Laboratory of Fine Chemicals; R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology; Dalian 116024 P.R. China
| | - Wu Xiao
- State Key Laboratory of Fine Chemicals; R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology; Dalian 116024 P.R. China
| | - Xuehua Ruan
- State Key Laboratory of Fine Chemicals; R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology; Dalian 116024 P.R. China
| | - Jian Fang
- State Key Laboratory of Fine Chemicals; R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology; Dalian 116024 P.R. China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals; R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology; Dalian 116024 P.R. China
| |
Collapse
|
32
|
Simon LL, Pataki H, Marosi G, Meemken F, Hungerbühler K, Baiker A, Tummala S, Glennon B, Kuentz M, Steele G, Kramer HJM, Rydzak JW, Chen Z, Morris J, Kjell F, Singh R, Gani R, Gernaey KV, Louhi-Kultanen M, O’Reilly J, Sandler N, Antikainen O, Yliruusi J, Frohberg P, Ulrich J, Braatz RD, Leyssens T, von Stosch M, Oliveira R, Tan RBH, Wu H, Khan M, O’Grady D, Pandey A, Westra R, Delle-Case E, Pape D, Angelosante D, Maret Y, Steiger O, Lenner M, Abbou-Oucherif K, Nagy ZK, Litster JD, Kamaraju VK, Chiu MS. Assessment of Recent Process Analytical Technology (PAT) Trends: A Multiauthor Review. Org Process Res Dev 2015. [DOI: 10.1021/op500261y] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Hajnalka Pataki
- Department
of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - György Marosi
- Department
of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Fabian Meemken
- Department
of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg
1, 8093 Zürich, Switzerland
| | - Konrad Hungerbühler
- Department
of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg
1, 8093 Zürich, Switzerland
| | - Alfons Baiker
- Department
of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg
1, 8093 Zürich, Switzerland
| | - Srinivas Tummala
- Chemical
Development, Bristol-Myers Squibb Company, One Squibb Dr, New Brunswick, New Jersey 08903, United States
| | - Brian Glennon
- Synthesis
and Solid State Pharmaceutical Centre, School of Chemical and Bioprocess
Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- APC Ltd, Belfield Innovation
Park, Dublin 4, Ireland
| | - Martin Kuentz
- School of Life
Sciences, Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, 4132 Muttenz, Switzerland
| | - Gerry Steele
- PharmaCryst Consulting
Ltd., Loughborough, Leicestershire LE11 3HN, U.K
| | - Herman J. M. Kramer
- Intensified Reaction & Separation Systems, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - James W. Rydzak
- GlaxoSmithKline Pharmaceuticals, 709 Swedeland Rd, King of
Prussia, Pennsylvania 19406, United States
| | - Zengping Chen
- State Key
Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Julian Morris
- Centre for Process Analytics & Control Technology, School of Chemical Engineering & Advanced Materials, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE17RU, U.K
| | - Francois Kjell
- Siemens nv/sa,
Industry
Automation − SIPAT Industry Software, Marie Curie Square 30, 1070 Brussels, Belgium
| | - Ravendra Singh
- CAPEC-PROCESS,
Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Building 229, DK-2800 Lyngby, Denmark
| | - Rafiqul Gani
- CAPEC-PROCESS,
Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Building 229, DK-2800 Lyngby, Denmark
| | - Krist V. Gernaey
- CAPEC-PROCESS,
Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Building 229, DK-2800 Lyngby, Denmark
| | - Marjatta Louhi-Kultanen
- Department
of Chemical Technology, Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta, Finland
| | - John O’Reilly
- Roche Ireland
Limited, Clarecastle, Co. Clare, Ireland
| | - Niklas Sandler
- Pharmaceutical
Sciences Laboratory, Department of Biosciences, Abo Akademi University, Artillerigatan 6, 20520 Turku, Finland
| | - Osmo Antikainen
- Division
of Pharmaceutical Technology, Faculty of Pharmacy, University of Helsinki, Yliopistonkatu 4, 00100 Helsinki, Finland
| | - Jouko Yliruusi
- Division
of Pharmaceutical Technology, Faculty of Pharmacy, University of Helsinki, Yliopistonkatu 4, 00100 Helsinki, Finland
| | - Patrick Frohberg
- Center of
Engineering Science, Thermal Process Engineering, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Joachim Ulrich
- Center of
Engineering Science, Thermal Process Engineering, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Richard D. Braatz
- Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Tom Leyssens
- Institute
of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Moritz von Stosch
- REQUIMTE
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 1099-085 Caparica, Portugal
- HybPAT, Caparica, Portugal
| | - Rui Oliveira
- REQUIMTE
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 1099-085 Caparica, Portugal
- HybPAT, Caparica, Portugal
| | - Reginald B. H. Tan
- Institute
of Chemical and Engineering Sciences, A*Star, 1 Pesek Road, Singapore 627833
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
| | - Huiquan Wu
- Division
of Product Quality Research, Office of Testing and Research, Office
of Pharmaceutical Science, Center for Drug Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, Maryland 20993, United States
| | - Mansoor Khan
- Division
of Product Quality Research, Office of Testing and Research, Office
of Pharmaceutical Science, Center for Drug Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, Maryland 20993, United States
| | - Des O’Grady
- Mettler Toledo
AutoChem, 7075 Samuel Morse Drive, Columbia, Maryland 20146, United States
| | - Anjan Pandey
- Mettler Toledo
AutoChem, 7075 Samuel Morse Drive, Columbia, Maryland 20146, United States
| | - Remko Westra
- FMC Technologies B.V., Delta 101, 6825 MN Arnhem, The Netherlands
| | - Emmanuel Delle-Case
- University of Tulsa, 800 South Tucker
Drive, Tulsa, Oklahoma 74104, United States
| | - Detlef Pape
- ABB Corporate Research Center, Segelhofstrasse
1K, 5405, Dättwil, Baden, Switzerland
| | - Daniele Angelosante
- ABB Corporate Research Center, Segelhofstrasse
1K, 5405, Dättwil, Baden, Switzerland
| | - Yannick Maret
- ABB Corporate Research Center, Segelhofstrasse
1K, 5405, Dättwil, Baden, Switzerland
| | - Olivier Steiger
- ABB Corporate Research Center, Segelhofstrasse
1K, 5405, Dättwil, Baden, Switzerland
| | - Miklós Lenner
- ABB Corporate Research Center, Segelhofstrasse
1K, 5405, Dättwil, Baden, Switzerland
| | - Kaoutar Abbou-Oucherif
- School of
Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Zoltan K. Nagy
- School of
Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
- Chemical
Engineering Department, Loughborough University, Loughborough, LE11 3TU, U.K
| | - James D. Litster
- School of
Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Vamsi Krishna Kamaraju
- Synthesis
and Solid State Pharmaceutical Centre, School of Chemical and Bioprocess
Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
| | - Min-Sen Chiu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
| |
Collapse
|
33
|
Frohberg P, Ulrich J. Single-Frequency Ultrasonic Crystallization Monitoring (UCM): Innovative Technique for In-Line Analyzing of Industrial Crystallization Processes. Org Process Res Dev 2014. [DOI: 10.1021/op400362f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick Frohberg
- Center for Engineering Science,
Thermal Process Engineering, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Joachim Ulrich
- Center for Engineering Science,
Thermal Process Engineering, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| |
Collapse
|