1
|
Bohra M, Giaremis S, Ks A, Mathioudaki S, Kioseoglou J, Grammatikopoulos P. Ferromagnetic-Antiferromagnetic Coupling in Gas-Phase Synthesized M(Fe, Co, and Ni)-Cr Nanoparticles for Next-Generation Magnetic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403708. [PMID: 39316368 DOI: 10.1002/advs.202403708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/12/2024] [Indexed: 09/25/2024]
Abstract
Combining ferromagnetic-antiferromagnetic materials in nanoalloys (i.e., nanoparticles, NPs, containing more than one element) can create a diverse landscape of potential electronic structures. As a result, a number of their magnetic properties can be manipulated, such as the exchange bias between NP core and shell, the Curie temperature of nanoparticulated samples, or their magnetocaloric effect. In this work, such a family of materials (namely M-Cr NPs where M is Fe, Co, Ni, or some combination of them) is reviewed with respect to the tunability of their magnetic properties via optimized doping with Cr up to its solubility limit. To this end, gas-phase synthesis has proven a most effective method, allowing excellent control over the physical structure, composition, and chemical ordering of fabricated NPs by appropriately selecting various deposition parameters. Recent advances in this field (both experimental and computational) are distilled to provide a better understanding of the underlying physical laws and point toward new directions for cutting-edge technological applications. For each property, a relevant potential application is associated, such as memory cells and recording heads, induced hyperthermia treatment, and magnetic cooling, respectively, aspiring to help connect the output of fundamental and applied research with current real-world challenges.
Collapse
Affiliation(s)
- Murtaza Bohra
- Physics Department, School of Engineering, Mahindra University, Survey Number 62/1A, Bahadurpally Jeedimetla, Hyderabad, Telangana, 500043, India
| | - Stefanos Giaremis
- School of Physics, Department of Condensed Matter and Materials Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- Center for Interdisciplinary Research & Innovation, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Abisegapriyan Ks
- Materials Science and Engineering, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, 515063, China
| | | | - Joseph Kioseoglou
- School of Physics, Department of Condensed Matter and Materials Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- Center for Interdisciplinary Research & Innovation, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Panagiotis Grammatikopoulos
- Materials Science and Engineering, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, 515063, China
| |
Collapse
|
2
|
Grammatikopoulos P, Bouloumis T, Steinhauer S. Gas-phase synthesis of nanoparticles: current application challenges and instrumentation development responses. Phys Chem Chem Phys 2023; 25:897-912. [PMID: 36537176 DOI: 10.1039/d2cp04068a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanoparticles constitute fundamental building blocks required in several fields of application with current global importance. To fully exploit nanoparticle properties specifically determined by the size, shape, chemical composition and interfacial configuration, rigorous nanoparticle growth and deposition control is needed. Gas-phase synthesis, in particular magnetron-sputtering inert-gas condensation, provides unique opportunities to realise engineered nanoparticles optimised for the desired use case. Here, we provide an overview of recent nanoparticle growth experiments via this technique, how the latter can meet application-specific requirements, and what challenges might impede the wide-spread adoption for scalable industrial synthesis. More specifically, we discuss the timely topics of energy, catalysis, and sensing applications enabled by gas-phase synthesised nanoparticles, as well as recently emerging advances in neuromorphic devices for unconventional computing. Having identified the most relevant challenges and limiting factors, we outline how advances in nanoparticle source instrumentation and/or in situ diagnostics can address current shortcomings. Eventually we identify common trends and directions, giving our perspective on the most promising and impactful applications of gas-phase synthesised nanoparticles in the future.
Collapse
Affiliation(s)
- Panagiotis Grammatikopoulos
- Department of Materials Sciences and Engineering, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong 515063, China. .,Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong 515063, China.,Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Theodoros Bouloumis
- Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Onna-son, Okinawa 904-0495, Japan
| | - Stephan Steinhauer
- Department of Applied Physics, KTH Royal Institute of Technology AlbaNova University Center, Stockholm SE 106 91, Sweden
| |
Collapse
|
3
|
Hu KJ, Yan W, Zhang M, Song F. Electrical devices designed based on inorganic clusters. NANOTECHNOLOGY 2022; 33:502001. [PMID: 36063786 DOI: 10.1088/1361-6528/ac8f4e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The idea of exploring the bottom brink of material science has been carried out for more than two decades. Clusters science is the frontmost study of all nanoscale structures. Being an example of 0-dimensional quantum dot, nanocluster serves as the bridge between atomic and conventionally understood solid-state physics. The forming mechanism of clusters is found to be the mutual effects of electronic and geometric configuration. It is found that electronic shell structure influences the properties and geometric structure of the cluster until its size becomes larger, where electronic effects submerge in geometric structure. The discrete electronic structures depend on the size and conformation of clusters, which can be controlled artificially for potential device applications. Especially, small clusters with a size of 1-2 nm, whose electronic states are possibly discrete enough to overcome thermal fluctuations, are expected to build a single-electron transistor with room temperature operation. However, exciting as the progress may be seen, cluster science still falls within the territory of merely the extension of atomic and molecular science. Its production rate limits the scientific and potential application research of nanoclusters. It is suggested in this review that the mass-produce ability without losing the atomic precision selectivity would be the milestone for nanoclusters to advance to material science.
Collapse
Affiliation(s)
- Kuo-Juei Hu
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, Jiangsu, People's Republic of China
| | - Weicheng Yan
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, 210023, Qixia District, Nanjing 210023, Jiangsu, People's Republic of China
| | - Minhao Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, Jiangsu, People's Republic of China
| | - Fengqi Song
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, Jiangsu, People's Republic of China
| |
Collapse
|
4
|
Sanzone G, Field S, Lee D, Liu J, Ju P, Wang M, Navabpour P, Sun H, Yin J, Lievens P. Antimicrobial and Aging Properties of Ag-, Ag/Cu-, and Ag Cluster-Doped Amorphous Carbon Coatings Produced by Magnetron Sputtering for Space Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10154-10166. [PMID: 35179883 DOI: 10.1021/acsami.2c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inside a spacecraft, the temperature and humidity, suitable for the human crew onboard, also creates an ideal breeding environment for the proliferation of bacteria and fungi; this can present a hazard to human health and create issues for the safe running of equipment. To address this issue, wear-resistant antimicrobial thin films prepared by magnetron sputtering were developed, with the aim to coat key internal components within spacecrafts. Silver and copper are among the most studied active bactericidal materials, thus this work investigated the antibacterial properties of amorphous carbon coatings, doped with either silver, silver and copper, or with silver clusters. The longevity of these antimicrobial coatings, which is heavily influenced by metal diffusion within the coating, was also investigated. With a conventional approach, amorphous carbon coatings were prepared by cosputtering, to generate coatings that contained a range of silver and copper concentrations. In addition, coatings containing silver clusters were prepared using a separate cluster source to better control the metal particle size distribution in the amorphous carbon matrix. The particle size distributions were characterized by grazing-incidence small-angle X-ray scattering (GISAXS). Antibacterial tests were performed under both terrestrial gravity and microgravity conditions, to simulate the condition in space. Results show that although silver-doped coatings possess extremely high levels of antimicrobial activity, silver cluster-doped coatings are equally effective, while being more long-lived, despite containing a lower absolute silver concentration.
Collapse
Affiliation(s)
- Giuseppe Sanzone
- Teer Coatings Ltd., West Stone, Droitwich, Worcestershire WR9 9AS, United Kingdom
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, B-3001 Leuven, Belgium
| | - Susan Field
- Teer Coatings Ltd., West Stone, Droitwich, Worcestershire WR9 9AS, United Kingdom
| | - David Lee
- Department of Life Sciences, School of Health Sciences, Birmingham City University, Birmingham B15 3TN, United Kingdom
| | - Jingzhou Liu
- Shanghai Aerospace Equipment Manufacturer, 100 Huaning Road, Minhang, Shanghai 200245, China
| | - Pengfei Ju
- Shanghai Aerospace Equipment Manufacturer, 100 Huaning Road, Minhang, Shanghai 200245, China
| | - Minshi Wang
- School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Parnia Navabpour
- Teer Coatings Ltd., West Stone, Droitwich, Worcestershire WR9 9AS, United Kingdom
| | - Hailin Sun
- Teer Coatings Ltd., West Stone, Droitwich, Worcestershire WR9 9AS, United Kingdom
| | - Jinlong Yin
- Teer Coatings Ltd., West Stone, Droitwich, Worcestershire WR9 9AS, United Kingdom
| | - Peter Lievens
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, B-3001 Leuven, Belgium
| |
Collapse
|