1
|
Ho TH, Hien TD, Wilhelmsen Ø, Trinh TT. Thermophysical properties of polyethylene glycol oligomers via molecular dynamics simulations. RSC Adv 2024; 14:28125-28137. [PMID: 39228756 PMCID: PMC11369976 DOI: 10.1039/d4ra04898a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024] Open
Abstract
Polyethylene glycol (PEG) is a versatile chemical with numerous applications in various fields, including biomedical research, pharmaceutical development, and industrial manufacturing. Molecular dynamics (MD) is a powerful tool for investigating the thermophysical properties of PEG molecules. In this study, we employ the General AMBER force field (GAFF) to perform MD simulations on various PEG oligomers, focusing on the calculation of density, self-diffusion coefficients, shear viscosity, and thermal conductivity. The results demonstrate excellent agreement with experimental data, where GAFF outperforms other force fields in reproducing thermophysical properties. For a PEG tetramer, the GAFF force field reproduces experimental data within 5% for the density, 5% for the diffusion coefficient, and 10% for the viscosity. In comparison, the OPLS force field displays significant deviations exceeding 80% for the diffusion coefficient and 400% for the viscosity. A detailed analysis of partial charge distributions and dihedral angles reveals that they significantly impact the structural behavior of PEG oligomers. The findings highlight the GAFF force field as one of the most accurate and reliable options for simulating systems with PEGs.
Collapse
Affiliation(s)
- Thi H Ho
- Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University Ho Chi Minh City Vietnam
- Faculty of Mechanical - Electrical and Computer Engineering, School of Technology, Van Lang University Ho Chi Minh City Vietnam
| | - Tong Duy Hien
- Faculty of Engineering, Vietnamese-German University (VGU) Thu Dau Mot City Binh Duong Province 75000 Vietnam
| | - Øivind Wilhelmsen
- Department of Chemistry, Porelab, Norwegian University of Science and Technology Trondheim Norway
| | - Thuat T Trinh
- Department of Chemistry, Porelab, Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|
2
|
Camacho-Ramírez A, Meléndez-Zamudio M, Cervantes J, Palestino G, Guerra-Contreras A. One-step synthesis of amphiphilic copolymers PDMS- b-PEG using tris(pentafluorophenyl)borane and subsequent study of encapsulation and release of curcumin. J Mater Chem B 2024; 12:7076-7089. [PMID: 38817163 DOI: 10.1039/d4tb00113c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
A series of amphiphilic block copolymer (BCP) micelles based on poly(dimethylsiloxane) (PDMS) and poly(ethylene glycol) (PEG) were synthesized by a one-step reaction in the presence of tris(pentafluorophenyl)borane (BCF) as a catalyst. The structural composition of PDMS-b-PEG (PR11) and PEG-b-PDMS-b-PEG (PR12) was corroborated by FTIR, 29Si NMR, and TGA. The BCPs were assembled in an aqueous solution, obtaining micelles between 57 and 87 nm in size. PR11 exhibited a higher (2.0 g L-1) critical micelle concentration (CMC) than PR12 (1.5 g L-1) due to the short chain length. The synthesized nano micelles were used to encapsulate curcumin, which is one of three compounds of turmeric plant 'Curcuma longa' with significant biological activities, including antioxidant, chemoprotective, antibacterial, anti-inflammatory, antiviral, and anti-depressant properties. The encapsulation efficiency of curcumin was 60% for PR11 and 45% for PR12. Regarding the release study, PR11 delivered 53% curcumin after five days under acidic conditions (pH of 1.2) compared to 43% at a pH of 7.4. The degradation products of curcumin were observed under basic conditions and were more stable at acidic pH. In both situations, the release process is carried out by breaking the silyl-ether bond, allowing the release of curcumin. PR11 showed prolonged release times, so it could be used to reduce ingestion times and simultaneously work as a nanocarrier for other hydrophobic drugs.
Collapse
Affiliation(s)
- Abygail Camacho-Ramírez
- Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato C.P., 36050, Guanajuato, Mexico.
| | - Miguel Meléndez-Zamudio
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4M1, Canada
| | - Jorge Cervantes
- Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato C.P., 36050, Guanajuato, Mexico.
| | - Gabriela Palestino
- Biopolymers and Nanostructures Laboratory, Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, S.L.P., C.P. 78210, Mexico
| | - Antonio Guerra-Contreras
- Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato C.P., 36050, Guanajuato, Mexico.
| |
Collapse
|
3
|
Mu M, Shu Q, Xu Z, Zhang X, Liu H, Zhao S, Zhang Y. pH-responsive, salt-resistant, and highly stable foam based on a silicone-containing dynamic imine surfactant. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
4
|
Szymańska M, Hoppe J, Dutkiewicz M, Sobolewski P, Palacz M, Janus E, Zielińska B, Drozd R. Silicone polyether surfactant enhances bacterial cellulose synthesis and water holding capacity. Int J Biol Macromol 2022; 208:642-653. [PMID: 35337915 DOI: 10.1016/j.ijbiomac.2022.03.124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 01/24/2023]
Abstract
The versatility and unique properties of bacterial cellulose (BC) motivate research into enhancing its synthesis. Here a silicone polyether surfactant (SPS) was synthesized and tested as a non-nutritional additive to the cultivation media of Komagataeibacter xylinus. The addition of SPS to the Hestrin-Schramm (HS) medium resulted in a concentration-dependent decrease in surface tension from 59.57 ± 0.37 mN/m to 30.05 ± 0.41 mN/m (for 0.1% addition) that was correlated with an increased yield of BC, up to 37% wet mass for surfactant concentration close to its critical micelle concentration (0.008%). Physicochemical characterization of bacterial cellulose obtained in presence of SPS, showed that surfactant is not incorporated into BC structure and has a moderate effect on its crystallinity, thermal stability. Moreover, the water holding capacity was enhanced by over 40%. Importantly, obtained BC did not affect L929 murine fibroblast cell viability. We conclude that SPS provides an eco-friendly approach to increasing BC yield in static culture, enabling more widespread industrial and biomedical applications.
Collapse
Affiliation(s)
- Magdalena Szymańska
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, 45 Piastów Avenue, 70-311 Szczecin, Poland
| | - Jakub Hoppe
- Faculty of Chemistry, Adam Mickiewicz University, 89b Umultowska Str., 61-614 Poznań Poland
| | - Michał Dutkiewicz
- Poznań Science and Technology Park, Adam Mickiewicz University Foundation, 46 Rubież Str., 61-612 Poznań, Poland
| | - Peter Sobolewski
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, 45 Piastów Avenue, 71-311 Szczecin, Poland
| | - Magdalena Palacz
- Poznań Science and Technology Park, Adam Mickiewicz University Foundation, 46 Rubież Str., 61-612 Poznań, Poland
| | - Ewa Janus
- Department of Chemical Organic Technology, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, 10 Pulawskiego Str., 70-322 Szczecin, Poland
| | - Beata Zielińska
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, 42 Piastów Avenue, 71-065 Szczecin, Poland
| | - Radosław Drozd
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, 45 Piastów Avenue, 70-311 Szczecin, Poland.
| |
Collapse
|
5
|
Silicon-hybrid ionic liquid surfactant derived from natural oleic acid: Synthesis and properties of an aqueous solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Hassan A, Jumbri K, Ramli A, Borhan N. Physio-Chemical Analysis of Amide and Amine Poly(dimethylsiloxane)-Modified Defoamer for Efficient Oil-Water Separation. ACS OMEGA 2021; 6:14806-14818. [PMID: 34151062 PMCID: PMC8209792 DOI: 10.1021/acsomega.1c00350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/11/2021] [Indexed: 06/13/2023]
Abstract
The formation of foam due to the injection of surfactant foam in FAWAG causes significant problems in the oil well production and separation facilities. The excessive foam can lead to the reduction of the separator capacity as well as its efficiency. A defoamer is needed to break and destroy the foam in the separator. There are many commercially available defoamer agents in the market, but not all defoamers are suitable for every application. For this reason, four modified silicone-based defoamers were successfully synthesized and characterized based on the data obtained from the screening process using various commercial defoamers. The performance of modified defoamers was evaluated using TECLIS FoamScan that imitate real conditions of treatment. The results show that all four of the modified silicone-based defoamers, especially amide-terminated-modified defoamers (S2) showed excellent performance as a defoaming agent to mitigate foam in specific conditions. The best-case condition for the modified defoamer to perform was at a high temperature (60 °C), gas flow rate of 1.0 L/min, and low ration concentration of the surfactant to brine (30:70). The study on the bubble count and distribution using a KRÜSS Dynamic Foam Analyzer revealed that S2 excellently contributes to the formation of unstable foam that can fasten foam destruction in the foaming system.
Collapse
Affiliation(s)
- Almila Hassan
- Department
of Fundamental and Applied Sciences, Universiti
Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Khairulazhar Jumbri
- Department
of Fundamental and Applied Sciences, Universiti
Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Anita Ramli
- Department
of Fundamental and Applied Sciences, Universiti
Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Noorazlenawati Borhan
- PETRONAS
Research Sdn. Bhd, Lot
3288 & 3289, Off Jalan Ayer Itam 43000 Bangi, Malaysia
| |
Collapse
|
7
|
Ansari A, Trehan R, Watson C, Senyo S. Increasing Silicone Mold Longevity: A Review of Surface Modification Techniques for PDMS-PDMS Double Casting. SOFT MATERIALS 2020; 19:388-399. [PMID: 35035304 PMCID: PMC8758012 DOI: 10.1080/1539445x.2020.1850476] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/10/2020] [Indexed: 06/14/2023]
Abstract
Polydimethyl siloxane (PDMS) has been used extensively for microfluidic devices due to its chemical properties allowing for rapid molding and versatile biological application. Soft lithography based PDMS fabrication primarily comprises casting from patterned photoresist on a silicon wafer. The patterned photoresist is often replaced with the cast PDMS as a more durable template mold for final PDMS fabrication that is less fragile and expensive. PDMS-PDMS double casting prolongs the longevity of soft lithography molds and reduces overall costs to microfuidic applications. A common end to the lifetime of PDMS negative masters is the risk of bonding between the replicate and mold and distorted topographrical features. This review examines common chemical and physical debonding approaches between PDMS-PDMS castings to exend the lifetime of PDMS masters.
Collapse
Affiliation(s)
- Ali Ansari
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Rajiv Trehan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Craig Watson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Samuel Senyo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
8
|
Goodarzi F, Karimi AR. New PEG‐Modified Ladder‐Like Silsesquioxane as an Antifoaming Agent. ChemistrySelect 2020. [DOI: 10.1002/slct.202003048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Faranak Goodarzi
- Department of Chemistry Faculty of Science Arak University Arak 38156-8-8349 Iran
| | - Ali Reza Karimi
- Department of Chemistry Faculty of Science Arak University Arak 38156-8-8349 Iran
| |
Collapse
|
9
|
Zhou X, Bai Y, Guo L, Wang G. Effect of siloxane backbone length on the physicochemical properties of gluconamide-modified polysiloxane surfactants. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Kausar A. Emulsion polymer derived nanocomposite: a review on design and tailored attributes. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1765383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ayesha Kausar
- Nanosciences Division, National Center For Physics, Quaid-i-Azam University Campus , Islamabad, Pakistan
| |
Collapse
|
11
|
Chen CP, Lu F, Tong QX. Three tetrasiloxane-tailed cationic gemini surfactants: The effect of different spacer rigidity on surface properties and aggregation behaviors. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.112] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Tang X, Jia X, Huang Z. Thermal, Catalytic Conversion of Alkanes to Linear Aldehydes and Linear Amines. J Am Chem Soc 2018; 140:4157-4163. [PMID: 29498516 DOI: 10.1021/jacs.8b01526] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alkanes, the main constituents of petroleum, are attractive feedstocks for producing value-added chemicals. Linear aldehydes and amines are two of the most important building blocks in the chemical industry. To date, there have been no effective methods for directly converting n-alkanes to linear aldehydes and linear amines. Here, we report a molecular dual-catalyst system for production of linear aldehydes via regioselective carbonylation of n-alkanes. The system is comprised of a pincer iridium catalyst for transfer-dehydrogenation of the alkane using t-butylethylene or ethylene as a hydrogen acceptor working sequentially with a rhodium catalyst for olefin isomerization-hydroformylation with syngas. The system exhibits high regioselectivity for linear aldehydes and gives high catalytic turnover numbers when using ethylene as the acceptor. In addition, the direct conversion of light alkanes, n-pentane and n-hexane, to siloxy-terminated alkyl aldehydes through a sequence of Ir/Fe-catalyzed alkane silylation and Ir/Rh-catalyzed alkane carbonylation, is described. Finally, the Ir/Rh dual-catalyst strategy has been successfully applied to regioselective alkane aminomethylation to form linear alkyl amines.
Collapse
Affiliation(s)
- Xinxin Tang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Xiangqing Jia
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Zheng Huang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| |
Collapse
|
13
|
Joo Y, Brady GJ, Kanimozhi C, Ko J, Shea MJ, Strand MT, Arnold MS, Gopalan P. Polymer-Free Electronic-Grade Aligned Semiconducting Carbon Nanotube Array. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28859-28867. [PMID: 28758721 DOI: 10.1021/acsami.7b06850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Conjugated polymers are used commonly to selectively sort semiconducting carbon nanotubes (S-CNTs) from their metallic counterparts in organic solvents. The polymer-wrapped S-CNTs can be easily processed from organic solvents into arrays of CNTs for scalable device fabrication. Though the conjugated polymers are essential for sorting and device fabrication, it is highly desirable to remove them completely as they limit the electronic properties of the device. Here, we use a commercially available polymer, namely, poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(6,6'-(2,2'-bipyridine))] (PFO-BPy), to sort large-diameter S-CNTs with ultrahigh selectivity and fabricate CNT-array-based field effect transistors (FETs) via a floating evaporative self-assembly (FESA) process. We report quantitative removal of the polymer wrapper from the FESA aligned S-CNT arrays using a metal-chelation-assisted polymer removal (McAPR) process. The implementation of this process on FESA films requires the selective thermal degradation of the polymer into oligomers, combined with optimization of the solvent type and temperature of the metal complexation reaction. Resulting S-CNT array FET devices show that the electronic properties of pristine CNT are preserved through this process. Optical microscopy, UV-vis spectroscopy, and X-ray photoelectron spectroscopy (XPS) were used to characterize the quantitative polymer removal. We quantitatively describe the FET devices to analyze the fundamental characteristics of FETs (mobility (μ), on-conductance (Gon), and contact resistance (2Rc)) by comparing before and after polymer removal. The ability to completely remove the polymer wrapper in aligned CNT arrays without adversely affecting the device properties opens up applications beyond FETs into photovoltaics and biosensing.
Collapse
Affiliation(s)
- Yongho Joo
- Department of Materials Science and Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Gerald J Brady
- Department of Materials Science and Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Catherine Kanimozhi
- Department of Materials Science and Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Jaehyoung Ko
- Department of Materials Science and Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Matthew J Shea
- Department of Materials Science and Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Michael T Strand
- Department of Materials Science and Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Michael S Arnold
- Department of Materials Science and Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Padma Gopalan
- Department of Materials Science and Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
14
|
Li J, Chen L. Monitoring structural evolution of organosilicate species during sol-gel processes by electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:504-510. [PMID: 26777681 DOI: 10.1002/rcm.7461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Electrospray ionization mass spectrometry (ESI-MS) has been employed to study species distribution in controlled acid-catalyzed hydrolysis and condensation of (3-chloropropyl)trimethoxysilane (CPTMS), which is frequently used in the synthesis of hybrid silica-based materials. METHODS The conditions of analysis for reaction products, i.e. organosilicate oligomers, were optimized by using various capillary temperatures and solute concentrations. The structures of organosilicate oligomers were shown to vary with reaction duration and the molar ratio of water to siloxane (r), with multiple types of oligomers attributed to linear, cyclic and hydroxylated species. RESULTS The evolution of oligomeric structures was elucidated from the ESI-MS spectra. The number and intensity of cyclic oligomers increase with an increase in the r-value or reaction length, at the expense of linear species, indicating the trend to formation of cross-linked polysiloxane structures. CONCLUSIONS Overall, this work demonstrates that ESI-MS is an indispensable tool for the comprehensive characterization of the correlation between properties and structure of hybrid silica-based materials.
Collapse
Affiliation(s)
- Jun Li
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Tianjin University, China
| | - Lei Chen
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Tianjin University, China
| |
Collapse
|
15
|
Qin J, Du Z, Ma X, Zhu Y, Wang G. Effect of siloxane backbone length on butynediol-ethoxylate based polysiloxanes. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2015.11.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Naghash HJ, Sheikhbahaei MH. Synthesis of a novel silicone based copolymeric surfactant and application in emulsion polymerization. JOURNAL OF POLYMER ENGINEERING 2013. [DOI: 10.1515/polyeng-2013-0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A novel silicone-containing acrylic monomer, trimethylsiloxybutoxy dimethylsiloxybutyl acrylate (TSBA) and diethylene glycol monoallyl ether (DGME) was synthesized successfully. Then, a novel copolymeric surfactant was prepared by the free radical polymerization of TSBA and DGME in the presence of dioxane and azobisisobutyronitrile (AIBN) as a solvent and initiator, respectively. Next, a series of polyvinyl acetate (PVAc), 2-ethylhexyl acrylate (2-EHA) and polystyrene (PSt) latexes were successfully synthesized, each one throughout by the emulsion copolymerization in the presence of a copolymeric surfactant. This copolymeric surfactant exhibited excellent surface activity and the surface tension decreased with an increase in the concentration of the copolymeric surfactant.
Collapse
|
17
|
Niu QH, He ZQ, Fang Y. Synthesis and Physicochemical Properties of Silicon-Terminated Octyl/Decyl Polyethylene Oxide as Novel Low-Foam Penetrating Agents. J SURFACTANTS DETERG 2013. [DOI: 10.1007/s11743-013-1543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|