1
|
Duan S, Yan L, Shen Z, Li X, Chen B, Li D, Qin H, Meegahakumbura MK, Wambulwa MC, Gao L, Chen W, Dong Y, Sheng J. Genomic analyses of agronomic traits in tea plants and related Camellia species. FRONTIERS IN PLANT SCIENCE 2024; 15:1449006. [PMID: 39253572 PMCID: PMC11381259 DOI: 10.3389/fpls.2024.1449006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024]
Abstract
The genus Camellia contains three types of domesticates that meet various needs of ancient humans: the ornamental C. japonica, the edible oil-producing C. oleifera, and the beverage-purposed tea plant C. sinensis. The genomic drivers of the functional diversification of Camellia domesticates remain unknown. Here, we present the genomic variations of 625 Camellia accessions based on a new genome assembly of C. sinensis var. assamica ('YK10'), which consists of 15 pseudo-chromosomes with a total length of 3.35 Gb and a contig N50 of 816,948 bp. These accessions were mainly distributed in East Asia, South Asia, Southeast Asia, and Africa. We profiled the population and subpopulation structure in tea tree Camellia to find new evidence for the parallel domestication of C. sinensis var. assamica (CSA) and C. sinensis var. sinensis (CSS). We also identified candidate genes associated with traits differentiating CSA, CSS, oilseed Camellia, and ornamental Camellia cultivars. Our results provide a unique global view of the genetic diversification of Camellia domesticates and provide valuable resources for ongoing functional and molecular breeding research.
Collapse
Affiliation(s)
- Shengchang Duan
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, China
| | - Liang Yan
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, China
- Pu'er Institute of Pu-erh Tea, Pu'er, China
| | - Zongfang Shen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- University of Chinese Academy of Science, Beijing, China
| | - Xuzhen Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Baozheng Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Dawei Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Hantao Qin
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- University of Chinese Academy of Science, Beijing, China
| | - Muditha K Meegahakumbura
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Department of Export Agriculture, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, Sri Lanka
| | - Moses C Wambulwa
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Department of Life Sciences, School of Science and Computing, South Eastern Kenya University, Kitui, Kenya
| | - Lianming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, China
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, China
| | - Yang Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, China
| | - Jun Sheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, China
| |
Collapse
|
2
|
Su S, Tang P, Zuo R, Chen H, Zhao T, Yang S, Yang J. Exogenous Jasmonic Acid Alleviates Blast Resistance Reduction Caused by LOX3 Knockout in Rice. Biomolecules 2023; 13:1197. [PMID: 37627262 PMCID: PMC10452216 DOI: 10.3390/biom13081197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Lipoxygenase 3 (LOX3) is a lipid peroxidase found in rice embryos that is known to affect seed quality. Interestingly, deletion of the LOX3 gene has been shown to improve rice seed quality but decrease resistance to rice blast disease and drought. To investigate these opposing effects, we generated a LOX3 knockout construct (ΔLox3) in rice (Oryza sativa L.) plants. Blast resistance and transcription levels of rice genes in ΔLox3 rice plants and the effects of exogenous jasmonic acid (JA) on resistance and transcriptional levels of rice genes in Magnaporthe oryzae-infected ΔLox3 rice plants were further elucidated. The results showed that the ΔLox3 plants exhibited normal phenotypes, with high levels of methyl-linolenate and reactive oxygen species (ROS), and the genes involved in three Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways contributed to rice seed quality. M. oryzae-infected ΔLox3 plants exhibited serious blast symptoms with a reduced defense response but increased ROS-mediated cell death, and the genes involved in seven KEGG pathways contributed to rice seed quality. Exogenous JA treatment alleviated blast symptoms in infected ΔLox3 plants by hindering hyphal expansion, inhibiting ROS-mediated cell death, and increasing the defense response, and genes involved in 12 KEGG pathways contributed to rice seed quality. These findings demonstrate that LOX3 plays an important role in rice growth and defense, and its knockout improves rice quality at the expense of disease resistance. Exogenous JA provides a means to compensate for the reduction in defense responses of LOX3 knockout rice lines, suggesting potential applications in agricultural production.
Collapse
Affiliation(s)
- Shunyu Su
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (S.S.); (P.T.); (R.Z.); (H.C.); (T.Z.); (S.Y.)
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Ping Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (S.S.); (P.T.); (R.Z.); (H.C.); (T.Z.); (S.Y.)
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Rubin Zuo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (S.S.); (P.T.); (R.Z.); (H.C.); (T.Z.); (S.Y.)
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Hongfeng Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (S.S.); (P.T.); (R.Z.); (H.C.); (T.Z.); (S.Y.)
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Tianqi Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (S.S.); (P.T.); (R.Z.); (H.C.); (T.Z.); (S.Y.)
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Shumin Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (S.S.); (P.T.); (R.Z.); (H.C.); (T.Z.); (S.Y.)
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (S.S.); (P.T.); (R.Z.); (H.C.); (T.Z.); (S.Y.)
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Mahto A, Yadav A, P V A, Parida SK, Tyagi AK, Agarwal P. Cytological, transcriptome and miRNome temporal landscapes decode enhancement of rice grain size. BMC Biol 2023; 21:91. [PMID: 37076907 PMCID: PMC10116700 DOI: 10.1186/s12915-023-01577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/27/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Rice grain size (GS) is an essential agronomic trait. Though several genes and miRNA modules influencing GS are known and seed development transcriptomes analyzed, a comprehensive compendium connecting all possible players is lacking. This study utilizes two contrasting GS indica rice genotypes (small-grained SN and large-grained LGR). Rice seed development involves five stages (S1-S5). Comparative transcriptome and miRNome atlases, substantiated with morphological and cytological studies, from S1-S5 stages and flag leaf have been analyzed to identify GS proponents. RESULTS Histology shows prolonged endosperm development and cell enlargement in LGR. Stand-alone and comparative RNAseq analyses manifest S3 (5-10 days after pollination) stage as crucial for GS enhancement, coherently with cell cycle, endoreduplication, and programmed cell death participating genes. Seed storage protein and carbohydrate accumulation, cytologically and by RNAseq, is shown to be delayed in LGR. Fourteen transcription factor families influence GS. Pathway genes for four phytohormones display opposite patterns of higher expression. A total of 186 genes generated from the transcriptome analyses are located within GS trait-related QTLs deciphered by a cross between SN and LGR. Fourteen miRNA families express specifically in SN or LGR seeds. Eight miRNA-target modules display contrasting expressions amongst SN and LGR, while 26 (SN) and 43 (LGR) modules are differentially expressed in all stages. CONCLUSIONS Integration of all analyses concludes in a "Domino effect" model for GS regulation highlighting chronology and fruition of each event. This study delineates the essence of GS regulation, providing scope for future exploits. The rice grain development database (RGDD) ( www.nipgr.ac.in/RGDD/index.php ; https://doi.org/10.5281/zenodo.7762870 ) has been developed for easy access of data generated in this paper.
Collapse
Affiliation(s)
- Arunima Mahto
- National Institute of Plant Genome Research, New Delhi, India
| | - Antima Yadav
- National Institute of Plant Genome Research, New Delhi, India
| | - Aswathi P V
- National Institute of Plant Genome Research, New Delhi, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, New Delhi, India
| | - Akhilesh K Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, New Delhi, India.
| |
Collapse
|
4
|
Xia D, Zhou H, Wang Y, Ao Y, Li Y, Huang J, Wu B, Li X, Wang G, Xiao J, Liu Q, He Y. qFC6, a major gene for crude fat content and quality in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2675-2685. [PMID: 35715647 DOI: 10.1007/s00122-022-04141-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
qFC6, a major quantitative trait locus for rice crude fat content, was fine mapped to be identical with Wx. FC6 negatively regulates crude fat content and rice quality. Starch, protein and lipids are the three major components in rice endosperm. The lipids content in rice influences both storage and quality. In this study, we identified a quantitative trait locus (QTL), qFC6, for crude fat (free lipids) content through association analysis and linkage analysis. Gene-based association analysis revealed that LOC_Os06g04200, also known as Wx, was the candidate gene for qFC6. Complementation and knockout transgenic lines revealed that Wx negatively regulates crude fat content. Lipid composition and content analysis by gas chromatography and taste evaluation analysis showed that FC6 positively influenced bound lipids content and negatively affected both free lipids content and taste. Besides, higher free lipids content rice varieties exhibit more lustrous appearance after cooking and by adding extra oil during cooking could improve rice luster and taste score, indicating that higher free lipids content may make rice more lustrous and delicious. Together, we cloned a QTL coordinating rice crude fat content and eating quality and assisted in uncovering the genetic basis of rice lipid content and in the improvement of rice eating quality.
Collapse
Affiliation(s)
- Duo Xia
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yipei Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiting Ao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanhua Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinjie Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bian Wu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gongwei Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225000, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Wei H, Movahedi A, Zhang Y, Aghaei-Dargiri S, Liu G, Zhu S, Yu C, Chen Y, Zhong F, Zhang J. Long-Chain Acyl-CoA Synthetases Promote Poplar Resistance to Abiotic Stress by Regulating Long-Chain Fatty Acid Biosynthesis. Int J Mol Sci 2022; 23:ijms23158401. [PMID: 35955540 PMCID: PMC9369374 DOI: 10.3390/ijms23158401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Long-chain acyl-CoA synthetases (LACSs) catalyze fatty acids (FAs) to form fatty acyl-CoA thioesters, which play essential roles in FA and lipid metabolisms and cuticle wax biosynthesis. Although LACSs from Arabidopsis have been intensively studied, the characterization and function of LACSs from poplar are unexplored. Here, 10 poplar PtLACS genes were identified from the poplar genome and distributed to eight chromosomes. A phylogenetic tree indicated that PtLACSs are sorted into six clades. Collinearity analysis and duplication events demonstrated that PtLACSs expand through segmental replication events and experience purifying selective pressure during the evolutionary process. Expression patterns revealed that PtLACSs have divergent expression changes in response to abiotic stress. Interaction proteins and GO analysis could enhance the understanding of putative interactions among protein and gene regulatory networks related to FA and lipid metabolisms. Cluster networks and long-chain FA (LCFA) and very long-chain FA (VLCFA) content analysis revealed the possible regulatory mechanism in response to drought and salt stresses in poplar. The present study provides valuable information for the functional identification of PtLACSs in response to abiotic stress metabolism in poplar.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226019, China; (H.W.); (G.L.); (C.Y.); (Y.C.); (F.Z.)
| | - Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.); (S.Z.)
- College of Arts and Sciences, Arlington International University, Wilmington, DE 19804, USA
- Correspondence: (A.M.); (J.Z.)
| | - Yanyan Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.); (S.Z.)
| | - Soheila Aghaei-Dargiri
- Department of Horticulture, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas 47916193145, Iran;
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226019, China; (H.W.); (G.L.); (C.Y.); (Y.C.); (F.Z.)
| | - Sheng Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.); (S.Z.)
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226019, China; (H.W.); (G.L.); (C.Y.); (Y.C.); (F.Z.)
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226019, China; (H.W.); (G.L.); (C.Y.); (Y.C.); (F.Z.)
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226019, China; (H.W.); (G.L.); (C.Y.); (Y.C.); (F.Z.)
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226019, China; (H.W.); (G.L.); (C.Y.); (Y.C.); (F.Z.)
- Correspondence: (A.M.); (J.Z.)
| |
Collapse
|
6
|
Ram H, Singh A, Katoch M, Kaur R, Sardar S, Palia S, Satyam R, Sonah H, Deshmukh R, Pandey AK, Gupta I, Sharma TR. Dissecting the nutrient partitioning mechanism in rice grain using spatially resolved gene expression profiling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2212-2230. [PMID: 33197257 DOI: 10.1093/jxb/eraa536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Rice, a staple food worldwide, contains varying amounts of nutrients in different grain tissues. The underlying molecular mechanism of such distinct nutrient partitioning remains poorly investigated. Here, an optimized rapid laser capture microdissection (LCM) approach was used to individually collect pericarp, aleurone, embryo and endosperm from grains 10 days after fertilization. Subsequent RNA-Seq analysis in these tissues identified 7760 differentially expressed genes. Analysis of promoter sequences of tissue-specific genes identified many known and novel cis-elements important for grain filling and seed development. Using the identified differentially expressed genes, comprehensive spatial gene expression pathways were built for accumulation of starch, proteins, lipids, and iron. The extensive transcriptomic analysis provided novel insights about nutrient partitioning mechanisms; for example, it revealed a gradient in seed storage protein accumulation across the four tissue types analysed. The analysis also revealed that the partitioning of various minerals, such as iron, is most likely regulated through transcriptional control of their transporters. We present the extensive analysis from this study as an interactive online tool that provides a much-needed resource for future functional genomics studies aimed to improve grain quality and seed development.
Collapse
Affiliation(s)
- Hasthi Ram
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Mohali, Punjab, India
| | - Anmol Singh
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Mohali, Punjab, India
| | - Megha Katoch
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Mohali, Punjab, India
| | - Ravneet Kaur
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Mohali, Punjab, India
| | - Shaswati Sardar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Mohali, Punjab, India
| | - Shubham Palia
- Department of Biochemical Engineering and Biotechnology, Block I, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Rohit Satyam
- Department of Biochemical Engineering and Biotechnology, Block I, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Mohali, Punjab, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Mohali, Punjab, India
| | - Ajay Kumar Pandey
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Mohali, Punjab, India
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Block I, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Mohali, Punjab, India
| |
Collapse
|
7
|
Sinha K, Kaur R, Singh N, Kaur S, Rishi V, Bhunia RK. Mobilization of storage lipid reserve and expression analysis of lipase and lipoxygenase genes in rice (Oryza sativa var. Pusa Basmati 1) bran during germination. PHYTOCHEMISTRY 2020; 180:112538. [PMID: 33091779 DOI: 10.1016/j.phytochem.2020.112538] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Storage lipid mobilization by lipases and lipoxygenases (LOXs) in response to developmental cues take place during seed germination. After rice grain milling, the endogenous lipases and LOXs present in the bran fraction come in contact with the storage lipid reserve or triacylglycerol (TAG). Lipases catalyze the hydrolysis of TAGs to non-esterified fatty acids (NEFAs) and glycerol. The NEFAs, especially linoleic acid (18:2) produced, are further subjected to oxidative rancidity via peroxidation reaction catalyzed by LOXs. This results in the production of conjugated hydroperoxides of 18:2 that influence the off-flavors in rice bran lipids. The aim of this study is to understand how lipid mobilization and expression of lipase and LOX genes occur in the bran of germinating rice grains (Oryza sativavar. Pusa Basmati 1). Our results show that the primary source of storage lipids in bran is TAG, and its mobilization starts at 4 days after imbibition (4 DAI). Using publically available RNA-seq data and phylogeny analyses, we selected a total of 18 lipase and 16 LOX genes in rice for their expression profiles during onset of lipid mobilization. Gene expression analyses revealed OsLip1, OsLip9, and OsLip13; and OsLOX3 and OsLOX14 as the predominantly expressed genes in bran of germinating rice grains. This study explores two important events in the germinating rice grains, namely, mobilization of storage lipids and expression pattern of lipase and LOX genes. The information generated in this study can be used to efficiently manipulate the genes to enhance the shelf-stability of bran lipid reserve.
Collapse
Affiliation(s)
- Kshitija Sinha
- National Agri-Food Biotechnology Institute (NABI), Plant Tissue Culture and Genetic Engineering, Mohali, 140306, Punjab, India
| | - Ranjeet Kaur
- Department of Genetics, University of Delhi South Campus, New Delhi, 110026, India
| | - Nishu Singh
- Department of Biotechnology, Banasthali Vidyapith, Vanasthali, 304022, Rajasthan, India
| | - Sumandeep Kaur
- Department of Biotechnology, Sector-25, Panjab University, Chandigarh, 160014, India
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute (NABI), Plant Tissue Culture and Genetic Engineering, Mohali, 140306, Punjab, India
| | - Rupam Kumar Bhunia
- National Agri-Food Biotechnology Institute (NABI), Plant Tissue Culture and Genetic Engineering, Mohali, 140306, Punjab, India.
| |
Collapse
|
8
|
Ding LN, Gu SL, Zhu FG, Ma ZY, Li J, Li M, Wang Z, Tan XL. Long-chain acyl-CoA synthetase 2 is involved in seed oil production in Brassica napus. BMC PLANT BIOLOGY 2020; 20:21. [PMID: 31931712 PMCID: PMC6958636 DOI: 10.1186/s12870-020-2240-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/07/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Triacylglycerols (TAGs) are the main composition of plant seed oil. Long-chain acyl-coenzyme A synthetases (LACSs) catalyze the synthesis of long-chain acyl-coenzyme A, which is one of the primary substrates for TAG synthesis. In Arabidopsis, the LACS gene family contains nine members, among which LACS1 and LACS9 have overlapping functions in TAG biosynthesis. However, functional characterization of LACS proteins in rapeseed have been rarely reported. RESULTS An orthologue of the Arabidopsis LACS2 gene (BnLACS2) that is highly expressed in developing seeds was identified in rapeseed (Brassica napus). The BnLACS2-GFP fusion protein was mainly localized to the endoplasmic reticulum, where TAG biosynthesis occurs. Interestingly, overexpression of the BnLACS2 gene resulted in significantly higher oil contents in transgenic rapeseed plants compared to wild type, while BnLACS2-RNAi transgenic rapeseed plants had decreased oil contents. Furthermore, quantitative real-time PCR expression data revealed that the expression of several genes involved in glycolysis, as well as fatty acid (FA) and lipid biosynthesis, was also affected in transgenic plants. CONCLUSIONS A long chain acyl-CoA synthetase, BnLACS2, located in the endoplasmic reticulum was identified in B. napus. Overexpression of BnLACS2 in yeast and rapeseed could increase oil content, while BnLACS2-RNAi transgenic rapeseed plants exhibited decreased oil content. Furthermore, BnLACS2 transcription increased the expression of genes involved in glycolysis, and FA and lipid synthesis in developing seeds. These results suggested that BnLACS2 is an important factor for seed oil production in B. napus.
Collapse
Affiliation(s)
- Li-Na Ding
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Shou-Lai Gu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Fu-Ge Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zhong-Yan Ma
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Juan Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ming Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zheng Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Genome-Wide Identification and Comparative Expression Profile Analysis of the Long-Chain Acyl-CoA synthetase (LACS) Gene Family in Two Different Oil Content Cultivars of Brassica napus. Biochem Genet 2019; 57:781-800. [DOI: 10.1007/s10528-019-09921-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 04/01/2019] [Indexed: 12/27/2022]
|
10
|
Morphology of Rice Seed Development and Its Influence on Grain Quality. Methods Mol Biol 2018. [PMID: 30397799 DOI: 10.1007/978-1-4939-8914-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Various quality attributes of rice seed are affected by the wide array of biochemical products accumulated during the course of reproductive development and the environmental conditions which impact the grain composition. The staging of rice plant reproductive development is needed in experiments to define phase transitions of seed biology. The application of the nomenclature and criteria of the rice growth staging system can facilitate recording the reproductive development by distinct stages. The meaningful progression from one stage to another in time can then be evaluated in a tabular or graphic manner. In order to determine the developmental stages of rice in experiments, it is desirable to select a representative group of plants and to record the development of those plants. We provide procedures for efficiently (1) observing and recording development of rice plants and (2) collecting, storing and seperating seed by developmental stages. It is necessary to divide seeds into differing groups to track development from fertilization until maturity. The earliest seeds to be fertilized on a panicle are superior grains and the latter seeds to develop are inferior grains. In some cases, it is necessary to divide individual seeds into the aforementioned groups and the different stages of development for various analyses. A procedure for dividing seeds into differing stages of development is presented to more appropriately select seeds for further analysis. The developmental record can then be statistically and graphically analyzed to better understand responses to treatments and interactions among treatments, years, and locations.
Collapse
|
11
|
Cai Y, Zhang W, Jin J, Yang X, You X, Yan H, Wang L, Chen J, Xu J, Chen W, Chen X, Ma J, Tang X, Kong F, Zhu X, Wang G, Jiang L, Terzaghi W, Wang C, Wan J. OsPKpα1 encodes a plastidic pyruvate kinase that affects starch biosynthesis in the rice endosperm. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1097-1118. [PMID: 29944211 DOI: 10.1111/jipb.12692] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Pyruvate kinase (PK) is a key enzyme in glycolysis and carbon metabolism. Here, we isolated a rice (Oryza sativa) mutant, w59, with a white-core floury endosperm. Map-based cloning of w59 identified a mutation in OsPKpα1, which encodes a plastidic isoform of PK (PKp). OsPKpα1 localizes to the amyloplast stroma in the developing endosperm, and the mutation of OsPKpα1 in w59 decreases the plastidic PK activity, resulting in dramatic changes to the lipid biosynthesis in seeds. The w59 grains were also characterized by a marked decrease in starch content. Consistent with a decrease in number and size of the w59 amyloplasts, large empty spaces were observed in the central region of the w59 endosperm, at the early grain-filling stage. Moreover, a phylogenetic analysis revealed four potential rice isoforms of OsPKp. We validated the in vitro PK activity of these OsPKps through reconstituting active PKp complexes derived from inactive individual OsPKps, revealing the heteromeric structure of rice PKps, which was further confirmed using a protein-protein interaction analysis. These findings suggest a functional connection between lipid and starch synthesis in rice endosperm amyloplasts.
Collapse
Affiliation(s)
- Yue Cai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwei Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Jin
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoming Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoman You
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Haigang Yan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahuan Xu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiwei Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingang Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Ma
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaojie Tang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Kong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaopin Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Guoxiang Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - Chunming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
12
|
Substrate preferences of long-chain acyl-CoA synthetase and diacylglycerol acyltransferase contribute to enrichment of flax seed oil with α-linolenic acid. Biochem J 2018. [PMID: 29523747 DOI: 10.1042/bcj20170910] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Seed oil from flax (Linum usitatissimum) is enriched in α-linolenic acid (ALA; 18:3Δ9cis,12cis,15cis ), but the biochemical processes underlying the enrichment of flax seed oil with this polyunsaturated fatty acid are not fully elucidated. Here, a potential process involving the catalytic actions of long-chain acyl-CoA synthetase (LACS) and diacylglycerol acyltransferase (DGAT) is proposed for ALA enrichment in triacylglycerol (TAG). LACS catalyzes the ATP-dependent activation of free fatty acid to form acyl-CoA, which in turn may serve as an acyl-donor in the DGAT-catalyzed reaction leading to TAG. To test this hypothesis, flax LACS and DGAT cDNAs were functionally expressed in Saccharomyces cerevisiae strains to probe their possible involvement in the enrichment of TAG with ALA. Among the identified flax LACSs, LuLACS8A exhibited significantly enhanced specificity for ALA over oleic acid (18:1Δ9cis ) or linoleic acid (18:2Δ9cis,12cis ). Enhanced α-linolenoyl-CoA specificity was also observed in the enzymatic assay of flax DGAT2 (LuDGAT2-3), which displayed ∼20 times increased preference toward α-linolenoyl-CoA over oleoyl-CoA. Moreover, when LuLACS8A and LuDGAT2-3 were co-expressed in yeast, both in vitro and in vivo experiments indicated that the ALA-containing TAG enrichment process was operative between LuLACS8A- and LuDGAT2-3-catalyzed reactions. Overall, the results support the hypothesis that the cooperation between the reactions catalyzed by LACS8 and DGAT2 may represent a route to enrich ALA production in the flax seed oil.
Collapse
|
13
|
Meng X, Xing S, Perez LM, Peng X, Zhao Q, Redoña ED, Wang C, Peng Z. Proteome-wide Analysis of Lysine 2-hydroxyisobutyrylation in Developing Rice (Oryza sativa) Seeds. Sci Rep 2017; 7:17486. [PMID: 29235492 PMCID: PMC5727541 DOI: 10.1038/s41598-017-17756-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/28/2017] [Indexed: 11/26/2022] Open
Abstract
Lysine 2-hydroxyisobutyrylation is a recently identified protein post-translational modification that is known to affect the association between histone and DNA. However, non-histone protein lysine 2-hydroxyisobutyrylation remains largely unexplored. Utilizing antibody-based affinity enrichment and nano-HPLC/MS/MS analyses of 2-hydroxyisobutyrylation peptides, we efficaciously identified 9,916 2-hydroxyisobutyryl lysine sites on 2,512 proteins in developing rice seeds, representing the first lysine 2-hydroxyisobutyrylome dataset in plants. Functional annotation analyses indicated that a wide variety of vital biological processes were preferably targeted by lysine 2-hydroxyisobutyrylation, including glycolysis/gluconeogenesis, TCA cycle, starch biosynthesis, lipid metabolism, protein biosynthesis and processing. Our finding showed that 2-hydroxyisobutyrylated histone sites were conserved across plants, human, and mouse. A number of 2-hydroxyisobutyryl sites were shared with other lysine acylations in both histone and non-histone proteins. Comprehensive analysis of the lysine 2-hydroxyisobutyrylation sites illustrated that the modification sites were highly sequence specific with distinct motifs, and they had less surface accessibility than other lysine residues in the protein. Overall, our study provides the first systematic analysis of lysine 2-hydroxyisobutyrylation proteome in plants, and it serves as an important resource for future investigations of the regulatory mechanisms and functions of lysine 2-hydroxyisobutyrylation.
Collapse
Affiliation(s)
- Xiaoxi Meng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, 39762, USA
| | - Shihai Xing
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, 39762, USA
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230000, China
| | - Loida M Perez
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, 39762, USA
| | - Xiaojun Peng
- Department of Bioinformatics, Jingjie PTM Biolab Co. Ltd, Hangzhou, 310018, China
| | - Qingyong Zhao
- Institute of Crop Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Edilberto D Redoña
- Delta Research and Extension Center, Stoneville, P.O. Box 197, Mississippi, 38776, USA
| | - Cailin Wang
- Institute of Crop Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Zhaohua Peng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, 39762, USA.
| |
Collapse
|
14
|
Wang X, Zhou W, Lu Z, Ouyang Y, O CS, Yao J. A lipid transfer protein, OsLTPL36, is essential for seed development and seed quality in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:200-8. [PMID: 26398804 DOI: 10.1016/j.plantsci.2015.07.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 05/02/2023]
Abstract
Storage lipid is a vital component for maintaining structure of seed storage substances and valuable for rice quality and food texture. However, the knowledge of lipid transporting related genes and their function in seed development have not been well elucidated yet. In this study, we identified OsLTPL36, a homolog of putative lipid transport protein, and showed specific expression in rice developing seed. Transcriptional profiling and in situ hybridization analysis confirmed that OsLTPL36 was exclusively expressed in developing seed coat and endosperm aleurone cells. Down-regulated expression of OsLTPL36 led to decreased seed setting rate and 1000-grain weight in transgenic plants. Further studies showed that suppressed expression of OsLTPL36 caused chalky endosperm and resulted in reduced fat acid content in RNAi lines as compared with wild type (WT). Histological analysis showed that the embryo development was delayed after down regulation of OsLTPL36. Moreover, impeded seed germination and puny seedling were also observed in the OsLTPL36 RNAi lines. The data demonstrated that OsLTPL36, a lipid transporter, was critical important not only for seed quality but also for seed development and germination in rice.
Collapse
Affiliation(s)
- Xin Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wei Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhanhua Lu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yidan Ouyang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chol Su O
- Life science Faculty, Kim Il Sung University, Pyongyang 999093, Democratic People's Republic of Korea.
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
15
|
Protein and gene expression characteristics of a rice phosphoenolpyruvate carboxylase Osppc3; its unique role for seed cell maturation. J Cereal Sci 2015. [DOI: 10.1016/j.jcs.2015.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Matsuno K, Fujimura T. Do rice suspension-cultured cells treated with abscisic acid mimic developing seeds? Mol Genet Genomics 2015; 290:1551-62. [PMID: 25732383 DOI: 10.1007/s00438-015-1018-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/23/2015] [Indexed: 11/28/2022]
Abstract
Starch synthesis is activated in the endosperm during seed development and also in rice suspension cells cultured with abscisic acid. In the anticipation that the mechanisms of starch synthesis are similar between the endosperm and the suspension cells cultured with abscisic acid, expression of genes involved in starch synthesis was evaluated in the suspension cells after abscisic acid treatment. However, it was found that the regulatory mechanism of starch synthesis in the suspension cells cultured with abscisic acid was different from that in developing seeds. Expression analyses of genes involved in oil bodies, which accumulate in the embryo and aleurone layer, and seed storage proteins, which accumulate mainly in the endosperm, showed that the former were activated in the suspension cells cultured with abscisic acid, but the latter were not. Master regulators for embryogenesis, OsVP1 (homologue of AtABI3) and OsLFL1 (homologue of AtFUS3 or AtLFL2), were expressed in the suspension cells at levels comparable to those in the embryo. From these results, it is suggested that interactions between regulators and abscisic acid control the synthesis of phytic acid and oil bodies in the cultured cells and embryo. We suggest that the system of suspension cells cultured with abscisic acid helps to reveal the mechanisms of phytic acid and oil body synthesis in embryo.
Collapse
Affiliation(s)
- Koya Matsuno
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan,
| | | |
Collapse
|
17
|
Xu H, Zhang W, Gao Y, Zhao Y, Guo L, Wang J. Proteomic analysis of embryo development in rice (Oryza sativa). PLANTA 2012; 235:687-701. [PMID: 22015996 DOI: 10.1007/s00425-011-1535-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/04/2011] [Indexed: 05/26/2023]
Abstract
Although embryo development is a major subject in plant growth and development research, a number of aspects of the mechanism of this development process remain unknown. Rice (Oryza sativa) is an excellent monocot plant model for studying embryogenesis with a known genome sequence. Here, we conducted proteomic analysis of embryo development in rice (O. sativa L. ssp. indica cv. 9311). The aim was to investigate and characterize the changes in the protein expression profile during embryo development. For this purpose, the proteome of developing embryos was characterized by two-dimensional gel electrophoresis and nano liquid chromatography/mass spectrometry/mass spectrometry. Proteomic analyses identified 275 differentially expressed proteins throughout the 5 sequential developmental stages from 5 to 30 days after pollination. Most of these proteins were classified into eight functional categories: metabolism, protein synthesis/destination, disease and defense, transporter, transcription, signal transduction, cell growth/division, and storage proteins, which were involved in different cellular and metabolic processes. Hierarchical clustering analyses of protein expression profiles showed that highly expressed proteins in early stages were involved in metabolism, protein synthesis/destination, and most of the other cellular functions, whereas the proteins highly expressed in later stages functioned in the desiccation and dormancy of the embryo.
Collapse
Affiliation(s)
- Hong Xu
- Key Laboratory of MOE for Plant Development Biology, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | |
Collapse
|
18
|
Oleaginous yeast Yarrowia lipolytica mutants with a disrupted fatty acyl-CoA synthetase gene accumulate saturated fatty acid. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.03.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
He D, Han C, Yao J, Shen S, Yang P. Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach. Proteomics 2011; 11:2693-713. [DOI: 10.1002/pmic.201000598] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/23/2011] [Accepted: 04/12/2011] [Indexed: 12/15/2022]
|
20
|
Xu J, Yang C, Yuan Z, Zhang D, Gondwe MY, Ding Z, Liang W, Zhang D, Wilson ZA. The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. THE PLANT CELL 2010; 22:91-107. [PMID: 20118226 PMCID: PMC2828693 DOI: 10.1105/tpc.109.071803] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/01/2009] [Accepted: 12/25/2009] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana ABORTED MICROSPORES (AMS) gene encodes a basic helix-loop-helix (bHLH) transcription factor that is required for tapetal cell development and postmeiotic microspore formation. However, the regulatory role of AMS in anther and pollen development has not been fully defined. Here, we show by microarray analysis that the expression of 549 anther-expressed genes was altered in ams buds and that these genes are associated with tapetal function and pollen wall formation. We demonstrate that AMS has the ability to bind in vitro to DNA containing a 6-bp consensus motif, CANNTG. Moreover, 13 genes involved in transportation of lipids, oligopeptides, and ions, fatty acid synthesis and metabolism, flavonol accumulation, substrate oxidation, methyl-modification, and pectin dynamics were identified as direct targets of AMS by chromatin immunoprecipitation. The functional importance of the AMS regulatory pathway was further demonstrated by analysis of an insertional mutant of one of these downstream AMS targets, an ABC transporter, White-Brown Complex homolog, which fails to undergo pollen development and is male sterile. Yeast two-hybrid screens and pull-down assays revealed that AMS has the ability to interact with two bHLH proteins (AtbHLH089 and AtbHLH091) and the ATA20 protein. These results provide insight into the regulatory role of the AMS network during anther development.
Collapse
Affiliation(s)
- Jie Xu
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Caiyun Yang
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | - Zheng Yuan
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | - Dasheng Zhang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Martha Y. Gondwe
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | - Zhiwen Ding
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dabing Zhang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Bio-X Research Center, Key Laboratory of Genetics and Development and Neuropsychiatric Diseases, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
- Address correspondence to
| | - Zoe A. Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| |
Collapse
|
21
|
Xu SB, Li T, Deng ZY, Chong K, Xue Y, Wang T. Dynamic proteomic analysis reveals a switch between central carbon metabolism and alcoholic fermentation in rice filling grains. PLANT PHYSIOLOGY 2008; 148:908-25. [PMID: 18753281 PMCID: PMC2556828 DOI: 10.1104/pp.108.125633] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 08/25/2008] [Indexed: 05/20/2023]
Abstract
Accumulation of reserve materials in filling grains involves the coordination of different metabolic and cellular processes, and understanding the molecular mechanisms underlying the interconnections remains a major challenge for proteomics. Rice (Oryza sativa) is an excellent model for studying grain filling because of its importance as a staple food and the available genome sequence database. Our observations showed that embryo differentiation and endosperm cellularization in developing rice seeds were completed approximately 6 d after flowering (DAF); thereafter, the immature seeds mainly underwent cell enlargement and reached the size of mature seeds at 12 DAF. Grain filling began at 6 DAF and lasted until 20 DAF. Dynamic proteomic analyses revealed 396 protein spots differentially expressed throughout eight sequential developmental stages from 6 to 20 DAF and determined 345 identities. These proteins were involved in different cellular and metabolic processes with a prominently functional skew toward metabolism (45%) and protein synthesis/destination (20%). Expression analyses of protein groups associated with different functional categories/subcategories showed that substantially up-regulated proteins were involved in starch synthesis and alcoholic fermentation, whereas the down-regulated proteins in the process were involved in central carbon metabolism and most of the other functional categories/subcategories such as cell growth/division, protein synthesis, proteolysis, and signal transduction. The coordinated changes were consistent with the transition from cell growth and differentiation to starch synthesis and clearly indicated that a switch from central carbon metabolism to alcoholic fermentation may be important for starch synthesis and accumulation in the developmental process.
Collapse
Affiliation(s)
- Sheng Bao Xu
- Research Center of Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
22
|
Zhang DS, Liang WQ, Yuan Z, Li N, Shi J, Wang J, Liu YM, Yu WJ, Zhang DB. Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. MOLECULAR PLANT 2008; 1:599-610. [PMID: 19825565 DOI: 10.1093/mp/ssn028] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As a complex wall system in flowering plants, the pollen outer wall mainly contains aliphatic sporopollenin; however, the mechanism for synthesizing these lipidic precursors during pollen development remains less well understood. Here, we report on the function of the rice tapetum-expressing TDR (Tapetum Degeneration Retardation) gene in aliphatic metabolism and its regulatory role during rice pollen development. The observations of transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses suggested that pollen wall formation was significantly altered in the tdr mutant. The contents of aliphatic compositions of anther were greatly changed in the tdr mutant revealed by GC-MS (gas chromatography-mass spectrometry) testing, particularly less accumulated in fatty acids, primary alcohols, alkanes and alkenes, and an abnormal increase in secondary alcohols with carbon lengths from C29 to C35 in tdr. Microarray data revealed that a group of genes putatively involved in lipid transport and metabolism were significantly altered in the tdr mutant, indicating the critical role of TDR in the formation of the pollen wall. Also, a wide range of genes (236 in total-154 up-regulated and 82 down-regulated) exhibited statistically significant expressional differences between wild-type and tdr. In addition to its function in promoting tapetum PCD, TDR possibly plays crucial regulatory roles in several basic biological processes during rice pollen development.
Collapse
Affiliation(s)
- Da-Sheng Zhang
- Shanghai Jiao Tong University, Shanghai Institutes for Biological Sciences, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Akihiro T, Umezawa T, Ueki C, Lobna BM, Mizuno K, Ohta M, Fujimura T. Genome wide cDNA-AFLP analysis of genes rapidly induced by combined sucrose and ABA treatment in rice cultured cells. FEBS Lett 2006; 580:5947-52. [PMID: 17046759 DOI: 10.1016/j.febslet.2006.09.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 09/01/2006] [Accepted: 09/26/2006] [Indexed: 10/24/2022]
Abstract
We identified 27 genes induced by combined sucrose and ABA treatment from rice cultured cells with cDNA-AFLP. Thirteen of these up-regulated genes were induced 30 min after the co-treatment. This suite of genes includes starch biosynthesis related genes. Type A genes were expressed only in the presence of both sucrose and ABA. Type B genes were expressed in the presence of sucrose or ABA and the expression was dramatically enhanced by the co-treatment of sucrose and ABA. These results indicate that multiple steps of starch biosynthesis and other processes may be regulated by at least two different pathways.
Collapse
Affiliation(s)
- Takashi Akihiro
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Chastain CJ, Heck JW, Colquhoun TA, Voge DG, Gu XY. Posttranslational regulation of pyruvate, orthophosphate dikinase in developing rice (Oryza sativa) seeds. PLANTA 2006; 224:924-34. [PMID: 16596412 DOI: 10.1007/s00425-006-0259-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 02/25/2006] [Indexed: 05/04/2023]
Abstract
Pyruvate, orthophosphate dikinase (PPDK; E.C.2.7.9.1) is most well known as a photosynthetic enzyme in C4 plants. The enzyme is also ubiquitous in C3 plant tissues, although a precise non-photosynthetic C3 function(s) is yet to be validated, owing largely to its low abundance in most C3 organs. The single C3 organ type where PPDK is in high abundance, and, therefore, where its function is most amenable to elucidation, are the developing seeds of graminaceous cereals. In this report, we suggest a non-photosynthetic function for C3 PPDK by characterizing its abundance and posttranslational regulation in developing Oryza sativa (rice) seeds. Using primarily an immunoblot-based approach, we show that PPDK is a massively expressed protein during the early syncitial-endosperm/-cellularization stage of seed development. As seed development progresses from this early stage, the enzyme undergoes a rapid, posttranslational down-regulation in activity and amount via regulatory threonyl-phosphorylation (PPDK inactivation) and protein degradation. Immunoblot analysis of separated seed tissue fractions (pericarp, embryo + aleurone, seed embryo) revealed that regulatory phosphorylation of PPDK occurs in the non-green seed embryo and green outer pericarp layer, but not in the endosperm + aleurone layer. The modestly abundant pool of inactive PPDK (phosphorylated + dephosphorylated) that was found to persist in mature rice seeds was shown to remain largely unchanged (inactive) upon seed germination, suggesting that PPDK in rice seeds function in developmental rather than in post-developmental processes. These and related observations lead us to postulate a putative function for the enzyme that aligns its PEP to pyruvate-forming reaction with biosynthetic processes that are specific to early cereal seed development.
Collapse
Affiliation(s)
- Chris J Chastain
- Department of Biosciences, Minnesota State University-Moorhead, Moorhead, MN 56563, USA.
| | | | | | | | | |
Collapse
|
25
|
Kohno-Murase J, Iwabuchi M, Endo-Kasahara S, Sugita K, Ebinuma H, Imamura J. Production of trans-10, cis-12 Conjugated Linoleic Acid in Rice. Transgenic Res 2006; 15:95-100. [PMID: 16475013 DOI: 10.1007/s11248-005-3736-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 09/30/2005] [Indexed: 10/25/2022]
Abstract
Conjugated linoleic acid (CLA) has anti-carcinogenic and anti-atherosclerosis activity, and modulatory effects on the immune system and lipid metabolism. To produce a transgenic rice plant that can accumulate CLA, a linoleate isomerase gene that can convert linoleic acid to trans-10, cis-12 CLA was introduced and expressed under the control of seed-specific promoters from the oleosin and globulin genes. The fatty acid composition of the transgenic rice grain was analyzed by gas chromatography. Although there was no clear difference in the fatty acid composition between seeds from transformed versus untransformed plants, a peak of trans-10, cis-12 CLA methyl ester, which was not present in seeds from untransformed plants, was found in transformed plants. The trans-10, cis-12 CLA comprised an average of 1.3% (w/w) of the total fatty acids in seeds carrying the oleosin promoter in comparison to 0.01% (w/w) in seeds carrying the globulin promoter. In addition, approximately 70 and 28% of the total amount of the CLA isomer were present in the triacylglycerol and free fatty acid fractions, respectively. These results demonstrate the ability to produce fatty acid components of vegetable oils with novel physiological activities in crops.
Collapse
|