1
|
Gázquez A, Larqué E. Towards an Optimized Fetal DHA Accretion: Differences on Maternal DHA Supplementation Using Phospholipids vs. Triglycerides during Pregnancy in Different Models. Nutrients 2021; 13:511. [PMID: 33557158 PMCID: PMC7913957 DOI: 10.3390/nu13020511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 01/10/2023] Open
Abstract
Docosahexaenoic acid (DHA) supplementation during pregnancy has been recommended by several health organizations due to its role in neural, visual, and cognitive development. There are several fat sources available on the market for the manufacture of these dietary supplements with DHA. These fat sources differ in the lipid structure in which DHA is esterified, mainly phospholipids (PL) and triglycerides (TG) molecules. The supplementation of DHA in the form of PL or TG during pregnancy can lead to controversial results depending on the animal model, physiological status and the fat sources utilized. The intestinal digestion, placental uptake, and fetal accretion of DHA may vary depending on the lipid source of DHA ingested by the mother. The form of DHA used in maternal supplementation that would provide an optimal DHA accretion for fetal brain development, based on the available data obtained most of them from different animal models, indicates no consistent differences in fetal accretion when DHA is provided as TG or PL. Other related lipid species are under evaluation, e.g., lyso-phospholipids, with promising results to improve DHA bioavailability although more studies are needed. In this review, the evidence on DHA bioavailability and accumulation in both maternal and fetal tissues after the administration of DHA supplementation during pregnancy in the form of PL or TG in different models is summarized.
Collapse
Affiliation(s)
- Antonio Gázquez
- Department of Physiology, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Elvira Larqué
- Department of Physiology, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| |
Collapse
|
2
|
Prihastyanti MNU, Chandra RD, Lukitasari DM. How to Fulfill Carotenoid Needs during Pregnancy and for the Growth and Development of Infants and Children – A Review. EFOOD 2021. [DOI: 10.2991/efood.k.210701.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
3
|
Abascal-Saiz A, Fuente-Luelmo E, Haro M, de la Calle M, Ramos-Álvarez MP, Perdomo G, Bartha JL. Placental Compartmentalization of Lipid Metabolism: Implications for Singleton and Twin Pregnancies. Reprod Sci 2020; 28:1150-1160. [PMID: 33171514 DOI: 10.1007/s43032-020-00385-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/01/2020] [Indexed: 11/27/2022]
Abstract
The study of placental lipid metabolism in uncomplicated pregnancies has not been developed in the literature to date. Its importance lies in expanding the knowledge of placental function to enable comparison with pathological pregnancies in future research. The aim of the present study was to compare the lipid metabolic activity and storage of the maternal and fetal sides of the placenta in healthy pregnancies. Moreover, we compare singleton vs. twin pregnancies to determine if placental metabolic needs differ. We analyzed placental explants from uncomplicated pregnancies, 20 from singleton and 8 from bichorial-biamniotic twin pregnancies (n = 28). Six cotyledon fragments were collected from each placenta at different distances from the umbilical cord, three close to the chorionic plate (hereinafter, we will refer to them as "fetal side") and another three close to the anchoring villi into the decidua basalis (referred to as "maternal side"). The samples were analyzed for quantitative assay placental fatty acid oxidation (FAO) and esterification (FAE) activities and triglyceride levels. The location of lipid storage in the chorionic villi was assessed by Oil red-O staining. Placental fatty acid oxidation did not show differences when comparing the maternal and fetal sides of the placenta or between single and twin pregnancies. When comparing placental sides, FAE was increased twofold in the maternal side compared to the fetal side of the placenta (P = 0.013). The tendency for lipogenesis in the placenta was exemplified by the FAE/FAO ratio, which was a 37.1% higher on the maternal side (P = 0.019). Despite this, triglyceride levels were five times higher in the fetal side than in the maternal one (P = 0.024). When analyzing singleton vs. twins, FAE was superior in the fetal side in multiple pregnancies (× 2.6, P = 0.007) and the FAE/FAO ratio was significantly higher in twins than in singleton pregnancies, on both sides of the placenta. Despite this finding, triglyceride levels were similar in twin and singleton pregnancies. Comparing the placentas of twins in the same pregnancy, there were no differences in lipid metabolism (FAO or FAE) or placental triglyceride levels between the two co-twins. Using Oil red-O staining, lipid storage in chorionic villi was found to be located on the syncytiotrophoblast cells and not in the connecting axis. The maternal side of the placenta is more active in the esterification of fatty acids, while the storage of neutral lipids concentrates on the fetal side. Moreover, multiple gestations have increased esterification without changes in the concentration of placental triglycerides, probably due to a higher transfer to the fetal circulation in response to the greater energy demand from twin fetuses.
Collapse
Affiliation(s)
- Alejandra Abascal-Saiz
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Eva Fuente-Luelmo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, CEU-San Pablo University, Madrid, Spain
| | - María Haro
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, CEU-San Pablo University, Madrid, Spain
| | - María de la Calle
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - María P Ramos-Álvarez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, CEU-San Pablo University, Madrid, Spain
| | - Germán Perdomo
- Department of Health Sciences, University of Burgos, Burgos, Spain.,Institute of Molecular Biology and Genetic (IMBG), CSIC - University of Valladolid, Valladolid, Spain
| | - José L Bartha
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain.
| |
Collapse
|
4
|
Gázquez A, Prieto-Sánchez MT, Blanco-Carnero JE, van Harskamp D, Perazzolo S, Oosterink JE, Demmelmair H, Schierbeek H, Sengers BG, Lewis RM, van Goudoever JB, Koletzko B, Larqué E. In vivo kinetic study of materno-fetal fatty acid transfer in obese and normal weight pregnant women. J Physiol 2019; 597:4959-4973. [PMID: 31287560 DOI: 10.1113/jp278146] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/21/2019] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Placental structure and function can be modified as a result of maternal obesity affecting materno-fetal fatty acids (FA) transport. We report for the first time, in humans and in vivo, the kinetics of placental FA transfer in normo-weight and in normolipemic obese pregnant women using stable isotopes. The administration of different tracer FA with similar behaviour to the mother at different time points allows the collection of kinetic information on materno-fetal transfer of FA despite only one sample of placenta and cord can be collected per subject. Computational modelling showed a good fit to the data when considering all maternal plasma lipid classes but not when based only on non-esterified FA. The novel approach using multiple tracer FA administration combined with computational modelling shows a consistent time course of placental tracer FA and predicted total FA accumulation. ABSTRACT We analyse for the first time the in vivo materno-fetal kinetic transfer of fatty acids (FA) labelled with stable isotopes in control and obese (OB) pregnant women. Labelled FA with a similar metabolism (stearic acid: 13 C-SA; palmitic acid: 13 C-PA; oleic acid: 13 C-OA) were orally administered at -4 h, -8 h and -12 h, respectively prior to elective caesarean section to 10 pregnant women with a body mass index >30 (OB) and 10 with a body mass index in the range 20-25 (NW). Placenta, venous and arterial cord blood were collected obtaining a wide range of FA enrichments. A combined experimental and computational modelling analysis was applied. FA fractional synthesis rate (FSR) in placenta was 11-12% h-1 . No differences were observed between NW and normo-lipidemic OB. It was not possible to estimate FA FSR in cord blood with this oral bolus dose approach. Computational modelling demonstrated a good fit to the data when all maternal plasma lipid classes were included but not with modelling based only on the non-esterified FA fraction. The estimated materno-fetal 13 C-FA transfer was ∼1%. In conclusion, our approach using multiple 13 C-FA tracers allowed us to estimated FSR in placental/maternal plasma but not in fetal/maternal compartments. Computational modelling showed a consistent time course of placental 13 C-FA transfer and predicted total fetal FA accumulation during the experiment. We conclude that, in addition to non-esterified FA fraction in the maternal circulation, maternal plasma very low-density lipoprotein and other lipoproteins are important contributors to placental FA transfer to the fetus.
Collapse
Affiliation(s)
- Antonio Gázquez
- Department of Physiology, School of Biology, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital 'Virgen de la Arrixaca', University of Murcia, Murcia, Spain.,LMU - Ludwig-Maximilians-Universität Munich, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Munich, Germany
| | - María T Prieto-Sánchez
- Obstetrics and Gynecology Service, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital 'Virgen de la Arrixaca', University of Murcia, Murcia, Spain
| | - José E Blanco-Carnero
- Obstetrics and Gynecology Service, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital 'Virgen de la Arrixaca', University of Murcia, Murcia, Spain
| | - Dewi van Harskamp
- Department of Paediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - Simone Perazzolo
- Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - J Efraim Oosterink
- Department of Paediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - Hans Demmelmair
- LMU - Ludwig-Maximilians-Universität Munich, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Henk Schierbeek
- Department of Paediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - Bram G Sengers
- Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Rohan M Lewis
- Institute for Life Sciences, University of Southampton, Southampton, UK.,University of Southampton, Faculty of Medicine, Southampton, UK
| | - Johannes B van Goudoever
- Department of Paediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands.,Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK.,University of Southampton, Faculty of Medicine, Southampton, UK.,Department of Paediatrics, Free University of Amsterdam, Amsterdam, The Netherlands
| | - Berthold Koletzko
- LMU - Ludwig-Maximilians-Universität Munich, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Elvira Larqué
- Department of Physiology, School of Biology, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital 'Virgen de la Arrixaca', University of Murcia, Murcia, Spain
| |
Collapse
|
5
|
Watkins OC, Islam MO, Selvam P, Pillai RA, Cazenave-Gassiot A, Bendt AK, Karnani N, Godfrey KM, Lewis RM, Wenk MR, Chan SY. Metabolism of 13C-Labeled Fatty Acids in Term Human Placental Explants by Liquid Chromatography-Mass Spectrometry. Endocrinology 2019; 160:1394-1408. [PMID: 30920585 DOI: 10.1210/en.2018-01020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/21/2019] [Indexed: 12/18/2022]
Abstract
Placental lipid transport and metabolism are poorly understood despite the importance for fetal development and lifelong health. We aimed to explore fatty acid (FA) processing in human villous placental explants from seven uncomplicated term singleton pregnancies delivered by elective cesarean section. Explants were treated with stable isotope-labeled palmitic acid (13C-PA), oleic acid (13C-OA), or docosahexaenoic acid (13C-DHA) for 3, 24, or 48 hours. Stable isotope-labeled lipids synthesized by placental explants from labeled FA were quantified, alongside endogenous unlabeled placental lipids, by liquid chromatography-mass spectrometry. Labeled phosphatidylcholines (PCs), triacylglycerols (TAGs), and phosphatidylethanolamines were detected in explants, whereas labeled lysophosphatidylcholines were found in both explants and conditioned media. 13C-PA was primarily directed into PC synthesis (74% of 13C-PA-labeled lipids), whereas 13C-OA was directed almost equally into PC and TAG synthesis (45% and 53%, respectively, of 13C-OA-labeled lipids). 13C-DHA was only detectable in TAGs. TAGs demonstrated the highest isotopic enrichment for all 13C-FAs with 13C-OA-TAGs comprising >50% of total OA-TAGs (unlabeled and labeled), consistent with TAGs being a labile and accessible reservoir for FA storage. Variations in lipid incorporation were correlated to maternal glycemia and body mass index, suggesting that this experimental model could be used to investigate the effect of maternal factors on placental lipid metabolism. We conclude that lipid metabolic partitioning of freshly imported FAs into labile and less labile lipid reservoirs in placenta is FA dependent. This process may partly mediate the physiological preferential transplacental transfer of particular FAs to the fetus, but may also be implicated in the fetoplacental pathophysiology of maternal metabolic dysfunction.
Collapse
Affiliation(s)
- Oliver C Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mohammad Omedul Islam
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Preben Selvam
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reshma Appukuttan Pillai
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Anne K Bendt
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Rohan M Lewis
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
6
|
Stirm L, Kovárová M, Perschbacher S, Michlmaier R, Fritsche L, Siegel-Axel D, Schleicher E, Peter A, Pauluschke-Fröhlich J, Brucker S, Abele H, Wallwiener D, Preissl H, Wadsack C, Häring HU, Fritsche A, Ensenauer R, Desoye G, Staiger H. BMI-Independent Effects of Gestational Diabetes on Human Placenta. J Clin Endocrinol Metab 2018; 103:3299-3309. [PMID: 29931171 DOI: 10.1210/jc.2018-00397] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/15/2018] [Indexed: 11/19/2022]
Abstract
PURPOSE Recently, alterations in maternal lipid metabolism were associated with gestational diabetes mellitus (GDM). However, detailed plasma lipid profiles and their relevance for placental and fetal metabolism are currently not understood. METHODS Maternal and placental lipid profiles were characterized in women with GDM and women with normal glucose tolerance (NGT). Inflammatory gene expression was compared in placentas and primary term trophoblasts between the groups. In addition, trophoblasts were stimulated with nonesterified fatty acids (NEFAs), and effects on gene expression were quantified. Finally, placental macrophage content and cord blood concentrations of inflammatory parameters and NEFAs were compared between women with GDM and women with NGT with similar body mass index (BMI). RESULTS Palmitate and stearate levels were elevated in both maternal plasma and placental tissue of women with GDM. Placental GDM-associated elevations of IL6, IL8, and TLR2 expression were reflected in trophoblasts derived from women with GDM. Stimulation of primary trophoblasts with palmitate led to increased mRNA expression and protein release of the cytokine IL6 and the chemokine IL8. In line with this, elevated amounts of CD68-positive cells were quantified in the placental tissue of women with GDM. No GDM-associated elevations in a range of inflammatory parameters and NEFAs in cord blood of NGT vs GDM neonates was found. CONCLUSIONS GDM, independently of BMI, altered maternal plasma NEFAs and the placental lipid profile. GDM was associated with trophoblast and whole-placenta lipoinflammation; however, this was not accompanied by elevated concentrations of inflammatory cytokines or NEFAs in neonatal cord blood.
Collapse
Affiliation(s)
- Laura Stirm
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Tübingen, Germany
| | - Markéta Kovárová
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany
| | - Sarah Perschbacher
- Institute for Social Pediatrics and Adolescent Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Renate Michlmaier
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Louise Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Tübingen, Germany
| | - Dorothea Siegel-Axel
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany
| | - Erwin Schleicher
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Peter
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany
| | | | - Sara Brucker
- Department of Obstetrics and Gynaecology, University Hospital Tübingen, Tübingen, Germany
| | - Harald Abele
- Department of Obstetrics and Gynaecology, University Hospital Tübingen, Tübingen, Germany
| | - Diethelm Wallwiener
- Department of Obstetrics and Gynaecology, University Hospital Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Christian Wadsack
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany
| | - Regina Ensenauer
- Institute for Social Pediatrics and Adolescent Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Division of Experimental Pediatrics and Metabolism, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Harald Staiger
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Tübingen, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
DHA supplementation during pregnancy as phospholipids or TAG produces different placental uptake but similar fetal brain accretion in neonatal piglets. Br J Nutr 2017; 118:981-988. [DOI: 10.1017/s0007114517002951] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractThe great variety of n-3 long-chain PUFA sources raises the question of the most adequate for using as a DHA supplement during pregnancy. Placental and fetal availability of different DHA sources remains unclear. We investigated DHA availability in maternal lipoproteins, placenta and fetal tissues in pregnant sows fed DHA as phospholipid (PL) or TAG to identify the best DHA source during this period. Pregnant Iberian sows were fed diets containing 0·8 % DHA of total fatty acids as PL from egg yolk or TAG from algae oil during the last third of gestation (40 d). Maternal tissues, placentas and fetal tissues were obtained at delivery and DHA quantified by GC. Major Facilitator Superfamily Domain Containing 2a (MFSD2a) carrier expression was analysed in both placenta and fetal brain by Western blotting. Sows fed the DHA–PL diet showed higher DHA incorporation in plasma LDL but not in plasma total lipids. No differences were found in DHA content between groups in maternal liver, adipose tissue or brain. Placental tissue incorporated more DHA in both total lipids and PL fraction in sows fed DHA–PL. However, this did not lead to an enhanced DHA accretion either in fetal plasma, fetal liver or fetal brain. MFSD2a expression was similar between both experimental groups. Maternal DHA supplementation during pregnancy in sow either as PL or TAG produces similar DHA accretion in fetal tissues but not in placenta. Both fat sources are equally available for fetal brain.
Collapse
|
8
|
Maternal BMI and gestational diabetes alter placental lipid transporters and fatty acid composition. Placenta 2017; 57:144-151. [PMID: 28864004 DOI: 10.1016/j.placenta.2017.07.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/27/2017] [Accepted: 07/02/2017] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Placental fatty acid (FA) uptake and metabolism depend on maternal supply which may be altered when women have a high pre-pregnancy body mass index (BMI) or develop gestational diabetes (GDM). Consequently, an impaired FA transport to the fetus may negatively affect fetal development. While placental adaptation of maternal-fetal glucose transfer in mild GDM has been described, knowledge on placental FA acid metabolism and possible adaptations in response to maternal obesity or GDM is lacking. We aimed to analyze the FA composition and the expression of key genes involved in FA uptake and metabolism in placentas from women with pre-pregnancy normal weight (18.5 ≤ BMI<25 kg/m2), overweight (25 ≤ BMI<30 kg/m2), obesity (BMI ≥ 30 kg/m2), and lean pregnant women with GDM. METHODS Placental FA content was determined by gas liquid chromatography. Placental mRNA expression of FA transport proteins (FATP1, FATP4, FATP6), FA binding proteins (FABP3, FABP4, FABP7), FA translocase (FAT/CD36) and enzymes (Endothelial lipase (EL) and lipoprotein lipase (LPL)) were quantified by qRT-PCR. RESULTS High pre-pregnancy BMI and GDM were associated with decreased placental FATP1, FATP4, EL and increased FAT/CD36 and FATP6 expressions. LPL mRNA levels and placental total FA content were similar among groups. Specific FA, including some long-chain polyunsaturated FA, were altered. DISCUSSION Our results demonstrate that high pre-pregnancy BMI or GDM independently alter mRNA expression levels of genes involved in FA uptake and metabolism and the placental FA profile, which could affect fetal development and long-term health.
Collapse
|
9
|
Ferchaud-Roucher V, Rudolph MC, Jansson T, Powell TL. Fatty acid and lipid profiles in primary human trophoblast over 90h in culture. Prostaglandins Leukot Essent Fatty Acids 2017; 121:14-20. [PMID: 28651693 DOI: 10.1016/j.plefa.2017.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/18/2017] [Accepted: 06/01/2017] [Indexed: 01/15/2023]
Abstract
Little is known about the mechanisms underlying the preferential transport of long chain polyunsaturated fatty acids (LCPUFA) to the fetus by the syncytiotrophoblast and the role of cytotrophoblasts in placental lipid metabolism and transport. We studied primary human trophoblast (PHT) cells cultured for 90h to determine the fatty acid and lipid composition of cytotrophoblast (18h culture) and syncytiotrophoblast (90h culture) cells. In cultured PHT total lipid fatty acids were significantly (P < 0.05) reduced at 90h compared to 18h in culture including lower levels of palmitic acid (PA, 16:0, -37%), palmitoleic acid (POA, 16:1n-7, -30%), oleic acid (OA, 18:1n-9, -31%), LCPUFA arachidonic acid (AA, 20:4n-6, -28%) and α-linolenic acid (ALA, 18:3n-3, -55%). In major lipid classes, OA and most of the n-3 and n-6 LCPUFA were markedly lower at 90h in TG (-57 to -76%; p < 0.05). In the cellular NEFA, n-6 LCPUFA, dihomo-γ-linolenic acid (DGLA, 20:3n-6) and AA were both reduced by -51% and DHA was -55% lower (p < 0.05) at 90h. In contrast, phospholipid FA content did not change between cytotrophoblasts and syncytiotrophoblast except for OA, which decreased by -62% (p < 0.05). Decreasing PHT TG and NEFA lipid content at 90h in culture is likely due to processes related to differentiation such as alterations in lipase activity that occur as cytotrophoblast cells differentiate. We speculate that syncytiotrophoblast prioritizes PL containing AA and DHA for transfer to the fetus by mobilizing FA from storage lipids.
Collapse
Affiliation(s)
- Véronique Ferchaud-Roucher
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Michael C Rudolph
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas Jansson
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Theresa L Powell
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
10
|
Brown SHJ, Eather SR, Freeman DJ, Meyer BJ, Mitchell TW. A Lipidomic Analysis of Placenta in Preeclampsia: Evidence for Lipid Storage. PLoS One 2016; 11:e0163972. [PMID: 27685997 PMCID: PMC5042456 DOI: 10.1371/journal.pone.0163972] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/16/2016] [Indexed: 11/18/2022] Open
Abstract
In preeclampsia, maternal insulin resistance leads to defective expansion of adipocytes, enhanced adipocyte lipolysis, up-regulation of very low density lipoprotein synthesis, maternal hypertriglyceridaemia and the potential for ectopic fat storage. Our aim was to quantitate and compare the total amount and type of lipid in placenta from pregnancies complicated with preeclampsia and healthy pregnancies. Quantitative lipid analysis of lipid extracts from full thickness placental biopsies was carried out by shotgun lipidomics. Placental lipid profiles from pregnancies complicated by preeclampsia (n = 23) were compared to healthy pregnancies (n = 68), and placenta from intrauterine growth restriction pregnancies (n = 10) were used to control for gross differences in placental pathology. Placentae from pregnancies complicated with preeclampsia had higher neutral lipid content than healthy placentae (40% higher triacyglycerol (P = 0.001) and 33% higher cholesteryl ester (P = 0.004)) that was specific to preeclampsia and independent of maternal gestation.
Collapse
Affiliation(s)
- Simon H. J. Brown
- School of Biology, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Samuel R. Eather
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Dilys J. Freeman
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Barbara J. Meyer
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Todd W. Mitchell
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
- * E-mail:
| |
Collapse
|
11
|
Rani A, Wadhwani N, Chavan-Gautam P, Joshi S. Altered development and function of the placental regions in preeclampsia and its association with long-chain polyunsaturated fatty acids. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:582-97. [DOI: 10.1002/wdev.238] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/18/2016] [Accepted: 03/29/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Alka Rani
- Department of Nutritional Medicine; Interactive Research School for Health Affairs, Bharati Vidyapeeth University; Pune India
| | - Nisha Wadhwani
- Department of Nutritional Medicine; Interactive Research School for Health Affairs, Bharati Vidyapeeth University; Pune India
| | - Preeti Chavan-Gautam
- Department of Nutritional Medicine; Interactive Research School for Health Affairs, Bharati Vidyapeeth University; Pune India
| | - Sadhana Joshi
- Department of Nutritional Medicine; Interactive Research School for Health Affairs, Bharati Vidyapeeth University; Pune India
| |
Collapse
|
12
|
Kolahi K, Louey S, Varlamov O, Thornburg K. Real-Time Tracking of BODIPY-C12 Long-Chain Fatty Acid in Human Term Placenta Reveals Unique Lipid Dynamics in Cytotrophoblast Cells. PLoS One 2016; 11:e0153522. [PMID: 27124483 PMCID: PMC4849650 DOI: 10.1371/journal.pone.0153522] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/30/2016] [Indexed: 01/10/2023] Open
Abstract
While the human placenta must provide selected long-chain fatty acids to support the developing fetal brain, little is known about the mechanisms underlying the transport process. We tracked the movement of the fluorescently labeled long-chain fatty acid analogue, BODIPY-C12, across the cell layers of living explants of human term placenta. Although all layers took up the fatty acid, rapid esterification of long-chain fatty acids and incorporation into lipid droplets was exclusive to the inner layer cytotrophoblast cells rather than the expected outer syncytiotrophoblast layer. Cytotrophoblast is a progenitor cell layer previously relegated to a repair role. As isolated cytotrophoblasts differentiated into syncytialized cells in culture, they weakened their lipid processing capacity. Syncytializing cells suppress previously active genes that regulate fatty-acid uptake (SLC27A2/FATP2, FABP4, ACSL5) and lipid metabolism (GPAT3, LPCAT3). We speculate that cytotrophoblast performs a previously unrecognized role in regulating placental fatty acid uptake and metabolism.
Collapse
Affiliation(s)
- Kevin Kolahi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
- Center for Developmental Health, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Samantha Louey
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Oleg Varlamov
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Kent Thornburg
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
- Center for Developmental Health, Oregon Health and Science University, Portland, Oregon, United States of America
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
13
|
Maternal PPARG Pro12Ala polymorphism is associated with infant's neurodevelopmental outcomes at 18 months of age. Early Hum Dev 2015; 91:457-62. [PMID: 26025336 DOI: 10.1016/j.earlhumdev.2015.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND Peroxisome proliferator activated receptors (PPARs) are ligand activated transcription factors with crucial functions in lipid homeostasis, glucose metabolism, anti-inflammatory processes, placental development, and are involved in cognitive functions and neurodegenerative diseases. Polymorphisms in PPAR genes are shown to influence the activity of these receptors. AIMS 1) To examine the association of PPARG Pro12Ala polymorphism in pregnant women and their offspring on infant's neurodevelopmental outcomes during the first 18 months of life; 2) to determine the influence of Pro12Ala polymorphism on fatty acid concentrations in plasma phospholipids and placental tissue. STUDY DESIGN 138 mother-infant pairs from the PREOBE observational study were genotyped for PPARG Pro12Ala. Plasma phospholipids and placental fatty acid concentrations were measured at delivery. Infants' neuropsychological assessment at 6 and 18 months of age was performed using Bayley III. RESULTS The effect of Pro12Ala on infant's neurodevelopmental outcomes was detected at 18 months, but not at 6 months of age. 18 months old infants born to mothers with wild-type Pro12 genotype had better cognitive (OR=5.11, 95% CI: 1.379-18.96, p=0.015), language (OR=3.41, 95% CI: 1.35-11.24, p=0.044), and motor development scores (OR=4.77, 95% CI: 1.243-18.33, p=0.023) than the Ala allele carriers. Pro12Ala variants did not seem to affect fatty acids concentrations in blood nor in placenta at delivery. CONCLUSIONS Infants born to mothers with Pro12 genotype have better neurodevelopmental outcomes at 18 months of age than Ala allele carriers, indicating a long-term transplacental action of PPARγ variants on foetal brain development.
Collapse
|
14
|
Uhl O, Demmelmair H, Segura MT, Florido J, Rueda R, Campoy C, Koletzko B. Effects of obesity and gestational diabetes mellitus on placental phospholipids. Diabetes Res Clin Pract 2015; 109:364-71. [PMID: 26021978 DOI: 10.1016/j.diabres.2015.05.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/26/2015] [Accepted: 05/02/2015] [Indexed: 11/29/2022]
Abstract
Gestational diabetes mellitus (GDM) is associated with adverse effects in the offspring. The composition of placental glycerophospholipids (GPL) is known to be altered in GDM and might reflect an aberrant fatty acid transfer across the placenta and thus affect the foetal body composition. The aim of this study was to investigate possible effects of obesity and GDM, respectively, on placental GPL species composition. We investigated molecular species of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS) in term placentas from controls (lean non-diabetic, body-mass-index [BMI] 18-24.9k g/m(2), n=31), obese non-diabetics (BMI ≥30 kg/m(2), n=17) and lean diabetics (n=15), using liquid chromatography - triple quadrupole mass spectrometry. PE(16:0/22:6) and PE(18:0/20:4) were increased in GDM and decreased species were PC(18:0/20:3), PC(18:1/20:3) and PS(18:0/18:2). A consistent difference between BMI related changes and changes caused by GDM was not observed. Arachidonic acid percentages of cord blood correlated with placental PC(16:0/20:4), whereas foetal docosahexaenoic acid correlated to placental PE species. Furthermore, a positive correlation of placental weight was found to levels of PE containing arachidonic acid. We demonstrated that obesity and GDM are associated with decreased dihomo-gamma-linolenic acid and increased arachidonic acid and docosahexaenoic acid contents of placental GPL, with unknown consequences for the foetus. PC(16:0/20:4) was identified as the major component for the supply of arachidonic acid to the foetal circulation, whereas PE containing arachidonic acid was found to be associated to the placental and infant growth.
Collapse
Affiliation(s)
- Olaf Uhl
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
| | - Hans Demmelmair
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
| | - María Teresa Segura
- EURISTIKOS Excellence Centre for Paediatric Research, University of Granada, Spain
| | - Jesús Florido
- Department of Obstetrics and Gynecology, Granada's University Hospital San Cecilio, Granada, Spain
| | - Ricardo Rueda
- Strategic Research Department, Abbott Nutrition, Granada, Spain
| | - Cristina Campoy
- EURISTIKOS Excellence Centre for Paediatric Research, University of Granada, Spain; Department of Pediatrics, School of Medicine, University of Granada, Granada, Spain
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany.
| |
Collapse
|
15
|
Yamazaki I, Kimura F, Nakagawa K, Nakai K, Arima T, Kawabata T, Kagawa Y, Saitoh S, Mizuno S, Yaegashi N, Miyazawa T. Heterogeneity of the Fatty Acid Composition of Japanese Placentae for Determining the Perinatal Fatty Acid Status: a Methodological Study. J Oleo Sci 2015; 64:905-14. [PMID: 26179007 DOI: 10.5650/jos.ess15071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Analysis of the placenta can be a useful way to determine the fatty acid (FA) status of pregnant women and neonates since this large organ can be obtained easily and non-invasively. Although several studies have been conducted on using placental tissue for FA analysis, the sampling methods have not been thoroughly examined. The aim of the present study was to determine a suitable method of sampling human placentae by focusing on their heterogeneity. Twenty-four placentae were collected from healthy pregnant Japanese women in the Miyagi Prefecture of Japan. Five of them were used to compare the FA composition between the peripheral area and the central area of the placentae. The other 19 were examined to determine differences in the FA composition between the fetal and maternal side. Placental tissue crude lipid was saponified, and methyl was esterified with 14% sodium boron trifluoride methanol for gas chromatography with flame ionization detector analysis. Fifty-six peaks were detected from the methyl esters of the placental total lipid, and 33 of those were identified as FA methyl esters. There were considerable variations in the FA composition, as the variation was low in the central parts and high in the peripheral parts of the placentae. The 18:1n-9 and 18:2n-6 levels were higher in the fetal side, whereas the 20:3n-6, 20:4n-6, and 22:6n-3 levels were higher in the maternal side. These findings indicate the presence of heterogeneity in the FA composition of human placenta, and they suggest the necessity for standardizing the sampling method so that the placental tissue can be used to determine the FA status.
Collapse
Affiliation(s)
- Isao Yamazaki
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Sciences, Tohoku University
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hernández-Albaladejo I, Ruíz-Palacios M, Gázquez A, Blanco JE, Parrilla JJ, Larqué E. A method for lipid droplet isolation from human placenta for further analyses in clinical trials. Acta Obstet Gynecol Scand 2014; 93:1198-202. [PMID: 25134655 DOI: 10.1111/aogs.12461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 07/09/2014] [Indexed: 11/30/2022]
Abstract
We describe a method to isolate lipids droplets from human placental tissue for future lipid analyses. We collected placentas at term from healthy women (n=5) and tested three methods published for lipids droplets isolation in other tissues. Only one of the methods, when modified, isolated lipids droplets from placental tissue, whereas all three methods allowed lipids droplets isolation from rat liver (control tissue) and separation of lipids droplets from blood contamination of the tissue. The placental lipids droplets layer was characterized by the presence of adipophilin while no N+ /K+-ATPase as plasma membrane contamination was detected. Intraplacental triglyceride content showed a high coefficient of variation (~42%), whereas for cholesterol and phospholipids this was lower. One method was effective for isolation of placental lipids droplets. It is necessary to collect a pool of placental tissue pieces for placental lipids droplets analyses. Freezing in liquid nitrogen is recommended.
Collapse
|
17
|
Marseglia L, D'Angelo G, Manti S, Arrigo T, Barberi I, Reiter RJ, Gitto E. Oxidative stress-mediated aging during the fetal and perinatal periods. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:358375. [PMID: 25202436 PMCID: PMC4151547 DOI: 10.1155/2014/358375] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/18/2014] [Accepted: 08/05/2014] [Indexed: 12/14/2022]
Abstract
Oxidative stress is worldwide recognized as a fundamental component of the aging, a process that begins before birth. There is a critical balance between free radical generation and antioxidant defenses. Oxidative stress is caused by an imbalance between the production of free radicals and the ability of antioxidant system to detoxify them. Oxidative stress can occur early in pregnancy and continue in the postnatal period; this damage is implicated in the pathophysiology of pregnancy-related disorders, including recurrent pregnancy loss, preeclampsia and preterm premature rupture of membranes. Moreover, diseases of the neonatal period such as bronchopulmonary dysplasia, retinopathy of prematurity, necrotizing enterocolitis, and periventricular leukomalacia are related to free radical damage. The specific contribution of oxidative stress to the pathogenesis and progression of these neonatal diseases is only partially understood. This review summarizes what is known about the role of oxidative stress in pregnancy and in the pathogenesis of common disorders of the newborn, as a component of the early aging process.
Collapse
Affiliation(s)
- Lucia Marseglia
- Neonatal and Pediatric Intensive Care Unit, Department of Pediatrics, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Gabriella D'Angelo
- Neonatal and Pediatric Intensive Care Unit, Department of Pediatrics, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Sara Manti
- Unit of Pediatric Genetics and Immunology, Department of Pediatrics, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Teresa Arrigo
- Unit of Pediatric Genetics and Immunology, Department of Pediatrics, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Ignazio Barberi
- Neonatal and Pediatric Intensive Care Unit, Department of Pediatrics, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 40729, USA
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Pediatrics, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| |
Collapse
|
18
|
Zuniga FA, Ormazabal V, Gutierrez N, Aguilera V, Radojkovic C, Veas C, Escudero C, Lamperti L, Aguayo C. Role of lectin-like oxidized low density lipoprotein-1 in fetoplacental vascular dysfunction in preeclampsia. BIOMED RESEARCH INTERNATIONAL 2014; 2014:353616. [PMID: 25110674 PMCID: PMC4109675 DOI: 10.1155/2014/353616] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/24/2014] [Indexed: 11/30/2022]
Abstract
The bioavailability of nitric oxide (NO) represents a key marker in vascular health. A decrease in NO induces a pathological condition denominated endothelial dysfunction, syndrome observed in different pathologies, such as obesity, diabetes, kidney disease, cardiovascular disease, and preeclampsia (PE). PE is one of the major risks for maternal death and fetal loss. Recent studies suggest that the placenta of pregnant women with PE express high levels of lectin-like oxidized LDL receptor-1 (LOX-1), which induces endothelial dysfunction by increasing reactive oxygen species (ROS) and decreasing intracellular NO. Besides LOX-1 activation induces changes in migration and apoptosis of syncytiotrophoblast cells. However, the role of this receptor in placental tissue is still unknown. In this review we will describes the physiological roles of LOX-1 in normal placenta development and the potential involvement of this receptor in the pathophysiology of PE.
Collapse
Affiliation(s)
- Felipe A. Zuniga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, 4070386 Concepcion, Chile
| | - Valeska Ormazabal
- Department of Basic Science, Faculty of Medicine, Universidad Católica de la Santísima Concepción, 4090541 Concepcion, Chile
| | - Nicolas Gutierrez
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, 4070386 Concepcion, Chile
| | - Valeria Aguilera
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, 4070386 Concepcion, Chile
| | - Claudia Radojkovic
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, 4070386 Concepcion, Chile
| | - Carlos Veas
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, 4070386 Concepcion, Chile
| | - Carlos Escudero
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Group of Research and Innovation in Vascular Health (GRIVAS Health), Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, 4081112 Chillán, Chile
| | - Liliana Lamperti
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, 4070386 Concepcion, Chile
| | - Claudio Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, 4070386 Concepcion, Chile
| |
Collapse
|
19
|
Pietrantoni E, Del Chierico F, Rigon G, Vernocchi P, Salvatori G, Manco M, Signore F, Putignani L. Docosahexaenoic acid supplementation during pregnancy: a potential tool to prevent membrane rupture and preterm labor. Int J Mol Sci 2014; 15:8024-36. [PMID: 24810692 PMCID: PMC4057716 DOI: 10.3390/ijms15058024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 01/18/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are required to maintain the fluidity, permeability and integrity of cell membranes. Maternal dietary supplementation with ω-3 PUFAs during pregnancy has beneficial effects, including increased gestational length and reduced risk of pregnancy complications. Significant amounts of ω-3 docosahexaenoic acid (DHA) are transferred from maternal to fetal blood, hence ensuring high levels of DHA in the placenta and fetal bloodstream and tissues. Fetal DHA demand increases exponentially with gestational age, especially in the third trimester, due to fetal development. According to the World Health Organization (WHO) and the Food and Agriculture Organization of the United Nations (FAO), a daily intake of DHA is recommended during pregnancy. Omega-3 PUFAs are involved in several anti-inflammatory, pro-resolving and anti-oxidative pathways. Several placental disorders, such as intrauterine growth restriction, premature rupture of membranes (PROM) and preterm-PROM (pPROM), are associated with placental inflammation and oxidative stress. This pilot study reports on a preliminary evaluation of the significance of the daily DHA administration on PROM and pPROM events in healthy pregnant women. Further extensive clinical trials will be necessary to fully elucidate the correlation between DHA administration during pregnancy and PROM/pPROM occurrence, which is related in turn to gestational duration and overall fetal health.
Collapse
Affiliation(s)
- Emanuela Pietrantoni
- Department of Obstetrics and Gynaecology, San Camillo Forlanini Hospital, Circonvallazione Gianicolense, 87, Rome 00151, Italy.
| | - Federica Del Chierico
- Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio, 4, Rome 00165, Italy.
| | - Giuliano Rigon
- Department of Obstetrics and Gynaecology, San Camillo Forlanini Hospital, Circonvallazione Gianicolense, 87, Rome 00151, Italy.
| | - Pamela Vernocchi
- Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio, 4, Rome 00165, Italy.
| | - Guglielmo Salvatori
- Unit of Neonatology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio, 4, Rome 00165, Italy.
| | - Melania Manco
- Scientific Directorate, Research Unit for Multifactorial Disease, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio, 4, Rome 00165, Italy.
| | - Fabrizio Signore
- Department of Obstetrics and Gynaecology, San Camillo Forlanini Hospital, Circonvallazione Gianicolense, 87, Rome 00151, Italy.
| | - Lorenza Putignani
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio, 4, Rome 00165, Italy.
| |
Collapse
|
20
|
Pagán A, Prieto-Sánchez MT, Blanco-Carnero JE, Gil-Sánchez A, Parrilla JJ, Demmelmair H, Koletzko B, Larqué E. Materno-fetal transfer of docosahexaenoic acid is impaired by gestational diabetes mellitus. Am J Physiol Endocrinol Metab 2013; 305:E826-33. [PMID: 23921142 DOI: 10.1152/ajpendo.00291.2013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Better knowledge on the disturbed mechanisms implicated in materno-fetal long-chain polyunsaturated fatty acid (LC-PUFA) transfer in pregnancies with gestational diabetes mellitus (GDM) may have potentially high implications for later on in effective LC-PUFA supplementation. We studied in vivo placental transfer of fatty acids (FA) using stable isotope tracers administrated to 11 control and 9 GDM pregnant women (6 treated with insulin). Subjects received orally [(13)C]palmitic, [(13)C]oleic and [(13)C]linoleic acids, and [(13)C]docosahexaenoic acid ((13)C-DHA) 12 h before elective caesarean section. Maternal blood samples were collected at -12, -3, -2, and -1 h, delivery, and +1 h. Placental tissue and venous cord blood were also collected. FA were quantified by gas chromatography (GC) and (13)C enrichments by GC-isotope ratio mass spectrometry. [(13)C]FA concentration was higher in total lipids of maternal plasma in GDM vs. controls, except for [(13)C]DHA. Moreover, [(13)C]DHA showed lower placenta/maternal plasma ratio in GDM vs. controls and significantly lower cord/maternal plasma ratio. For the other studied FA, ratios were not different between GDM and controls. Disturbed [(13)C]DHA placental uptake occurs in both GDM treated with diet or insulin, whereas the last ones also have lower [(13)C]DHA in venous cord. The tracer study pointed toward impaired placental DHA uptake as critical step, whereas the transfer of the rest of [(13)C]FA was less affected. GDM under insulin treatment could also have higher fetal fat storage, contributing to reduce [(13)C]DHA in venous cord. DHA transfer to the fetus was reduced in GDM pregnancies compared with controls, which might affect the programming of neurodevelopment in their neonates.
Collapse
Affiliation(s)
- Ana Pagán
- Physiology Department, Faculty of Biology, University of Murcia, Murcia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kremmyda LS, Tvrzicka E, Stankova B, Zak A. Fatty acids as biocompounds: their role in human metabolism, health and disease: a review. part 2: fatty acid physiological roles and applications in human health and disease. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2012; 155:195-218. [PMID: 22286806 DOI: 10.5507/bp.2011.052] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND This is the second of two review parts aiming at describing the major physiological roles of fatty acids, as well as their applications in specific conditions related to human health. RESULTS The review included the current literature published in Pubmed up to March 2011. In humans, fatty acids are a principle energy substrate and structural components of cell membranes (phospholipids) and second messengers. Fatty acids are also ligands of nuclear receptors affecting gene expression. Longer-chain (LC) polyunsaturated fatty acids (PUFA), including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid are precursors of lipid mediators such as eicosanoids (prostaglandins, leukotrienes, thromboxanes), resolvins and neuroprotectins. Lipid mediators produced by EPA and DHA (LC n-3 PUFA; mainly found in oily fish) are considered as inflammation-resolving, and thus, fish oil has been characterised as antiinflammatory. Recommendations for EPA plus DHA intake from oily fish vary between 250-450 mg/day. Dietary reference values for fat vary between nutrition bodies, but mainly agree on a low total and saturated fat intake. The existing literature supports the protective effects of LC n-3 PUFA (as opposed to n-6 PUFA and saturated fat) in maternal and offspring health, cardiovascular health, insulin sensitivity, the metabolic syndrome, cancer, critically ill patients, and immune system disorders. CONCLUSION Fatty acids are involved in multiple pathways and play a major role in health. Further investigation and a nutrigenomics approach to the effects of these biocompounds on health and disease development are imperative and highlight the importance of environmental modifications on disease outcome.
Collapse
|
22
|
Valcke M, Krishnan K. Assessing the impact of the duration and intensity of inhalation exposure on the magnitude of the variability of internal dose metrics in children and adults. Inhal Toxicol 2011; 23:863-77. [DOI: 10.3109/08958378.2011.609918] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Hellmuth C, Uhl O, Segura-Moreno M, Demmelmair H, Koletzko B. Determination of acylglycerols from biological samples with chromatography-based methods. J Sep Sci 2011; 34:3470-83. [DOI: 10.1002/jssc.201100556] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 12/15/2022]
|
24
|
LIU GUANGMIN, ZHENG YUANYUAN, XU XIANG, LIU XUAN, YUAN FANG, GAO YANXIANG. REMOVAL OF LIPID AND CHOLESTEROL FROM GOAT PLACENTA BY SUPERCRITICAL CARBON DIOXIDE EXTRACTION. J FOOD PROCESS ENG 2011. [DOI: 10.1111/j.1745-4530.2009.00417.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
An assessment of the interindividual variability of internal dosimetry during multi-route exposure to drinking water contaminants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:4002-22. [PMID: 21139873 PMCID: PMC2996221 DOI: 10.3390/ijerph7114002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 11/04/2010] [Accepted: 11/12/2010] [Indexed: 12/14/2022]
Abstract
The objective of this study was to evaluate inter-individual variability in absorbed and internal doses after multi-route exposure to drinking water contaminants (DWC) in addition to the corresponding variability in equivalent volumes of ingested water, expressed as liter-equivalents (LEQ). A multi-route PBPK model described previously was used for computing the internal dose metrics in adults, neonates, children, the elderly and pregnant women following a multi-route exposure scenario to chloroform and to tri- and tetra-chloroethylene (TCE and PERC). This scenario included water ingestion as well as inhalation and dermal contact during a 30-min bathroom exposure. Monte Carlo simulations were performed and distributions of internal dose metrics were obtained. The ratio of each of the dose metrics for inhalation, dermal and multi-route exposures to the corresponding dose metrics for the ingestion of drinking water alone allowed computation of LEQ values. Mean BW-adjusted LEQ values based on absorbed doses were greater in neonates regardless of the contaminant considered (0.129–0.134 L/kg BW), but higher absolute LEQ values were obtained in average adults (3.6–4.1 L), elderly (3.7–4.2 L) and PW (4.1–5.6 L). LEQ values based on the parent compound’s AUC were much greater than based on the absorbed dose, while the opposite was true based on metabolite-based dose metrics for chloroform and TCE, but not PERC. The consideration of the 95th percentile values of BW-adjusted LEQ did not significantly change the results suggesting a generally low intra-subpopulation variability during multi-route exposure. Overall, this study pointed out the dependency of the LEQ on the dose metrics, with consideration of both the subpopulation and DWC.
Collapse
|
26
|
Valcke M, Krishnan K. Evaluation of the impact of the exposure route on the human kinetic adjustment factor. Regul Toxicol Pharmacol 2010; 59:258-69. [PMID: 20969910 DOI: 10.1016/j.yrtph.2010.10.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 10/13/2010] [Accepted: 10/13/2010] [Indexed: 10/18/2022]
Abstract
The objective of this study was to assess the impact of the exposure route on the human kinetic adjustment factor (HKAF), for which a default value of 3.16 is used in non-cancer risk assessment. A multi-route PBPK model was modified from the literature and used for computing the internal dose metrics in adults, neonates, children, elderly and pregnant women following three route-specific scenarios to chloroform, bromoform, tri- or per-chloroethylene (TCE or PERC). These include 24-h inhalation exposure, body-weight adjusted oral exposure and 30 min dermal exposure to contaminated drinking water. Distributions for body weight (BW), height (BH) and hepatic cytochrome P450 2E1 (CYP2E1) content were obtained from the literature, whereas model parameters (flows, volumes) were calculated from BW and BH. Monte Carlo simulations were performed and the HKAF was calculated as the ratio of the 95th percentile value of internal dose metrics in subpopulation to the 50th percentile value in adults. On the basis of the area under the parent compound's arterial blood concentration vs time curve (AUC(pc)), highest HKAFs were obtained in neonates for every scenario considered, and were the highest for bromoform (range: 3.6-7.4). Exceedance of the default value based on AUC(PC) was also observed for an oral exposure to chloroform in neonates (4.9). In all other cases, HKAFs remained below the default value. Overall, this study has pointed out the dependency of the HKAF on the exposure route, dose metrics and subpopulation considered, as well as characteristics of the chemicals investigated.
Collapse
Affiliation(s)
- M Valcke
- Département de Santé Environnementale et Santé au Travail, Université de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
27
|
Gil-Sánchez A, Larqué E, Demmelmair H, Acien MI, Faber FL, Parrilla JJ, Koletzko B. Maternal-fetal in vivo transfer of [13C]docosahexaenoic and other fatty acids across the human placenta 12 h after maternal oral intake. Am J Clin Nutr 2010; 92:115-22. [PMID: 20444955 DOI: 10.3945/ajcn.2010.29589] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Fetal growth and development require n-3 (omega-3) long-chain polyunsaturated fatty acids, but mechanisms for their placental transfer are not well understood. OBJECTIVE We assessed distribution and human placental transfer of (13)C-labeled fatty acids (FAs) 12 h after oral application. DESIGN Eleven pregnant women received 0.5 mg [(13)C]palmitic acid ((13)C-PA; 16:0), 0.5 mg [(13)C]oleic acid ((13)C-OA; 18:1n-9), 0.5 mg [(13)C]linoleic acid ((13)C-LA; 18:2n-6), and 0.1 mg [(13)C]docosahexaenoic acid ((13)C-DHA; 22:6n-3) per kilogram of body weight orally 12 h before elective cesarean section. Maternal blood samples were collected before tracer intake (-12 h) and at -3, -2, -1, 0, and +1 h relative to the time of cesarean section. At birth, venous cord blood and placental tissue were collected, and FA concentrations in individual lipid fractions and their tracer content (atom percent excess values) were determined. RESULTS Relatively stable tracer enrichment was achieved in maternal lipid fractions 12 h after tracer administration. In maternal plasma, most (13)C-PA and (13)C-OA were found in triglycerides, whereas (13)C-LA and (13)C-DHA were found mainly in plasma phospholipids and triglycerides. In placental tissue, (13)C-FAs were mainly found in phospholipids, which comprise 80% of placental tissue lipids. Placenta-maternal plasma ratios and fetal-maternal plasma ratios for (13)C-DHA were significantly higher than those for any other FA. CONCLUSIONS Twelve hours after oral application of (13)C-labeled FAs, relatively stable tracer enrichment was achieved. We found a significantly higher ratio of (13)C-DHA concentrations in cord plasma than in maternal plasma, which was higher than that for the other studied FAs. (13)C-DHA is predominantly esterified into phospholipids and triglycerides in maternal plasma, which may facilitate its placental uptake and transfer.
Collapse
|
28
|
Irman S, Miha S, Igor M, Rozman B, Bozic B. In vitro model of annexin A5 crystallization on natural phospholipid bilayers observed by atomic force microscopy. Autoimmunity 2010; 42:414-23. [PMID: 19811258 DOI: 10.1080/08916930902785371] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Annexin A5 is a potent anticoagulant protein with a thrombomodulatory function. It is frequently mentioned with systemic inflammatory autoimmune disease, which share higher vulnerability to cardiovascular diseases. The protein has the ability to bind to membranes containing negatively charged phospholipids in a calcium-dependent manner. The potent anticoagulant properties of the protein are a consequence of this crystallization, which forms the lattice of annexin A5 over phospholipid surface, blocking its availability for coagulation reactions. Crystallization of annexin A5 has been proven on homogeneous synthetic phospholipids. However, the crystallization of annexin A5 on inhomogeneous, naturally derived phospholipid surfaces, in p3 and p6 crystal form, has now been reported for the first time. Atomic force microscopy was chosen for the observation of the crystallization of annexin A5 on different solid supported phospholipid bilayers. In this study model, the optimal results were obtained by using: 0.5 mg/ml lipid vesicles suspension (70% phosphatidylcholine, 30% phosphatidylserine) in HEPES buffer saline (HBS) with 2 mM CaCl(2), large unilamellar vesicles with sizes around 200 nm, 41 degrees C of phase transition temperature and 21 microg/ml of native annexin A5 in HBS with 2 or 20 mM CaCl(2). Results were evaluated by imaging and force measurements. Demonstration that native annexin A5 is able to spontaneously crystallize on naturally derived, inhomogeneous phospholipids is supporting the putative role of annexin A5 crystal structures as possible antithrombotic shield. This in vitro system is probably more appropriate for studying the pathogenetic role of antiphospholipid antibodies.
Collapse
Affiliation(s)
- Spela Irman
- Division of Internal Medicine, Department of Rheumatology, University Medical Centre, Vodnikova cesta 61, SI-1000, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
29
|
Porcine models for the metabolic syndrome, digestive and bone disorders: a general overview. Animal 2010; 4:899-920. [DOI: 10.1017/s1751731110000200] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
30
|
|
31
|
Abstract
PURPOSE OF REVIEW Long-chain omega-3 fatty acids are essential for the developing fetus. Docosahexaenoic acid, the most important omega-3 fatty acid, is an important component of neural and retinal membranes, and rapidly accumulates in the brain during gestation and the postnatal period. Positive associations have been shown between maternal intake of fish, seafood and omega-3 fatty acids during pregnancy and/or lactation and visual and cognitive development. RECENT FINDINGS The review focuses on new findings by both observational and interventional studies on the influence of omega-3 fatty acids during pregnancy or lactation on gestation length and birth weight, preterm delivery, preeclampsia, maternal depression and infant visual function and neural development. SUMMARY Omega-3 fatty acids have been associated with reduced risk of cardiovascular and other diseases. Observational and interventional studies indicate a significant association with prolonging gestation and reducing the risk of preterm delivery both in low-risk and in high-risk pregnancies. Further benefits have been suggested for intrauterine growth restriction, preeclampsia and postpartum depression, but the evidence is inconclusive. Higher maternal docosahexaenoic acid intake both in pregnancy and lactation is associated with positive infant neurodevelopmental outcomes. Women of reproductive age should achieve an average dietary docosahexaenoic acid intake of at least 200 mg/day.
Collapse
Affiliation(s)
- Irene Cetin
- Institute of Obstetrics and Gynecology, IRCCS Fondazione Policlinico, Mangiagalli e Regina Elena, University of Milan, Milan, Italy.
| | | |
Collapse
|
32
|
Abstract
Dietary fat intake in pregnancy and lactation affects pregnancy outcomes and child growth, development and health. The European Commission charged the research project PERILIP, jointly with the Early Nutrition Programming Project, to develop recommendations on dietary fat intake in pregnancy and lactation. Literature reviews were performed and a consensus conference held with international experts in the field, including representatives of international scientific associations. The adopted conclusions include: dietary fat intake in pregnancy and lactation (energy%) should be as recommended for the general population; pregnant and lactating women should aim to achieve an average dietary intake of at least 200 mg DHA/d; intakes of up to 1 g/d DHA or 2.7 g/d n-3 long-chain PUFA have been used in randomized clinical trials without significant adverse effects; women of childbearing age should aim to consume one to two portions of sea fish per week, including oily fish; intake of the DHA precursor, alpha-linolenic acid, is far less effective with regard to DHA deposition in fetal brain than preformed DHA; intake of fish or other sources of long-chain n-3 fatty acids results in a slightly longer pregnancy duration; dietary inadequacies should be screened for during pregnancy and individual counselling be offered if needed.
Collapse
|
33
|
Kaplas N, Isolauri E, Lampi AM, Ojala T, Laitinen K. Dietary counseling and probiotic supplementation during pregnancy modify placental phospholipid fatty acids. Lipids 2007; 42:865-70. [PMID: 17647038 DOI: 10.1007/s11745-007-3094-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 06/29/2007] [Indexed: 11/28/2022]
Abstract
It has previously been shown that maternal nutrition affects the fetal environment, with consequences for the infant's health. From early pregnancy onwards participants here received a combination of dietary counseling and probiotics (Lactobacillus GG and Bifidobacterium lactis Bb12; n = 10), dietary counseling with placebo (n = 12), or placebo alone (n = 8). The major differences in placental fatty acids were attributable to a higher concentration of n-3 polyunsaturated fatty acids in both intervention arms than in controls. Further, dietary counseling with probiotics resulted in higher concentrations of linoleic (18:2n-6) and dihomo-gamma-linolenic acids (20:3n-6) compared with dietary counseling with placebo or controls.
Collapse
Affiliation(s)
- Niina Kaplas
- Functional Foods Forum, University of Turku, 20014, Turku, Finland
| | | | | | | | | |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Oxidative stress is implicated in the pathophysiology of disorders during pregnancy, childbirth and the postnatal period, but open questions exist on the effects of antioxidants, the role of oxidative stress during resuscitation and the antioxidative protection of human milk. RECENT FINDINGS In a randomized controlled trial, fish oil supplementation to pregnant women did not enhance oxidative stress. Two randomized controlled trials supplementing high dosages of both vitamins C and E did not show any reduction in the incidence of preeclampsia. A systematic review and meta-analysis of studies comparing resuscitation of asphyxiated infants either with 100% oxygen or with room air demonstrated significantly lower neonatal mortality with use of room air. Antioxidative properties of human milk were greater in milk from mothers of term than of preterm infants. SUMMARY Increased levels of oxidative stress and reduced antioxidative capacities may contribute to the pathogenesis of disorders in the perinatal period. Based on the available evidence, supplementation of pregnant women with high dosages of both vitamin C and E cannot be recommended. Asphyxiated newborn infants should be resuscitated with room air rather than with 100% oxygen. Breastfeeding appears beneficial in providing antioxidative protection.
Collapse
Affiliation(s)
- Hiromichi Shoji
- Department of Pediatrics, Juntendo University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
35
|
Klingler M, Blaschitz A, Campoy C, Caño A, Molloy AM, Scott JM, Dohr G, Demmelmair H, Koletzko B, Desoye G. The effect of docosahexaenoic acid and folic acid supplementation on placental apoptosis and proliferation. Br J Nutr 2007; 96:182-90. [PMID: 16870008 DOI: 10.1079/bjn20061812] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The hypothesis was tested that the additional dietary uptake of n-3 fatty acids, in particular of DHA and 5-methyltetrahydrofolate (5-MTHF), during the second half of pregnancy would influence proliferation and apoptosis in the full-term human placenta. The diets of pregnant women from Spain (n 55) were supplemented with modified fish oil and/or 5-MTHF or placebo, and assigned in a random, double-blind manner to one of the four groups. Immunohistochemistry and immunoblotting were used to detect placental proliferation and apoptosis with monoclonal antibodies for key proteins that reflected the extent of both processes: proliferation cell nuclear antigen (PCNA), p53, cytokeratin 18 neoepitope. The PCNA level in the fish oil/5-MTHF-treated group was higher by 66 % (P < 0.05) than that of the placebo group, whereas the levels of p53 and cytokeratin 18 neoepitope were unaffected by treatment. PCNA expression was altered only in the trophoblast compartment (placebo 11.1 (se 0.5) % v. combination 21.5 (se 1.2) %; P < 0.05), whereas the proportion of nuclei stained in endothelial and other stromal cells was similar in the placebo and combined treatment groups. No correlation was found between fish oil or 5-MTHF supplementation and the levels of the proteins. The present data suggest that supplementation with fish oil and/or 5-MTHF had no effect on the parameters reflecting placental proliferation and apoptosis. A defined combination of DHA and 5-MTHF may, however, affect placental proliferation.
Collapse
Affiliation(s)
- Mario Klingler
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Larqué E, Krauss-Etschmann S, Campoy C, Hartl D, Linde J, Klingler M, Demmelmair H, Caño A, Gil A, Bondy B, Koletzko B. Docosahexaenoic acid supply in pregnancy affects placental expression of fatty acid transport proteins. Am J Clin Nutr 2006; 84:853-61. [PMID: 17023713 DOI: 10.1093/ajcn/84.4.853] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Better understanding of the mechanisms involved in docosahexaenoic acid (DHA) transfer to the neonate may contribute to improve dietary support for infants born prematurely to mothers with placental lipid transport disorders. OBJECTIVE We studied whether DHA supplements modify the messenger RNA (mRNA) expression of placental lipid transport proteins to allow a selective transfer of DHA to the fetus. DESIGN Healthy pregnant women (n = 136) received, in a double-blind randomized trial, 500 mg DHA + 150 mg eicosapentaenoic acid, 400 microg 5-methyl-tetrahydrofolic acid, 500 mg DHA + 400 microg 5-methyl-tetrahydrofolic acid, or placebo during the second half of gestation. We analyzed the fatty acid composition of maternal and cord blood phospholipids and of placenta; we quantified placental mRNA expression of fatty acid-transport protein 1 (FATP-1), FATP-4, FATP-6, fatty acid translocase, fatty acid-binding protein (FABP) plasma membrane, heart-FABP, adipocyte-FABP, and brain-FABP. RESULTS The mRNA expression of the lipid carriers assayed did not differ significantly between the 4 groups. However, the mRNA expression of FATP-1 and FATP-4 in placenta was correlated with DHA in both maternal plasma and placental phospholipids, although only FATP-4 expression was significantly correlated with DHA in cord blood phospholipids. Additionally, the mRNA expression of several membrane lipid carriers was correlated with EPA and DHA in placental triacylglycerols and with EPA in placental free fatty acids. CONCLUSIONS Correlation of the mRNA expression of the membrane placental proteins FATP-1 and especially of FATP-4 with maternal and cord DHA leads us to conclude that these lipid carriers are involved in placental transfer of long-chain polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Elvira Larqué
- Division of Metabolic Diseases and Nutritional Medicine, Dr von Hauner Children Hospital, Ludwig Maximilians University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Larqué E, Demmelmair H, Klingler M, De Jonge S, Bondy B, Koletzko B. Expression pattern of fatty acid transport protein-1 (FATP-1), FATP-4 and heart-fatty acid binding protein (H-FABP) genes in human term placenta. Early Hum Dev 2006; 82:697-701. [PMID: 16574350 DOI: 10.1016/j.earlhumdev.2006.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 01/25/2006] [Accepted: 02/02/2006] [Indexed: 10/24/2022]
Abstract
Placental tissue from five women undergoing elective caesarean did not present differences in fatty acids or mRNA expression of FATP-1, FATP-4 and H-FABP in different placental locations. mRNA expression of FATP-1 and FATP-4 was significantly higher than H-FABP. The expression of L-FABP was too low in placenta for accurate quantification.
Collapse
Affiliation(s)
- Elvira Larqué
- Division of Metabolic Diseases and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich Lindwurmstrasse 4, D-80337 München, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Bitsanis D, Ghebremeskel K, Moodley T, Crawford MA, Djahanbakhch O. Gestational diabetes mellitus enhances arachidonic and docosahexaenoic acids in placental phospholipids. Lipids 2006; 41:341-6. [PMID: 16808147 DOI: 10.1007/s11745-006-5104-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In previous studies, we reported that neonates of women with gestational diabetes mellitus (GDM) have reduced blood levels of arachidonic acid (AA) and docosahexaenoic acid (DHA) that were unrelated to maternal status. Since both AA and DHA are selectively transferred from maternal to fetal circulation by the placenta, we have investigated whether the FA composition of the placenta is altered by GDM. Thirty-six women, 11 with and 25 without GDM, were recruited from Newham General Hospital, London. The women with GDM had higher levels of di-homo-gamma-linolenic (P < 0.05), docosatetraenoic (n-6 DTA; P< 0.0001), docosapentaenoic n-6 (P< 0.005), total n-6 (P < 0.005), docosapentaenoic (n-3 DPA; P < 0.005), and total n-3 (P < 0.01) FA, as well as higher levels of AA (P < 0.05) and DHA (P < 0.01), in placental choline phosphoglycerides (CPG) compared with the healthy women who served as controls. Similarly, the women with GDM had elevated n-6 DTA (P < 0.005), AA, total n-6 metabolites (P < 0.05), DHA, total n-3 metabolites, and total n-3 FA (P < 0.005) in ethanolamine phosphoglycerides (EPG). In contrast to CPG and EPG, the placental TG of the women with GDM had higher linoleic acid (P< 0.05) and lower AA, n-6 metabolites, and n-3 DPA (P < 0.01). The placenta is devoid of desaturase activity, and it is thought to be reliant on maternal circulation for both AA and DHA. Hence, the enhanced levels of the two FA in the placenta of the GDM group suggests that these FA are taken up from the maternal circulation and retained after esterification into phosphoglycerides instead of being transferred to the fetus. Further study is needed to elucidate the mechanism involved and the effect of the phenomenon on postnatal growth and development of the offspring.
Collapse
Affiliation(s)
- Demetris Bitsanis
- Institute of Brain Chemistry and Human Nutrition, London Metropolitan University, United Kingdom.
| | | | | | | | | |
Collapse
|
39
|
Bitsanis D, Crawford MA, Moodley T, Holmsen H, Ghebremeskel K, Djahanbakhch O. Arachidonic acid predominates in the membrane phosphoglycerides of the early and term human placenta. J Nutr 2005; 135:2566-71. [PMID: 16251612 DOI: 10.1093/jn/135.11.2566] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to determine whether the high concentration of arachidonic acid (AA) in term placentae accumulates during pregnancy or is an inherent characteristic of placental lipids. We investigated the lipid content and fatty acid composition of the human placental phospholipids at 2 gestational periods, early in pregnancy (8-14 wk, n = 48) and at term (38-41 wk of gestation, n = 19). The subjects were healthy, normotensive, and free of medical and obstetric complications. The lipid concentration of placentae increased from 0.8% in early gestation to 1.4% at term (P < 0.0001). The mean proportions of AA were lower in the choline (P < 0.05), inositol (P < 0.0001), and ethanolamine (P < 0.0001) phosphoglycerides of the term compared with the early placenta. In contrast, the proportions of the immediate precursor of AA, dihomo-gamma-linolenic acid (DGLA), were higher in the term placenta, particularly in the inositol and serine phosphoglycerides (P < 0.0001). In sphingomyelin, the percentage of lignoceric acid was increased and that of nervonic acid was reduced at term (P < 0.01). The dominance of AA, particularly in the early placenta, suggests that it has an important role for placental development, i.e., organogenesis and vascularization. There was no evidence of an accumulation of AA in the placenta toward term, which might be a trigger for parturition. In contrast, the increased proportion of DGLA (precursor of the vasorelaxant and anticoagulant prostaglandin E(1)) at term is more consistent with a profile favoring optimal blood flow to nourish the fetal growth spurt.
Collapse
Affiliation(s)
- Demetris Bitsanis
- Institute of Brain Chemistry and Human Nutrition, London Metropolitan University, London, UK.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW To discuss new data from the literature on the relationship between the supply of n-3 polyunsaturated fatty acids during pregnancy and pregnancy outcomes, evaluated as the fatty acid composition of blood and breast milk, fetal and infantile development and maternal health. RECENT FINDINGS Supplementation of alpha-linolenic acid in high doses or docosahexaenoic acid in low doses did not result in a significant enhancement of the blood docosahexaenoic acid status of the offspring. In contrast, supplementation of docosahexaenoic acid in relatively high doses led to significant increases in infantile docosahexaenoic acid values and to a significant enhancement of breast milk docosahexaenoic acid content. Electroretinogram data obtained during the first week of life and pattern-reversal visual evoked potentials investigated at 50 and 66 weeks postconception were significantly associated with the docosahexaenoic acid status of the infant at birth. Children whose mothers received docosahexaenoic acid supplementation during pregnancy and lactation scored better in mental processing tests carried out at 4 years than children whose mothers received placebo. SUMMARY Beneficial health outcomes are more likely to result from supplementation with docosahexaenoic acid itself, rather than its precursor alpha-linolenic acid. Trials have shown that a higher maternal docosahexaenoic acid intake during pregnancy may be favourable for the visual and cognitive development of the offspring. The significant positive association between maternal docosahexaenoic acid intake during pregnancy and the children's mental processing scores at 4 years suggest that optimization of the docosahexaenoic acid status of expectant women may offer long-term developmental benefits to their children.
Collapse
Affiliation(s)
- Tamás Decsi
- Department of Paediatrics, University of Pécs, Pécs, Hungary
| | | |
Collapse
|