1
|
Zhang Q, Liang H, Longshaw M, Wang J, Ge X, Zhu J, Li S, Ren M. Effects of replacing fishmeal with methanotroph (Methylococcus capsulatus, Bath) bacteria meal (FeedKind®) on growth and intestinal health status of juvenile largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2022; 122:298-305. [PMID: 35143988 DOI: 10.1016/j.fsi.2022.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/18/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
A ten-week feeding trial evaluated the feasibility of methanotroph (Methylococcus capsulatus) bacteria meal (FeedKind®, FK) as a fishmeal substitute in largemouth bass (Micropterus salmoides) diets. Six isonitrogenous and isoenergetic diets with different inclusion levels of FK (0 (fishmeal group), 43, 86, 129, 172 and 215 g/kg) were formulated to replace 0, 50, 100, 150, 200 and 250 g/kg fishmeal, respectively. The results showed that FK inclusion level could reach 129 g/kg without significantly affecting growth or feed coefficient rate (P > 0.05), while growth performance was decreased and feed coefficient rate increased when FK inclusion levels exceeded 129 g/kg (P < 0.05). Increase in FK inclusion levels tended to reduce plasma total cholesterol and total triglyceride whilst plasma total protein, albumin, alanine aminotransferase and aspartate aminotransferase in FK treatment groups were unchanged compared with fishmeal group (P > 0.05). FK inclusion levels at 43 g/kg and 86 g/kg were not detrimental to intestinal morphology whilst it was unfavourable when FK inclusion levels exceeded 86 g/kg as the total length of intestinal wall thickness and villus height, villus height were obviously decreased compared with fishmeal group (P < 0.05). As regards to inflammatory cytokine genes, FK instead of fishmeal increased the expression levels of TLR2, RelA, TNF-α, IL-1β, IL-10 and TGF-β, 43 g/kg and 86 g/kg FK decreased the expression level of Caspase-3 (P < 0.05). In conclusion, 129 g/kg FK can replace 150 g/kg fishmeal without negative effects on the growth performance, and replacing 100 g/kg fishmeal with 86 g/kg FK is more beneficial to intestinal health.
Collapse
Affiliation(s)
- Qile Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Hualiang Liang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, FreshwaterFisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | | | - Jia Wang
- Calysta, Inc., San Mateo, CA, USA
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, FreshwaterFisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Jian Zhu
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, FreshwaterFisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Songlin Li
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 20136, China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, FreshwaterFisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China.
| |
Collapse
|
2
|
Allegretti C, Bono A, D'Arrigo P, Gatti FG, Marzorati S, Rossato LAM, Serra S, Strini A, Tessaro D. Exploitation of Soybean Oil Acid Degumming Waste: Biocatalytic Synthesis of High Value Phospholipids. ChemistrySelect 2021. [DOI: 10.1002/slct.202102191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chiara Allegretti
- Department of Chemistry Materials and Chemical Engineering “Giulio Natta” Politecnico di Milano p.zza L. da Vinci 32 Milano 20133 Italy
| | - Andrea Bono
- Department of Chemistry Materials and Chemical Engineering “Giulio Natta” Politecnico di Milano p.zza L. da Vinci 32 Milano 20133 Italy
| | - Paola D'Arrigo
- Department of Chemistry Materials and Chemical Engineering “Giulio Natta” Politecnico di Milano p.zza L. da Vinci 32 Milano 20133 Italy
- Istituto di Scienze e Tecnologie Chimiche“Giulio Natta” Consiglio Nazionale delle Ricerche (SCITEC-CNR) via Luigi Mancinelli 7 Milano 20131 Italy
| | - Francesco G. Gatti
- Department of Chemistry Materials and Chemical Engineering “Giulio Natta” Politecnico di Milano p.zza L. da Vinci 32 Milano 20133 Italy
| | - Stefano Marzorati
- Istituto di Scienze e Tecnologie Chimiche“Giulio Natta” Consiglio Nazionale delle Ricerche (SCITEC-CNR) via Luigi Mancinelli 7 Milano 20131 Italy
| | - Letizia A. M. Rossato
- Department of Chemistry Materials and Chemical Engineering “Giulio Natta” Politecnico di Milano p.zza L. da Vinci 32 Milano 20133 Italy
| | - Stefano Serra
- Istituto di Scienze e Tecnologie Chimiche“Giulio Natta” Consiglio Nazionale delle Ricerche (SCITEC-CNR) via Luigi Mancinelli 7 Milano 20131 Italy
| | - Alberto Strini
- Istituto per le Tecnologie della Costruzione Consiglio Nazionale delle Ricerche (ITC-CNR) via Lombardia 49 San Giuliano Milanese MI 20098 Italy
| | - Davide Tessaro
- Department of Chemistry Materials and Chemical Engineering “Giulio Natta” Politecnico di Milano p.zza L. da Vinci 32 Milano 20133 Italy
| |
Collapse
|
3
|
Wang S, Liu Q, Li J, Wang Z. Methane in wastewater treatment plants: status, characteristics, and bioconversion feasibility by methane oxidizing bacteria for high value-added chemicals production and wastewater treatment. WATER RESEARCH 2021; 198:117122. [PMID: 33865027 DOI: 10.1016/j.watres.2021.117122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/23/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Methane is a type of renewable fuel that can generate many types of high value-added chemicals, however, besides heat and power production, there is little methane utilization in most of the wastewater treatment plants (WWTPs) all round the world currently. In this review, the status of methane production performance from WWTPs was firstly investigated. Subsequently, based on the identification and classification of methane oxidizing bacteria (MOB), the key enzymes and metabolic pathway of MOB were presented in depth. Then the production, extraction and purification process of high value-added chemicals, including methanol, ectoine, biofuel, bioplastic, methane protein and extracellular polysaccharides, were introduced in detail, which was conducive to understand the bioconversion process of methane. Finally, the use of methane in wastewater treatment process, including nitrogen removal, emerging contaminants removal as well as resource recovery was extensively explored. These findings could provide guidance in the development of sustainable economy and environment, and facilitate biological methane conversion by using MOB in further attempts.
Collapse
Affiliation(s)
- Shuo Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou 215009, China
| | - Qixin Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou 215009, China.
| | - Zhiwu Wang
- Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA 20110, USA.
| |
Collapse
|
4
|
Kim IS, Kim CH, Yang WS. Physiologically Active Molecules and Functional Properties of Soybeans in Human Health-A Current Perspective. Int J Mol Sci 2021; 22:4054. [PMID: 33920015 PMCID: PMC8071044 DOI: 10.3390/ijms22084054] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
In addition to providing nutrients, food can help prevent and treat certain diseases. In particular, research on soy products has increased dramatically following their emergence as functional foods capable of improving blood circulation and intestinal regulation. In addition to their nutritional value, soybeans contain specific phytochemical substances that promote health and are a source of dietary fiber, phospholipids, isoflavones (e.g., genistein and daidzein), phenolic acids, saponins, and phytic acid, while serving as a trypsin inhibitor. These individual substances have demonstrated effectiveness in preventing chronic diseases, such as arteriosclerosis, cardiac diseases, diabetes, and senile dementia, as well as in treating cancer and suppressing osteoporosis. Furthermore, soybean can affect fibrinolytic activity, control blood pressure, and improve lipid metabolism, while eliciting antimutagenic, anticarcinogenic, and antibacterial effects. In this review, rather than to improve on the established studies on the reported nutritional qualities of soybeans, we intend to examine the physiological activities of soybeans that have recently been studied and confirm their potential as a high-functional, well-being food.
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bio-resource Research Center, Kyungpook National University, Daegu 41566, Korea;
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Gyunggi-Do 16419, Korea
- Samsung Advanced Institute of Health Science and Technology, Gyunggi-Do 16419, Korea
| | | |
Collapse
|
5
|
Sun M, Nie K, Wang F, Deng L. Optimization of the Lipase-Catalyzed Selective Amidation of Phenylglycinol. Front Bioeng Biotechnol 2020; 7:486. [PMID: 32039186 PMCID: PMC6987038 DOI: 10.3389/fbioe.2019.00486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/30/2019] [Indexed: 11/13/2022] Open
Abstract
Ceramides and their analogs have a regulatory effect on inflammatory cytokines expression. It was found that a kind of ceramides analog synthesized from phenylglycinol could inhibit the production of cytokine TNF-α. However, two active hydrogen groups are present in the phenylglycinol molecule. It is difficult to control the process without hydroxyl group protection to dominantly produce amide in the traditional chemical synthesis. A selective catalytic the amidation route of phenylglycinol by lipases was investigated in this research. The results indicated that the commercial immobilized lipase Novozym 435 has the best regio-selectivity on the amide group. Based on the experimental results and in silico simulation, it was found that the mechanism of specific N-acyl selectivity of lipase was not only from intramolecular migration and proton shuttle mechanism, but also from the special structure of active site of enzyme. The optimal reaction yield of aromatic amide compound in a solvent-free system with lipase loading of 15 wt% (to the weight of total substrate) reached 89.41 ± 2.8% with very few of byproducts detected (0.21 ± 0.1% ester and 0.64 ± 0.2% diacetylated compound). Compare to other reported works, this work have the advantages such as low enzyme loading, solvent free, and high N-acylation selectivity. Meanwhile, this Novozym 435 lipase based synthesis method has an excellent regio-selectivity on most kinds of amino alcohol compounds. Compared to the chemical method, the enzymatic synthesis exhibited high regio-selectivity, and conversion rates. The method could be a promising alternative strategy for the synthesis of aromatic alkanolamides.
Collapse
Affiliation(s)
- Meina Sun
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, China.,Amoy-BUCT Industrial Bio-technovation Institute, Xiamen, China
| | - Kaili Nie
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, China.,Amoy-BUCT Industrial Bio-technovation Institute, Xiamen, China
| | - Fang Wang
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, China.,State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Li Deng
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, China.,Amoy-BUCT Industrial Bio-technovation Institute, Xiamen, China
| |
Collapse
|
6
|
Wang S, An Z, Wang ZW. Bioconversion of methane to chemicals and fuels by methane-oxidizing bacteria. ADVANCES IN BIOENERGY 2020. [DOI: 10.1016/bs.aibe.2020.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Lieven C, Petersen LAH, Jørgensen SB, Gernaey KV, Herrgard MJ, Sonnenschein N. A Genome-Scale Metabolic Model for Methylococcus capsulatus (Bath) Suggests Reduced Efficiency Electron Transfer to the Particulate Methane Monooxygenase. Front Microbiol 2018; 9:2947. [PMID: 30564208 PMCID: PMC6288188 DOI: 10.3389/fmicb.2018.02947] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Genome-scale metabolic models allow researchers to calculate yields, to predict consumption and production rates, and to study the effect of genetic modifications in silico, without running resource-intensive experiments. While these models have become an invaluable tool for optimizing industrial production hosts like Escherichia coli and S. cerevisiae, few such models exist for one-carbon (C1) metabolizers. Results: Here, we present a genome-scale metabolic model for Methylococcus capsulatus (Bath), a well-studied obligate methanotroph, which has been used as a production strain of single cell protein (SCP). The model was manually curated, and spans a total of 879 metabolites connected via 913 reactions. The inclusion of 730 genes and comprehensive annotations, make this model not only a useful tool for modeling metabolic physiology, but also a centralized knowledge base for M. capsulatus (Bath). With it, we determined that oxidation of methane by the particulate methane monooxygenase could be driven both through direct coupling or uphill electron transfer, both operating at reduced efficiency, as either scenario matches well with experimental data and observations from literature. Conclusion: The metabolic model will serve the ongoing fundamental research of C1 metabolism, and pave the way for rational strain design strategies toward improved SCP production processes in M. capsulatus.
Collapse
Affiliation(s)
- Christian Lieven
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Leander A H Petersen
- Unibio A/S, Kongens Lyngby, Denmark.,Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sten Bay Jørgensen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Krist V Gernaey
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Markus J Herrgard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nikolaus Sonnenschein
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
8
|
Strong PJ, Kalyuzhnaya M, Silverman J, Clarke WP. A methanotroph-based biorefinery: Potential scenarios for generating multiple products from a single fermentation. BIORESOURCE TECHNOLOGY 2016; 215:314-323. [PMID: 27146469 DOI: 10.1016/j.biortech.2016.04.099] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 05/12/2023]
Abstract
Methane, a carbon source for methanotrophic bacteria, is the principal component of natural gas and is produced during anaerobic digestion of organic matter (biogas). Methanotrophs are a viable source of single cell protein (feed supplement) and can produce various products, since they accumulate osmolytes (e.g. ectoine, sucrose), phospholipids (potential biofuels) and biopolymers (polyhydroxybutyrate, glycogen), among others. Other cell components, such as surface layers, metal chelating proteins (methanobactin), enzymes (methane monooxygenase) or heterologous proteins hold promise as future products. Here, scenarios are presented where ectoine, polyhydroxybutyrate or protein G are synthesised as the primary product, in conjunction with a variety of ancillary products that could enhance process viability. Single or dual-stage processes and volumetric requirements for bioreactors are discussed, in terms of an annual biomass output of 1000 tonnesyear(-1). Product yields are discussed in relation to methane and oxygen consumption and organic waste generation.
Collapse
Affiliation(s)
- P J Strong
- Centre for Solid Waste Bioprocessing, School of Civil Engineering, School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia.
| | - M Kalyuzhnaya
- Biology Department, San Diego State University, San Diego, CA 92182-4614, United States
| | - J Silverman
- Calysta, 1140 O'Brien Drive, Menlo Park, CA 94025, United States
| | - W P Clarke
- Centre for Solid Waste Bioprocessing, School of Civil Engineering, School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
9
|
Myung J, Kim M, Pan M, Criddle CS, Tang SKY. Low energy emulsion-based fermentation enabling accelerated methane mass transfer and growth of poly(3-hydroxybutyrate)-accumulating methanotrophs. BIORESOURCE TECHNOLOGY 2016; 207:302-307. [PMID: 26896714 DOI: 10.1016/j.biortech.2016.02.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
Methane is a low-cost feedstock for the production of polyhydroxyalkanoate biopolymers, but methanotroph fermentations are limited by the low solubility of methane in water. To enhance mass transfer of methane to water, vigorous mixing or agitation is typically used, which inevitably increases power demand and operational costs. This work presents a method for accelerating methane mass transfer without agitation by growing methanotrophs in water-in-oil emulsions, where the oil has a higher solubility for methane than water does. In systems without agitation, the growth rate of methanotrophs in emulsions is five to six times that of methanotrophs in the medium-alone incubations. Within seven days, cells within the emulsions accumulate up to 67 times more P3HB than cells in the medium-alone incubations. This is achieved due to the increased interfacial area of the aqueous phase, and accelerated methane diffusion through the oil phase.
Collapse
Affiliation(s)
- Jaewook Myung
- Department of Civil and Environmental Engineering, Stanford University, CA, United States
| | - Minkyu Kim
- Department of Mechanical Engineering, Stanford University, CA, United States
| | - Ming Pan
- Department of Materials Science and Engineering, Stanford University, CA, United States
| | - Craig S Criddle
- Department of Civil and Environmental Engineering, Stanford University, CA, United States
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, CA, United States.
| |
Collapse
|
10
|
Strong PJ, Xie S, Clarke WP. Methane as a resource: can the methanotrophs add value? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4001-18. [PMID: 25723373 DOI: 10.1021/es504242n] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Methane is an abundant gas used in energy recovery systems, heating, and transport. Methanotrophs are bacteria capable of using methane as their sole carbon source. Although intensively researched, the myriad of potential biotechnological applications of methanotrophic bacteria has not been comprehensively discussed in a single review. Methanotrophs can generate single-cell protein, biopolymers, components for nanotechnology applications (surface layers), soluble metabolites (methanol, formaldehyde, organic acids, and ectoine), lipids (biodiesel and health supplements), growth media, and vitamin B12 using methane as their carbon source. They may be genetically engineered to produce new compounds such as carotenoids or farnesene. Some enzymes (dehydrogenases, oxidase, and catalase) are valuable products with high conversion efficiencies and can generate methanol or sequester CO2 as formic acid ex vivo. Live cultures can be used for bioremediation, chemical transformation (propene to propylene oxide), wastewater denitrification, as components of biosensors, or possibly for directly generating electricity. This review demonstrates the potential for methanotrophs and their consortia to generate value while using methane as a carbon source. While there are notable challenges using a low solubility gas as a carbon source, the massive methane resource, and the potential cost savings while sequestering a greenhouse gas, keeps interest piqued in these unique bacteria.
Collapse
Affiliation(s)
- P J Strong
- Centre for Solid Waste Bioprocessing, School of Civil Engineering, School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - S Xie
- Centre for Solid Waste Bioprocessing, School of Civil Engineering, School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - W P Clarke
- Centre for Solid Waste Bioprocessing, School of Civil Engineering, School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
11
|
Supplementation of a dairy drink enriched with milk phospholipids in patients with atopic dermatitis – A double-blind, placebo-controlled, randomized, cross-over study. Clin Nutr 2014; 33:1010-6. [DOI: 10.1016/j.clnu.2014.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 01/12/2014] [Accepted: 01/17/2014] [Indexed: 01/06/2023]
|
12
|
Fat lowers fat: purified phospholipids as emerging therapies for dyslipidemia. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:887-93. [PMID: 23354177 DOI: 10.1016/j.bbalip.2013.01.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 01/12/2013] [Accepted: 01/15/2013] [Indexed: 11/20/2022]
Abstract
Dyslipidemia is a major coronary heart disease (CHD) risk factor. In spite of the proven efficacy of statin drugs in reducing CHD burden, there is still much room for the discovery of novel therapeutic agents to address the considerable residual cardiovascular risk that remains after treatment with currently available medications. In particular, there is an urgent demand for drugs capable of boosting the concentration and/or function of high-density lipoprotein (HDL) and apolipoprotein A-I (apo A-I), thereby promoting reverse cholesterol transport. Phospholipids are naturally occurring fats that play indispensible role in human health via their structural, energy storage, signal transduction and metabolic functions. Supplementation with either purified or mixed preparations of bioactive phospholipids has been reported to ameliorate a range of nutritional and cardiovascular disorders. Moreover, several lines of evidence have supported the efficacy of dietary phospholipids in reducing serum and hepatic contents of cholesterol and triglycerides, while increasing HDL-C and apo A-I levels. These beneficial effects of phospholipids could be attributed to their ability in reducing intestinal cholesterol absorption, enhancing biliary cholesterol excretion and modulating the expression and activity of transcriptional factors and enzymes that are involved in lipoprotein metabolism. Given their extreme safety and biocompatibility, dietary supplementation with phospholipid preparations, in particular phosphatidylinositol, appears as a novel and effective strategy that could be used as an alternative or adjunctive therapy to the current medications. The present review outlines the in-vitro, in-vivo and clinical findings on the anti-dyslipidemic effects of three most abundant phospholipids in the human body and diet namely phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol.
Collapse
|
13
|
Milk phospholipid and plant sterol-dependent modulation of plasma lipids in healthy volunteers. Eur J Nutr 2012; 52:1169-79. [PMID: 22836514 DOI: 10.1007/s00394-012-0427-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/16/2012] [Indexed: 01/02/2023]
Abstract
PURPOSE Hypolipidemic and/or hypocholesterolemic effects are presumed for dietary milk phospholipid (PL) as well as plant sterol (PSt) supplementation. The aim was to induce changes in plasma lipid profile by giving different doses of milk PL and a combination of milk PL with PSt to healthy volunteers. METHODS In an open-label intervention study, 14 women received dairy products enriched with moderate (3 g PL/day) or high (6 g PL/day) dose of milk PL or a high dose of milk PL combined with PSt (6 g PL/day + 2 g PSt/day) during 3 periods each lasting 10 days. RESULTS Total cholesterol concentration and HDL cholesterol concentration were reduced following supplementation with 3 g PL/day. No significant change in LDL cholesterol concentration was found compared with baseline. High PL dose resulted in an increase of LDL cholesterol and unchanged HDL cholesterol compared with moderate PL dose. The LDL/HDL ratio and triglyceride concentration remained constant within the study. Except for increased phosphatidyl ethanolamine concentrations, plasma PL concentrations were not altered during exclusive PL supplementations. A combined high-dose PL and PSt supplementation led to decreased plasma LDL cholesterol concentration, decreased PL excretion, increased plasma sphingomyelin/phosphatidyl choline ratio, and significant changes in plasma fatty acid distribution compared with exclusive high-dose PL supplementation. CONCLUSION Milk PL supplementations influence plasma cholesterol concentrations, but without changes of LDL/HDL ratio. A combined high-dose milk PL and PSt supplementation decreases plasma LDL cholesterol concentration, but it probably enforces absorption of fatty acids or fatty acid-containing hydrolysis products that originated during lipid digestion.
Collapse
|
14
|
Øverland M, Skrede A. Fatty acid composition, oxidative stability and sensory quality of meat from broiler chicken fed autolysate from bacteria grown on natural gas. J Anim Physiol Anim Nutr (Berl) 2011; 96:739-46. [DOI: 10.1111/j.1439-0396.2011.01202.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Øverland M, Borge G, Vogt G, Schøyen H, Skrede A. Oxidative stability and sensory quality of meat from broiler chickens fed a bacterial meal produced on natural gas. Poult Sci 2011; 90:201-10. [DOI: 10.3382/ps.2010-00784] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Zhang H, Zhang L, Tidemand-Lichtenberg P, Buchhave P, Xu X, Li Y. Effect of Laser and LED on Enzymatic Production of Ceramide. Photochem Photobiol 2010; 87:131-6. [DOI: 10.1111/j.1751-1097.2010.00820.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Bechmann RK, Larsen BK, Taban IC, Hellgren LI, Møller P, Sanni S. Chronic exposure of adults and embryos of Pandalus borealis to oil causes PAH accumulation, initiation of biomarker responses and an increase in larval mortality. MARINE POLLUTION BULLETIN 2010; 60:2087-2098. [PMID: 20800854 DOI: 10.1016/j.marpolbul.2010.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 07/12/2010] [Accepted: 07/16/2010] [Indexed: 05/29/2023]
Abstract
Adult shrimps (Pandalus borealis) and their embryos were exposed to an oil-water dispersion (OWD) at concentrations of 0.015, 0.06 and 0.25 mg/L using a continuous flow system. Lysosomal membrane stability was analysed in haemocytes using the neutral red retention assay and an alkaline unwinding assay was used to measure DNA damage in hepatopancreas tissue. Exposure to oil induced concentration and time dependent biomarker responses in adult shrimps together with the accumulation of PAH in their tissues. Oil exposure of shrimp embryos caused increased mortality in the resultant larvae, even if the larvae were kept in clean water after hatching. There were minor differences observed in larval stage development times in the first part of the experiments. The fatty acid composition of embryos exposed to oil was different to that of non-exposed larvae. PAH tissue concentration and biomarker responses correlated to the reduced survival of the shrimp larvae.
Collapse
Affiliation(s)
- Renée Katrin Bechmann
- International Research Institute of Stavanger/IRIS-Biomiljø, Mekjarvik 12, 4070 Randaberg, Norway.
| | | | | | | | | | | |
Collapse
|
18
|
Øverland M, Tauson AH, Shearer K, Skrede A. Evaluation of methane-utilising bacteria products as feed ingredients for monogastric animals. Arch Anim Nutr 2010; 64:171-89. [PMID: 20578647 DOI: 10.1080/17450391003691534] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Bacterial proteins represent a potential future nutrient source for monogastric animal production because they can be grown rapidly on substrates with minimum dependence on soil, water, and climate conditions. This review summarises the current knowledge on methane-utilising bacteria as feed ingredients for animals. We present results from earlier work and recent findings concerning bacterial protein, including the production process, chemical composition, effects on nutrient digestibility, metabolism, and growth performance in several monogastric species, including pigs, broiler chickens, mink (Mustela vison), fox (Alopex lagopus), Atlantic salmon (Salmo salar), rainbow trout (Oncorhynchus mykiss), and Atlantic halibut (Hippoglossus hippoglossus). It is concluded that bacterial meal (BM) derived from natural gas fermentation, utilising a bacteria culture containing mainly the methanotroph Methylococcus capsulatus (Bath), is a promising source of protein based on criteria such as amino acid composition, digestibility, and animal performance and health. Future research challenges include modified downstream processing to produce value-added products, and improved understanding of factors contributing to nutrient availability and animal performance.
Collapse
Affiliation(s)
- Margareth Øverland
- Aquaculture Protein Centre, CoE, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, As, Norway.
| | | | | | | |
Collapse
|
19
|
Abstract
Methanotrophs, cells that consume methane (CH(4)) as their sole source of carbon and energy, play key roles in the global carbon cycle, including controlling anthropogenic and natural emissions of CH(4), the second-most important greenhouse gas after carbon dioxide. These cells have also been widely used for bioremediation of chlorinated solvents, and help sustain diverse microbial communities as well as higher organisms through the conversion of CH(4) to complex organic compounds (e.g. in deep ocean and subterranean environments with substantial CH(4) fluxes). It has been well-known for over 30 years that copper (Cu) plays a key role in the physiology and activity of methanotrophs, but it is only recently that we have begun to understand how these cells collect Cu, the role Cu plays in CH(4) oxidation by the particulate CH(4) monooxygenase, the effect of Cu on the proteome, and how Cu affects the ability of methanotrophs to oxidize different substrates. Here we summarize the current state of knowledge of the phylogeny, environmental distribution, and potential applications of methanotrophs for regional and global issues, as well as the role of Cu in regulating gene expression and proteome in these cells, its effects on enzymatic and whole-cell activity, and the novel Cu uptake system used by methanotrophs.
Collapse
Affiliation(s)
- Jeremy D Semrau
- Department of Civil and Environmental Engineering, The University of Michigan, Ann Arbor, MI, USA.
| | | | | |
Collapse
|
20
|
Agrawal A. Therapeutic potential of phosphoethanolamine-bound C-reactive protein in atherosclerosis. ACTA ACUST UNITED AC 2008; 3. [PMID: 24363775 DOI: 10.2217/17460875.3.6.599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Alok Agrawal
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
21
|
Singh SK, Suresh MV, Prayther DC, Moorman JP, Rusiñol AE, Agrawal A. Phosphoethanolamine-complexed C-reactive protein: a pharmacological-like macromolecule that binds to native low-density lipoprotein in human serum. Clin Chim Acta 2008; 394:94-8. [PMID: 18486609 DOI: 10.1016/j.cca.2008.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 04/16/2008] [Accepted: 04/16/2008] [Indexed: 11/19/2022]
Abstract
BACKGROUND C-reactive protein (CRP) is an acute phase plasma protein. An important binding specificity of CRP is for the modified forms of low-density lipoprotein (LDL) in which the phosphocholine-binding sites of CRP participate. CRP, however, does not bind to native LDL. METHODS We investigated the interaction of CRP with native LDL using sucrose density gradient ultracentrifugation. RESULTS We found that the blocking of the phosphocholine-binding sites of CRP with phosphoethanolamine (PEt) converted CRP into a potent molecule for binding to native LDL. In the presence of PEt, CRP acquired the ability to bind to fluid-phase purified native LDL. Because purified native LDL may undergo subtle modifications, we also used whole human serum as the source of native LDL. In the presence of PEt, CRP bound to native LDL in serum also. The effect of PEt on CRP was selective for LDL because PEt-complexed CRP did not bind to high-density lipoprotein in the serum. CONCLUSIONS The pharmacologic intervention of endogenous CRP by PEt-based compounds, or the use of exogenously prepared CRP-PEt complexes, may turn out to be an effective approach to capture native LDL cholesterol in vivo to prevent the development of atherosclerosis.
Collapse
Affiliation(s)
- Sanjay K Singh
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | | | | | | | | | | |
Collapse
|
22
|
Hellwing ALF, Tauson AH, Skrede A. Blood parameters in growing pigs fed increasing levels of bacterial protein meal. Acta Vet Scand 2007; 49:33. [PMID: 17996082 PMCID: PMC2211288 DOI: 10.1186/1751-0147-49-33] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 11/09/2007] [Indexed: 11/10/2022] Open
Abstract
The experiment investigated the effects of increasing dietary levels of bacterial protein meal (BPM) on various blood parameters reflecting protein and fat metabolism, liver function, and purine base metabolism in growing pigs. Sixteen barrows were allocated to four different experimental diets. The control diet was based on soybean meal. In the other three diets soybean meal was replaced with increasing levels of BPM, approximately 17%, 35%, and 50% of the nitrogen being derived from BPM. Blood samples from the jugular vein were taken when the body weights of the pigs were approximately 10 kg, 21 kg, 45 kg, and 77 kg. The blood parameters reflecting fat metabolism and liver function were not affected by diet. Both the plasma albumin and uric acid concentrations tended to decrease (P = 0.07 and 0.01, respectively) with increasing dietary BPM content, whereas the plasma glucose concentration tended to increase (P = 0.07) with increasing dietary BPM content. It was concluded that up to 50% of the nitrogen could be derived from BPM without affecting metabolic function, as reflected in the measured blood parameters.
Collapse
|
23
|
Drachmann T, Mathiessen JH, Pedersen MH, Hellgren LI. The source of dietary fatty acids alters the activity of secretory sphingomyelinase in the rat. EUR J LIPID SCI TECH 2007. [DOI: 10.1002/ejlt.200600240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Schøyen HF, Svihus B, Storebakken T, Skrede A. Bacterial protein meal produced on natural gas replacing soybean meal or fish meal in broiler chicken diets. Arch Anim Nutr 2007; 61:276-91. [PMID: 17760305 DOI: 10.1080/17450390701431953] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The effects of replacing soybean meal or fish meal with 2, 4 or 6% bacterial protein meal (BPM) on growth performance, ileal digestibility of amino acids and sensory quality of meat, were examined using 630 broiler chickens. Weight gain from 7-32 days of age did not differ significantly among the treatments. Efficiency of feed conversion was increased when BPM replaced soybean meal, and abdominal fat deposition tended to decline. Feed conversion was not affected when BPM replaced fish meal. Amino acid digestibility was unaffected or improved when BPM replaced soybean meal, whereas replacement of fishmeal with BPM resulted in similar digestibility. Sensory quality of fresh thigh meat was similar among treatments, but for freeze-stored chest meat replacement of fish meal with BPM reduced off-odour and off-flavour and increased juiciness. It was concluded that 6% BPM can replace soybean meal or fish meal protein in broiler chicken diets.
Collapse
Affiliation(s)
- Hilde F Schøyen
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, As, Norway
| | | | | | | |
Collapse
|
25
|
Müller H, Grande T, Ahlstrøm O, Skrede A. A diet rich in phosphatidylethanolamine increases plasma homocysteine in mink: a comparison with a soyabean oil diet. Br J Nutr 2007; 94:684-90. [PMID: 16277769 DOI: 10.1079/bjn20051549] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The effects of high dietary levels of phosphatidylethanolamine (PE) on plasma concentrations of homocysteine (tHcy) have not previously been studied. Eighteen mink (Mustela vison) studied were fed one of three diets during a 25d period in a parallel-group design. The compared diets had 0, 17 and 67% extracted lipids from natural gas-utilising bacteria (LNGB), which were rich in PE. The group with 0% LNGB was fed a diet of 100% soyabean oil (SB diet). Phospholipids are the main lipid components in LNGB andMethylococcus capsulatusis the main bacteria (90%). The fasting plasma concentration of tHcy was significantly higher when the mink consumed the diet with 67% LNGB than when they consumed the SB diet (P=0·039). A significantly lower glutathione peroxidase activity was observed in mink consuming the 17% LNGB diet or the 67% LNGB diet than was observed in mink fed the SB diet. The lack of significant differences in the level of plasma PE due to the diets indicates that most of the PE from the 67% LNGB diet was converted to phosphatidylcholine (PC) in the liver. It has previously been hypothesised that phosphatidylethanolamine N-methyltransferase is an important source of tHcy. The present results indicate that plasma tHcy is at least partly regulated by phospholipid methylation from PE to PC. This methylation reaction is a regulator of physiological importance.
Collapse
Affiliation(s)
- Hanne Müller
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432 As, Norway.
| | | | | | | |
Collapse
|
26
|
Øverland M, Romarheim OH, Ahlstrøm Ø, Storebakken T, Skrede A. Technical quality of dog food and salmon feed containing different bacterial protein sources and processed by different extrusion conditions. Anim Feed Sci Technol 2007. [DOI: 10.1016/j.anifeedsci.2006.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Hellwing ALF, Tauson AH, Ahlstrøm O, Skrede A. Nitrogen and energy balance in growing mink (Mustela vison) fed different levels of bacterial protein meal produced with natural gas. Arch Anim Nutr 2007; 59:335-52. [PMID: 16320782 DOI: 10.1080/17450390500247873] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The objective of this study was to estimate the effect of increasing the dietary content of bacterial protein meal (BPM) on energy and protein metabolism in growing mink kits. Sixteen male mink kits of the standard brown genotype were randomly fed one of four diets: A control (Diet I) based on high-quality fish meal, and three experimental diets in which 20% (Diet II), 40% (Diet III) and 60% (Diet IV) of the digested nitrogen (DN) was replaced with BPM. Nitrogen balance and respiration experiments (indirect calorimetry) were carried out when the animals were approximately 9.5, 14.5, 17.5, 23.5 and 28.5 weeks of age. The apparent digestibility of crude protein and energy decreased significantly with increasing dietary BPM. The retained nitrogen was 0.45, 0.54, 0.52 and 0.40 g/kg0.75 on Diets I, II, III and IV, respectively, the observed differences between diets being non-significant (p = 0.06). Heat production (HE) was between 645 and 665 kJ/kg0.75 on all diets (p = 0.78). Retained energy (RE) was approximately 150-160 kJ/kg0.75 on Diets I to III, whereas it was -11 kJ/kg0.75 on Diet IV, the differences being significant (p< 0.001). A lower feed intake and apparent digestibility of energy caused the negative RE on Diet IV. The amount of HE from oxidation of protein decreased from 32.7% on Diet I to 26.6% on Diet IV, and oxidation of fat increased from 53.8% on Diet I to 63.5% Diet IV. In conclusion, protein and energy metabolism remained unaffected when up to 40% of DN was derived from BPM.
Collapse
Affiliation(s)
- Anne Louise F Hellwing
- Department of Animal and Veterinary Basic Sciences, The Royal Veterinary and Agricultural University, Frederiksberg, Denmark
| | | | | | | |
Collapse
|
28
|
Immobilization of Phospholipase C for the Production of Ceramide from Sphingomyelin Hydrolysis. J AM OIL CHEM SOC 2007. [DOI: 10.1007/s11746-006-1028-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Porsgaard T, Xu X, Mu H. The form of dietary conjugated linoleic acid does not influence plasma and liver triacylglycerol concentrations in Syrian golden hamsters. J Nutr 2006; 136:2201-6. [PMID: 16857841 DOI: 10.1093/jn/136.8.2201] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several studies have shown that conjugated linoleic acid (CLA) supplementation can improve the plasma lipid profile and thereby probably decrease the risk for development of atherosclerosis. The aim of the present study was to compare the effects on plasma and organ lipids of different dietary forms of CLA: triacylglycerol (TAG), diacylglycerol (DAG), monoacylglycerol (MAG), and fatty acid ethyl esters (FAEEs). DAG-, MAG-, and FAEE-CLA were produced by enzymatic interesterifications and all supplements were composed of a 1:1 mixture of the 2 major CLA isomers: cis-9, trans-11 and trans-10, cis-12. Male Syrian Golden hamsters were fed mildly atherogenic diets (10 g butter/100 g, 0.1 g cholesterol/100 g) supplemented with 0.5 g CLA/100 g or without CLA (control) for 8 wk. Liver weights were greater in the TAG- and FAEE-CLA groups than in the control group. In general, the form of CLA did not differentially affect plasma or liver cholesterol or plasma lipoprotein cholesterol concentrations, but only the TAG-CLA group had a higher final plasma TAG concentration than the control group. Both CLA isomers were incorporated into plasma, livers, and spleens. The results of the present study suggest that the form in which CLA is supplemented in the diet does not affect hamster plasma and liver TAG concentrations. The TAG-CLA form, a frequently used form of supplemental CLA, increases plasma TAG concentrations. If similar effects occur in humans, supplemental TAG-CLA cannot be considered to be beneficial given the relation between plasma TAG and the development of atherosclerosis.
Collapse
Affiliation(s)
- Trine Porsgaard
- Biochemistry and Nutrition Group, BioCentrum-DTU, Technical University of Denmark, 2800 Lyngby, Denmark
| | | | | |
Collapse
|
30
|
Zhang L, Hellgren LI, Xu X. Enzymatic production of ceramide from sphingomyelin. J Biotechnol 2005; 123:93-105. [PMID: 16337303 DOI: 10.1016/j.jbiotec.2005.10.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/10/2005] [Accepted: 10/24/2005] [Indexed: 11/16/2022]
Abstract
Due to its major role in maintaining the water-retaining properties of the epidermis, ceramide is of great commercial potentials in cosmetic and pharmaceutical industries such as in hair and skin care products. Chemical synthesis of ceramide is a costly process, and developments of alternative cost-efficient production methods are of great interest. Present study was the first attempt to perform a systematic study on the production of ceramide through enzymatic hydrolysis of sphingomyelin. Sphingomyelin hydrolysis proved to be more efficient in two-phase (water:organic solvent) system than in one-phase (water-saturated organic solvent) system. Among the screened phospholipase C, the Clostridium perfringens enzyme had the highest sphingomyelin conversion rate, with very small temperature dependence. Addition of ethanol to the system markedly enhanced the rate of ceramide formation, and a mixture of ethylacetate:hexane (50:50) was the best organic solvent tested. Other factors such as (NH(4))(2)SO(4), NaCl and CaCl(2) were also tested but excluded for further consideration. On the basis of the initial experiments, the reaction system was optimized using response surface methodology including five factors (enzyme amount, water amount, ethanol amount, reaction time and the hexane ratio of organic solvent). Water content and enzyme amount was shown to have the most significant influence on the hydrolysis reaction in the fitted quadratic model. The efficiency of sphingomyelin hydrolysis was dramatically improved through system evaluation and optimization, with the optimal conditions at 75 min reaction time, 3 Uml(-1) enzyme amount, 6% water amount, 1.8% ethanol amount and 46% hexane in ethylacetate.
Collapse
Affiliation(s)
- Long Zhang
- BioCentrum-DTU and Center for Advanced Food Studies, Technical University of Denmark, Søltofts Plads, Building 221, DK 2800 Lyngby, Denmark.
| | | | | |
Collapse
|
31
|
Øverland M, Kjos N, Olsen E, Skrede A. Changes in fatty acid composition and improved sensory quality of backfat and meat of pigs fed bacterial protein meal. Meat Sci 2005; 71:719-29. [DOI: 10.1016/j.meatsci.2005.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 04/29/2005] [Accepted: 05/19/2005] [Indexed: 11/28/2022]
|