1
|
Riedel S, Abel S, Burger HM, Swanevelder S, Gelderblom WCA. Fumonisin B 1 protects against long-chained polyunsaturated fatty acid-induced cell death in HepG2 cells - implications for cancer promotion. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184310. [PMID: 38479610 DOI: 10.1016/j.bbamem.2024.184310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/19/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
Fumonisin B1 (FB1), a food-borne mycotoxin, is a cancer promoter in rodent liver and augments proliferation of initiated cells while inhibiting the growth of normal hepatocytes by disrupting lipid biosynthesis at various levels. HepG2 cancer cells exhibited resistance to FB1-induced toxic effects presumably due to their low content of polyunsaturated fatty acids (PUFA) even though FB1-typical lipid changes were observed, e.g. significantly increased phosphatidylethanolamine (PE), decreased sphingomyelin and cholesterol content, increased sphinganine (Sa) and sphinganine/sphingosine ratio, increased C18:1ω-9, decreased C20:4ω-6 content in PE and decreased C20:4ω-6_PC/PE ratio. Increasing PUFA content of HepG2 cells with phosphatidylcholine (PC) vesicles containing C20:4ω-6 (SAPC) or C22:6ω-3 (SDPC) disrupted cell survival, cellular redox status and induced oxidative stress and apoptosis. A partially protective effect of FB1 was evident in PUFA-enriched HepG2 cells which may be related to the FB1-induced reduction in oxidative stress and the disruption of key cell membrane constituents indicative of a resistant lipid phenotype. Interactions between different ω-6 and ω-3 PUFA, membrane constituents including cholesterol, and the glycerophospho- and sphingolipids and FB1 in this cell model provide further support for the resistant lipid phenotype and its role in the complex cellular effects underlying the cancer promoting potential of the fumonisins.
Collapse
Affiliation(s)
- Sylvia Riedel
- Biomedical Research and Innovation Platform, South African Medical Research Council, PO Box 19070, Tygerberg 7505, South Africa; Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa.
| | - Stefan Abel
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa.
| | - Hester-Mari Burger
- Unit of Research Integrity, Research Directorate, Cape Peninsula University of Technology, Bellville 7535, South Africa.
| | - Sonja Swanevelder
- Biostatistics Research Unit, South African Medical Research Council, PO Box 19070, Tygerberg 7505, South Africa.
| | - Wentzel C A Gelderblom
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
2
|
Sawong S, Pekthong D, Suknoppakit P, Winitchaikul T, Kaewkong W, Somran J, Intapa C, Parhira S, Srisawang P. Calotropis gigantea stem bark extracts inhibit liver cancer induced by diethylnitrosamine. Sci Rep 2022; 12:12151. [PMID: 35840761 PMCID: PMC9287404 DOI: 10.1038/s41598-022-16321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
Several fractions of Calotropis gigantea extracts have been proposed to have potential anticancer activity in many cancer models. The present study evaluated the anticancer activity of C. gigantea stem bark extracts in liver cancer HepG2 cells and diethylnitrosamine (DEN)-induced primary liver cancer in rats. The carcinogenesis model induced by DEN administration has been widely used to study pathophysiological features and responses in rats that are comparable to those seen in cancer patients. The dichloromethane (CGDCM), ethyl acetate, and water fractions obtained from partitioning crude ethanolic extract were quantitatively analyzed for several groups of secondary metabolites and calactin contents. A combination of C. gigantea stem bark extracts with doxorubicin (DOX) was assessed in this study to demonstrate the enhanced cytotoxic effect to cancer compared to the single administration. The combination of DOX and CGDCM, which had the most potential cytotoxic effect in HepG2 cells when compared to the other three fractions, significantly increased cytotoxicity through the apoptotic effect with increased caspase-3 expression. This combination treatment also reduced ATP levels, implying a correlation between ATP and apoptosis induction. In a rat model of DEN-induced liver cancer, treatment with DOX, C. gigantea at low (CGDCM-L) and high (CGDCM-H) doses, and DOX + CGDCM-H for 4 weeks decreased the progression of liver cancer by lowering the liver weight/body weight ratio and the occurrence of liver hyperplastic nodules, fibrosis, and proliferative cells. The therapeutic applications lowered TNF-α, IL-6, TGF-β, and α-SMA inflammatory cytokines in a similar way, implying that CGDCM had a curative effect against the inflammation-induced liver carcinogenesis produced by DEN exposure. Furthermore, CGDCM and DOX therapy decreased ATP and fatty acid synthesis in rat liver cancer, which was correlated with apoptosis inhibition. CGDCM reduced cleaved caspase-3 expression in liver cancer rats when used alone or in combination with DOX, implying that apoptosis-inducing hepatic carcinogenesis was suppressed. Our results also verified the low toxicity of CGDCM injection on the internal organs of rats. Thus, this research clearly demonstrated a promising, novel anticancer approach that could be applied in future clinical studies of CGDCM and combination therapy.
Collapse
Affiliation(s)
- Suphunwadee Sawong
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Dumrongsak Pekthong
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Pennapha Suknoppakit
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Thanwarat Winitchaikul
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Worasak Kaewkong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chaidan Intapa
- Department of Oral Diagnosis, Faculty of Dentistry, Naresuan University, Phitsanulok, 65000, Thailand
| | - Supawadee Parhira
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Piyarat Srisawang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
3
|
Jo H, Kim M, Cho H, Ha BK, Kang S, Song JT, Lee JD. Identification of a Potential Gene for Elevating ω-3 Concentration and Its Efficiency for Improving the ω-6/ω-3 Ratio in Soybean. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3836-3847. [PMID: 33770440 DOI: 10.1021/acs.jafc.0c05830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This present study was to identify a novel candidate gene that contributes to the elevated α-linolenic acid (ALA, ω-3) concentration in PE2166 from mutagenesis of Pungsannamul. Major loci qALA5_1 and qALA5_2 were detected on chromosome 5 of soybean through quantitative trait loci mapping analyses of recombinant inbred lines. With next-generation sequencing of parental lines and Pungsannamul and recombinant analyses, a potential gene, Glyma.05g221500 (HD), controlling elevated ALA concentration was identified. HD is a homeodomain-like transcriptional regulator that may regulate the expression level of microsomal ω-3 fatty acid desaturase (FAD3) genes responsible for the conversion of linoleic acid into ALA in the fatty acid biosynthetic pathway. In addition, we hypothesized that a combination of mutant alleles, HD, and either of microsomal delta-12 fatty acid desaturase 2-1 (FAD2-1) could reduce the ω-6/ω-3 ratio. In populations where HD, FAD2-1A, and FAD2-1B genes were segregated, a combination of a hd allele from PE2166 and either of the variant FAD2-1 alleles was sufficient to reduce the ω-6/ω-3 ratio in seeds.
Collapse
Affiliation(s)
- Hyun Jo
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Minsu Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyeontae Cho
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bo-Keun Ha
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sungtaeg Kang
- Department of Crop Science and Biotechnology, Dankook University, Cheonan 16890, Republic of Korea
| | - Jong Tae Song
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeong-Dong Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
4
|
Chang JPC, Su KP. Nutritional Neuroscience as Mainstream of Psychiatry: The Evidence- Based Treatment Guidelines for Using Omega-3 Fatty Acids as a New Treatment for Psychiatric Disorders in Children and Adolescents. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:469-483. [PMID: 33124582 PMCID: PMC7609218 DOI: 10.9758/cpn.2020.18.4.469] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 01/15/2023]
Abstract
Omega-3 polyunsaturated fatty acids (or omega-3 PUFAs, n-3 PUFAs) are essential nutrients throughout the life span. Recent studies have shown the importance of n-3 PUFAs supplementation during prenatal and perinatal period as a potential protective factor of neurodevelopmental disorders. N-3 PUFAs have been reported to be lower in youth with attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and major depressive disorder (MDD). N-3 PUFAs supplementation has shown potential effects in the improvement of clinical symptoms in youth with ADHD, ASD, and MDD, especially those with high inflammation or a low baseline n-3 index. Moreover, it has been suggested that n-3 PUFAs had positive effects on lethargy and hyperactivity symptoms in ASD. For clinical application, the following dosage and duration are recommended in youth according to available randomized controlled trials and systemic literature review: (1) ADHD: a combination of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) ≥ 750 mg/d, and a higher dose of EPA (1,200 mg/d) for those with inflammation or allergic diseases for duration of 16−24 weeks; (2) MDD: a combination of a EPA + DHA of 1,000−2,000 mg/d, with EPA:DHA ratio of 2 to 1, for 12−16 weeks; (3) ASD: a combination of EPA + DHA of 1,300−1,500 mg/d for 16−24 weeks as add-on therapy to target lethargy and hyperactivity symptoms. The current review also suggested that n-3 index and inflammation may be potential treatment response markers for youth, especially in ADHD and MDD, receiving n-3 PUFA.
Collapse
Affiliation(s)
- Jane Pei-Chen Chang
- Mind-Body Interface Laboratory (MBI-Lab) and Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kuan-Pin Su
- Mind-Body Interface Laboratory (MBI-Lab) and Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Department of Psychiatry, An-Nan Hospital, China Medical University, Tainan, Taiwan
| |
Collapse
|
5
|
Nia AM, Shavkunov A, Ullrich RL, Emmett MR. 137Cs γ Ray and 28Si Irradiation Induced Murine Hepatocellular Carcinoma Lipid Changes in Liver Assessed by MALDI-MSI Combined with Spatial Shrunken Centroid Clustering Algorithm: A Pilot Study. ACS OMEGA 2020; 5:25164-25174. [PMID: 33043195 PMCID: PMC7542585 DOI: 10.1021/acsomega.0c03047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Characterization of lipids by matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) is of great interest because not only are lipids important structural molecules in both the cell and internal organelle membranes, but they are also important signaling molecules. MALDI-MSI combined with spatial image segmentation has been previously used to identify tumor heterogeneities within tissues with distinct anatomical regions such as the brain. However, there has been no systematic study utilizing MALDI-MSI combined with spatial image segmentation to assess the tumor microenvironment in the liver. Here, we present that image segmentation can be used to evaluate the tumor microenvironment in the liver. In particular, to better understand the molecular mechanisms of irradiation-induced hepatic carcinogenesis, we used MALDI-MSI in the negative ion mode to identify lipid changes 12 months post exposure to low dose 28Si and 137Cs γ ray irradiation. We report here the changes in the lipid profiles of male C3H/HeNCrl mice liver tissues after exposure to irradiation and analyzed using the spatial shrunken centroid clustering algorithm. These findings provide valuable information as astronauts will be exposed to high-charge high-energy (HZE) particles and low-energy γ-ray irradiation during deep space travel. Even at low doses, exposure to these irradiations can lead to cancer. Previous studies infer that irradiation of mice with low-dose HZE particles induces oxidative damage and microenvironmental changes that are thought to play roles in the pathophysiology of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Anna M. Nia
- Biochemistry
and Molecular Biology, The University of
Texas Medical Branch, Galveston, Texas 77555, United States
| | - Alexander Shavkunov
- Pharmacology
and Toxicology, The University of Texas
Medical Branch, Galveston, Texas 77555, United States
| | - Robert L. Ullrich
- The
Radiation Effects Research Foundation (RERF), Hiroshima and Nagasaki 732-0815, Japan
| | - Mark R. Emmett
- Biochemistry
and Molecular Biology, The University of
Texas Medical Branch, Galveston, Texas 77555, United States
- Pharmacology
and Toxicology, The University of Texas
Medical Branch, Galveston, Texas 77555, United States
- Radiation
Oncology, The University of Texas Medical
Branch, Galveston, Texas 77555, United
States
| |
Collapse
|
6
|
van der Merwe JD, de Beer D, Joubert E, Gelderblom WCA. Short-Term and Sub-Chronic Dietary Exposure to Aspalathin-Enriched Green Rooibos (Aspalathus linearis) Extract Affects Rat Liver Function and Antioxidant Status. Molecules 2015; 20:22674-90. [PMID: 26694346 PMCID: PMC6332203 DOI: 10.3390/molecules201219868] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 01/24/2023] Open
Abstract
An aspalathin-enriched green rooibos (Aspalathus linearis) extract (GRE) was fed to male Fischer rats in two independent studies for 28 and 90 days. The average dietary total polyphenol (TP) intake was 75.6 and 62.7 mg Gallic acid equivalents (GAE)/kg body weight (bw)/day over 28 and 90 days, respectively, equaling human equivalent doses (HEDs) of 12.3 and 10.2 GAE mg/kg bw/day. Aspalathin intake of 29.5 mg/kg bw/day represents a HED of 4.8 mg/kg bw/day (90 day study). Consumption of GRE increased feed intake significantly (p < 0.05) compared to the control after 90 days, but no effect on body and organ weight parameters was observed. GRE significantly (p < 0.05) reduced serum total cholesterol and iron levels, whilst significantly (p < 0.05) increasing alkaline phosphatase enzyme activity after 90 days. Endogenous antioxidant enzyme activity in the liver, i.e., catalase and superoxide dismutase activity, was not adversely affected. Glutathione reductase activity significantly (p < 0.05) increased after 28 days, while glutathione (GSH) content was decreased after 90 days, suggesting an altered glutathione redox cycle. Quantitative Real Time polymerase chain reaction (PCR) analysis showed altered expression of certain antioxidant defense and oxidative stress related genes, indicative, among others, of an underlying oxidative stress related to changes in the GSH redox pathway and possible biliary dysfunction.
Collapse
Affiliation(s)
- Johanna Debora van der Merwe
- Department of Food Science, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa.
| | - Dalene de Beer
- Post-Harvest and Wine Technology Division, Agricultural Research Council (ARC), Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa.
| | - Elizabeth Joubert
- Department of Food Science, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa.
- Post-Harvest and Wine Technology Division, Agricultural Research Council (ARC), Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa.
| | - Wentzel C A Gelderblom
- Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, P. O. Box 1906, Bellville 7535, South Africa.
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa.
| |
Collapse
|
7
|
Riedel S, Abel S, Swanevelder S, Gelderblom WCA. Induction of an altered lipid phenotype by two cancer promoting treatments in rat liver. Food Chem Toxicol 2015; 78:96-104. [PMID: 25656646 DOI: 10.1016/j.fct.2015.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 01/06/2015] [Accepted: 01/26/2015] [Indexed: 02/02/2023]
Abstract
Changes in lipid metabolism have been associated with tumor promotion in rat liver. Similarities and differences of lipid parameters were investigated using the mycotoxin fumonisin B1 (FB1) and the 2-acetylaminofluorene/partial hepatectomy (AAF/PH) treatments as cancer promoters in rat liver. A typical lipid phenotype was observed, including increased membranal phosphatidylethanolamine (PE) and cholesterol content, increased levels of C16:0 and monounsaturated fatty acids in PE and phosphatidylcholine (PC), as well as a decrease in C18:0 and long-chained polyunsaturated fatty acids in the PC fraction. The observed lipid changes, which likely resulted in changes in membrane structure and fluidity, may represent a growth stimulus exerted by the cancer promoters that could provide initiated cells with a selective growth advantage. This study provided insight into complex lipid profiles induced by two different cancer promoting treatments and their potential role in the development of hepatocyte nodules, which can be used to identify targets for the development of chemopreventive strategies against cancer promotion in the liver.
Collapse
Affiliation(s)
- S Riedel
- Diabetes Discovery Platform, South African Medical Research Council, PO Box 19070, Tygerberg, South Africa.
| | - S Abel
- Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa
| | - S Swanevelder
- Biostatistics Unit, South African Medical Research Council, PO Box 19070, Tygerberg, South Africa
| | - W C A Gelderblom
- Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa; Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
8
|
Abstract
The aim of the present paper is to give a brief overview on the role of dietary fat in carcinogenesis and as possible anticancer agents. Dietary fat is an essential nutrient and important source for the essential fatty acids (FA), linoleic and α-linolenic acids, which contribute to proper growth and development. However, dietary fat has been associated with the development of colorectal, breast, prostate, endometrial and ovarian cancers, with the type and quality of fat playing an underlying role. Tumour growth is the disruption of the homoeostatic balance regulating cell differentiation, proliferation and apoptosis and is associated with altered lipid metabolism. Animal cancer models and human cancer biopsy tissue demonstrate that a characteristic lipid profile is associated with the growth and development of neoplastic lesions. This entails alterations in membrane cholesterol, phospholipid and PUFA metabolism. Particularly, alterations in cell membrane FA metabolism involving the n-6 and n-3 PUFA, are associated with changes in membrane structure, function, cellular oxidative status, activity of enzymes and signalling pathways. These events are a driving force in sustaining the altered growth of cancerous lesions and provide unique targets for intervention/cancer modulation. Challenges in utilising FA in cancer modulation exist regarding intake and effect on cell structure and biochemical interactions within the cell in the prevention of cancer development. Therefore, utilising dietary PUFA in a specific n-6:n-3 ratio may be an important chemopreventive tool in altering the growth characteristics of cancer cells.
Collapse
|
9
|
Su KP, Wang SM, Pae CU. Omega-3 polyunsaturated fatty acids for major depressive disorder. Expert Opin Investig Drugs 2013; 22:1519-34. [DOI: 10.1517/13543784.2013.836487] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Wu Z, Qin J, Pu L. Omega-3 fatty acid improves the clinical outcome of hepatectomized patients with hepatitis B virus (HBV)-associated hepatocellular carcinoma. J Biomed Res 2012; 26:395-9. [PMID: 23554777 PMCID: PMC3597052 DOI: 10.7555/jbr.26.20120058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/25/2012] [Accepted: 10/05/2012] [Indexed: 11/03/2022] Open
Abstract
Omega-3 fatty acid supplemented total parenteral nutrition improves the clinical outcome of patients undergoing certain operations; however, its benefits for patients with hepatitis type B virus (HBV)-associated hepatocellular carcinoma (HCC) who have undergone hepatectomy are still not clear. The aim of this study was to evaluate the effect of omega-3 fatty acid supplemented total parenteral nutrition on the clinical outcome of patients with HBV-associated HCC who underwent hepatectomy at our institution. A total of 63 patients with HBV-associated HCC who underwent hepatectomy were included in this study. These patients were randomly assigned to receive standard total parenteral nutrition (the control group, n = 31) or omega-3 fatty acid supplemented total parenteral nutrition (the omega-3 fatty acid group, n = 32) for at least 5 d. The study endpoints were the occurrence of infection-related complications, recovery of liver function and length of hospital stay. The results showed that the omega-3 fatty acid group had a lower infection rate (omega-3 fatty acid, 19.4% vs control, 43.8%, P < 0.05), a better liver function after hepatectomy: alanine transaminase (omega-3 fatty acid, 48.23±18.48 U/L vs control, 73.34±40.60 U/L, P < 0.01), aspartate transaminase (omega-3 fatty acid, 35.77±14.56 U/L vs control, 50.53±24.62 U/L, P < 0.01), total bilirubin (omega-3 fatty acid, 24.29±7.40 mmol/L vs control, 28. 37±8.06 mmol/L, P < 0.05) and a shorter length of hospital stay (omega-3 fatty acid, 12.71±2.58 d vs control, 15.91±3.23 d, P < 0.01). The serum contents of IL-6 (omega-3 fatty acid, 23.98±5.63 pg/mL vs control, 35.55±7.5 pg/mL, P < 0.01) and TNF-α (omega-3 fatty acid, 4.43±1.22 pg/mL vs control, 5.96±1.58 pg/mL, P < 0.01) after hepatectomy were significantly lower in the omega-3 fatty acid group than those of the control group. In conclusion, administration of omega-3 fatty acid may reduce infection rate and improve liver function recovery in HBV-associated HCC patients after hepatectomy. This improvement is associated with suppressed production of proinflammatory cytokines in these patients.
Collapse
Affiliation(s)
- Zhengshan Wu
- Liver Transplantation Center, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China; ; Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu 210029, China
| | | | | |
Collapse
|
11
|
Gelderblom WCA, Marasas WFO. Controversies in fumonisin mycotoxicology and risk assessment. Hum Exp Toxicol 2011; 31:215-35. [DOI: 10.1177/0960327110395338] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- WCA Gelderblom
- PROMEC Unit, Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Stellenbosch, 7602 South Africa
| | - WFO Marasas
- PROMEC Unit, Medical Research Council, Tygerberg, South Africa
- Department of Plant Pathology, Stellenbosch University, Private Bag X1, Stellenbosch, 7602 South Africa
| |
Collapse
|
12
|
Abel S, De Kock M, van Schalkwyk DJ, Swanevelder S, Kew MC, Gelderblom WCA. Altered lipid profile, oxidative status and hepatitis B virus interactions in human hepatocellular carcinoma. Prostaglandins Leukot Essent Fatty Acids 2009; 81:391-9. [PMID: 19782547 DOI: 10.1016/j.plefa.2009.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 08/27/2009] [Accepted: 08/27/2009] [Indexed: 11/29/2022]
Abstract
Altered membrane integrity in hepatocellular carcinoma (HCC) tissue was indicated by an elevation in cholesterol and significant decrease in phosphatidylcholine (PC). The resultant decreased phosphatidylcholine/phosphatidylethanolamine (PC/PE) and increased cholesterol/phospholipid ratios are associated with decreased fluidity in the carcinoma tissue. The lower PC was associated with a decrease in the quantitative levels of the saturated (C16:0, C18:0), omega6 (C18:2, C20:4) and omega3 (C22:5, C22:6) fatty acids (FAs), resulting in reduced long-chain polyunsaturated fatty acids (LCPUFAs), total PUFA and an increase in omega6/omega3 FA ratio. In PE, the saturated and omega3 (C22:5, C22:6) FAs were reduced while the total omega6 FA level was not affected, leading to an increased omega6/omega3 FA ratio. Increased levels of C18:1omega9, C20:2omega6 and reduction of 22:6omega3 in PC and PE suggest a dysfunctional delta-6 desaturase. The reduced PC/PE ratio resulted in a decreased C20:4omega6 (PC/PE) ratio, implying a shift towards synthesis of the 2-series eicosanoids. Lipid peroxidation was reduced in both hepatitis B negative (HBV(-)) and positive (HBV(+)) HCC tissues. Glutathione (GSH) was decreased in HCC while HBV had no effect, suggesting an impairment of the GSH redox cycle. In contrast HBV infection enhanced GSH in the surrounding tissue possibly to counter oxidative stress as indicated by the increased level of conjugated dienes. Apart from the reduced LCPUFA, the low level of lipid peroxidation in the carcinoma tissue was associated with increased superoxide dismutase and glutathione peroxidase activity. The disruption of the redox balance, resulting in increased cellular antioxidant capacity, could create an environment for resistance to oxidative stress in the carcinoma tissue. Alterations in membrane cholesterol, phospholipids, FA parameters, C20:4omega6 membrane distribution and low lipid peroxidation are likely to be important determinants underlying the selective growth advantage of HCC cells.
Collapse
Affiliation(s)
- S Abel
- PROMEC Unit, Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa.
| | | | | | | | | | | |
Collapse
|
13
|
Schumann A, Bauer A, Hermes M, Gilbert M, Hengstler JG, Wilhelm C. A rapid and easy to handle thermoluminescence based technique for evaluation of carbon tetrachloride-induced oxidative stress on rat hepatocytes. Arch Toxicol 2009; 83:709-20. [PMID: 19214477 DOI: 10.1007/s00204-009-0404-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 01/15/2009] [Indexed: 02/02/2023]
Abstract
Oxidative stress has become one of the most intensively studied topics in biomedical research and is an often observed mechanism of non-genotoxic carcinogens like carbon tetrachloride. To monitor the oxidative stress status in in vitro hepatocytes, we compared thermoluminescence (TL) measurements with biochemical standard methods for oxidative stress markers. In contrast to biochemical analysis, TL measurements can be performed without any time-consuming extraction procedures by using directly collected cell material. After incubation with CCl(4) (24 h), thermo-induced light emission increased with rising concentration of CCl(4) up to eightfold at 10 mM CCl(4). Simultaneously, we determined the content of different secondary oxidative stress products, like thiobarbituric acid reactive substances and malondialdehyde. The rise of all biochemical markers complied with the increasing concentration of CCl(4). Finally, we could show that the CCl(4)-induced increase of oxidative stress markers determined by time-consuming biochemical methods perfectly correlates with the increase of high temperature bands in rapid TL measurements.
Collapse
Affiliation(s)
- Anika Schumann
- Biology I, Plant Physiology, University of Leipzig, Johannisallee 21-23, 04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Lu Y, Nie D, Witt WT, Chen Q, Shen M, Xie H, Lai L, Dai Y, Zhang J. Expression of the fat-1 gene diminishes prostate cancer growth in vivo through enhancing apoptosis and inhibiting GSK-3 beta phosphorylation. Mol Cancer Ther 2008; 7:3203-11. [PMID: 18852124 DOI: 10.1158/1535-7163.mct-08-0494] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epidemiologic studies inclusively indicate that "unhealthy" dietary fat intake is one of the potential risk factors for cancer. In dietary fat, there are two types of polyunsaturated fatty acids (PUFA), omega-3 (n-3) and omega-6 (n-6). Numerous studies support that the ratio of n-6/n-3 affects tumorigenesis. It was reported that adenoviral transfer of the fat-1 gene, which converts n-6 to n-3, into breast and lung cancer cells had an antitumor effect in vitro. However, the effects of the fat-1 gene expression on tumor growth in vivo have not been studied and the mechanisms remain unclear. Accordingly, prostate cancer DU145 and PC3 cells were transfected with either the fat-1 gene or a control vector. The cells that expressed the fat-1 gene had a lower n-6/n-3 PUFA ratio compared with the cells that expressed the control vector. The fat-1 gene expression significantly inhibited prostate cancer cell proliferation and invasion in vitro. The fat-1 and control vector-transfected prostate cancer cells were s.c. implanted into severe combined immunodeficient mice for 6 weeks. The fat-1 gene expression significantly diminished tumor growth in vivo, but the control vector had no effect. Finally, we evaluated signaling pathways that may be important for fat-1 gene function. Administration of n-3 PUFA induced caspase-3-mediated prostate cancer cell apoptosis in vitro. The fat-1 gene expression inhibited prostate cancer cell proliferation via reduction of GSK-3beta phosphorylation and subsequent down-regulation of both beta-catenin and cyclin D1. These results suggest that fat-1 gene transfer directly into tumor cells could be used as a novel therapeutic approach.
Collapse
Affiliation(s)
- Yi Lu
- Department of Medicine, University of Pittsburgh, VA Pittsburgh Healthcare Systems, Room 2E146, University Drive, Pittsburgh, PA 15240, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Burger HM, Abel S, Snijman PW, Swanevelder S, Gelderblom WCA. Altered lipid parameters in hepatic subcellular membrane fractions induced by fumonisin B1. Lipids 2007; 42:249-61. [PMID: 17393230 DOI: 10.1007/s11745-007-3025-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 12/16/2006] [Indexed: 01/27/2023]
Abstract
Alteration of lipid constituents of cellular membranes has been proposed as a possible mechanism for cancer promotion by fumonisin B(1 )(FB(1)). To further investigate this hypothesis a dietary dosage which initiates and promotes liver cancer (250 mg FB(1)/kg) was fed to male Fischer rats for 21 days and the lipid composition of plasma, microsomal, mitochondrial and nuclear subcellular fractions determined. The effect of FB(1) on the cholesterol, phosphatidylcholine (PC) and phosphatidylethanolamine (PE), as well as sphingomyelin (SM) and the phospholipids-associated fatty acid (FA) profiles, were unique for each subcellular membrane fraction. PE was significantly increased in the microsomal, mitochondrial and plasma membrane fractions, whereas cholesterol was increased in both the microsomal and nuclear fraction. In addition SM was decreased and increased in the mitochondrial and nuclear fractions, respectively. The decreased PC/PE and polyunsaturated/saturated (P/S) FA ratio in the different membrane fractions suggest a more rigid membrane structure. The decreased levels in polyunsaturated fatty acids in PC together with a pronounced increase in C18:1omega9 and C18:2omega6 were indicative of an impaired delta-6 desaturase. The increased omega6/omega3 ratio and decreased C20:4omega6 PC/PE ratio due to an increase in C20:4omega6 in PE relatively to PC in the different subcellular fractions suggests a shift towards prostanoid synthesis of the E2 series. Changes in the PE and C20:4omega6 parameters in the plasma membrane could alter key growth regulatory and/or other cell receptors in lipid rafts known to be altered by FB(1). An interactive role between C20:4omega6 and ceramide in the mitochondria, is suggested to regulate the balance between proliferation and apoptosis in altered initiated hepatocytes resulting in their selective outgrowth during cancer promotion effected by FB(1).
Collapse
Affiliation(s)
- H-M Burger
- PROMEC Unit, Medical Research Council, Tygerberg, South Africa.
| | | | | | | | | |
Collapse
|
16
|
Lin WY, Huang CH. Fatty acid composition and lipid peroxidation of soft-shelled turtle, Pelodiscus sinensis, fed different dietary lipid sources. Comp Biochem Physiol C Toxicol Pharmacol 2007; 144:327-33. [PMID: 17137843 DOI: 10.1016/j.cbpc.2006.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 10/16/2006] [Accepted: 10/17/2006] [Indexed: 11/17/2022]
Abstract
Juvenile soft-shelled turtles (Pelodiscus sinensis) were fed 7 diets containing 8% of lard, soybean oil, olive oil, menhaden fish oil, or mixtures of 1 to 1 ratio of fish oil and lard, soybean oil, olive oil for 10 weeks. Growth and muscle proximate compositions of the turtles were not affected by different dietary treatments (p>0.05). Fatty acid profiles in muscle polar lipids, muscle non-polar lipids, and liver polar lipids reflected the fatty acid composition of dietary lipid source. Turtles fed diets containing fish oil generally contained significantly higher (p<0.05) proportion of highly unsaturated fatty acids (HUFA) in both polar and non-polar lipids of muscle and polar fraction of liver lipids than those fed other oils. Non-polar fraction of liver lipids from all groups of turtles contained less than 1% of HUFA. All turtles contained relatively high proportions of oleic acid in their lipids regardless of the dietary lipid source. Further, lipid peroxidation in both muscle tissue and liver microsomes of turtles fed fish oil as the sole lipid source was greater (p<0.05) than those fed fish oil-free diets. Turtles fed olive oil as the sole lipid source had the lowest lipid peroxidation rate among all dietary groups. The results indicate that dietary n-3 HUFA may not be crucial for optimal growth of soft-shelled turtles although they may be used for metabolic purpose. Further, high level of dietary HUFA not only increases the HUFA content in turtle tissues, but also enhances the susceptibility of these tissues to lipid peroxidation.
Collapse
Affiliation(s)
- Way-Yee Lin
- National Chiayi University, Department of Aquatic Biosciences, 300 University Road, Chiayi 600, Taiwan
| | | |
Collapse
|