1
|
France Štiglic A, Stajnko A, Sešek Briški A, Snoj Tratnik J, Mazej D, Jerin A, Skitek M, Horvat M, Marc J, Falnoga I. Associations between APOE genotypes, urine 8-isoprostane and blood trace elements in middle-aged mothers (CROME study). ENVIRONMENT INTERNATIONAL 2024; 193:109034. [PMID: 39447471 DOI: 10.1016/j.envint.2024.109034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND There is almost no data on the combined associations between apolipoprotein E gene (APOE) genotypes, trace elements (TEs), and lipid peroxidation in vivo. The aim of our study was to evaluate the association between APOE genotypes and TE levels in blood (B-TEs) and erythrocytes (E-TEs), and 8-isoprostane in urine (U-8-isoprostane) in women with low exposure to potentially toxic TEs and with adequate supply of essential TEs. METHODS B-TEs, E-TEs and U-8-isoprostane were determined in 172 healthy women of childbearing age (30.1-51.4 years) using ICP-MS and ELISA competitive assay, respectively. All women were divided into three APOE genotype groups according to the presence of the ɛ4 allele, ɛ2 allele or ɛ3 homozygotic allele. The associations between B-TEs, E-TE, U-8-isoprostane, and the APOE genotype groups were estimated by multiple variable linear regression models with relevant explanatory variables (e.g., age, BMI, and seafood). RESULTS All TE and U-8-isoprostane levels were inside the reference ranges for the healthy population. In the multiple variable linear regression models, our results showed that urine 8-isoprostane levels increased by up to 43.3% in the APOE4 group compared to the APOE3 group and a negligible negative modifying effect for essential TEs. However, the APOE genotype groups were associated also with some TEs. A clear positive association was found between the APOE2 and APOE4 groups (vs. APOE3) with B-molybdenum. CONCLUSIONS Our study suggests that the APOE4 genotype played an important role in 8-isoprostane variability in a population with an adequate supply of essential and with low exposure to potentially toxic TEs. Adequate copper, zinc and selenium status seemed to be protective against, while the levels of nonessential TEs were probably too low to play a decisive role in 8-isoprostane formation. The observed impact of the APOE2 and APOE4 groups on increased B-molybdenum opens a new research topic.
Collapse
Affiliation(s)
- Alenka France Štiglic
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Anja Stajnko
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Alenka Sešek Briški
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia.
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Aleš Jerin
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Milan Skitek
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Janja Marc
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Ingrid Falnoga
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Liu X, Finno CJ, Beck T, Dhana K, Tangney C, Desai P, Krueger K, Evans DA, Rajan KB. Association of Vitamin E and Cognitive Decline in Older Adults with and without the APOEɛ4 Allele: A Biracial Population-Based Community Study. J Alzheimers Dis 2023; 96:1129-1138. [PMID: 37955092 PMCID: PMC10947793 DOI: 10.3233/jad-230797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
BACKGROUND The association of different types of tocopherols (vitamin E) with cognition might vary by the APOEɛ4 allele status. OBJECTIVE We examined the association of dietary tocopherols with cognitive decline among participants with and without the APOEɛ4 allele over a median of 12 years. METHODS 2,193 participants from the Chicago Health and Aging Project were included in the analyses. Global cognition was assessed in three-year cycles. We used a 144-item FFQ to assess dietary intakes of tocopherols and hME Sequenom mass-array platform to assess APOE genotype. We used linear mixed effects models to examine the relationship between tocopherol from food sources and global cognitive decline. RESULTS The mean baseline age was 74.1 (SD = 5.9) years. Among APOEɛ4 carriers, participants in the highest quintile of intakes of dietary vitamin E had a slower cognitive decline of 0.022 SDU (95% CI: 0.000, 0.043) compared to those in the lowest quintile. A higher intake of dietary α-tocopherol from food sources only was associated with slower cognitive decline in APOEɛ4 carriers (p for trend 0.002) but not among the non-carriers (p for trend 0.937). Among APOEɛ4 carriers, those in the highest quintile of intake of α-tocopherol had a 16.4% slower rate of decline of global cognition compared to those in the lowest quintile (β= 0.034, 95% CI: 0.013, 0.054). CONCLUSIONS Individuals consuming high α-tocopherol from food sources had slower cognitive decline among APOEɛ4 carriers. In older adults, different forms of vitamin E might moderate the relationship of APOEɛ4 with global cognition.
Collapse
Affiliation(s)
- Xiaoran Liu
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
- Rush Institute for Healthy Aging, Chicago, IL, 60612, USA
| | - Carrie J. Finno
- Department of Population, Health & Reproduction, School of Veterinary Medicine, UC Davis, Davis, CA, 95616, USA
| | - Todd Beck
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
- Rush Institute for Healthy Aging, Chicago, IL, 60612, USA
| | - Klodian Dhana
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
- Rush Institute for Healthy Aging, Chicago, IL, 60612, USA
| | - Christy Tangney
- Department of Clinical Nutrition & Preventive Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Pankaja Desai
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
- Rush Institute for Healthy Aging, Chicago, IL, 60612, USA
| | - Kristin Krueger
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
- Rush Institute for Healthy Aging, Chicago, IL, 60612, USA
| | - Denis A Evans
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
- Rush Institute for Healthy Aging, Chicago, IL, 60612, USA
| | - Kumar B Rajan
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
- Rush Institute for Healthy Aging, Chicago, IL, 60612, USA
| |
Collapse
|
3
|
Johnson LA. APOE and metabolic dysfunction in Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:131-151. [PMID: 32739002 DOI: 10.1016/bs.irn.2020.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The strongest genetic risk factor for sporadic Alzheimer's disease (AD) is carriage of the E4 allele of APOE. Metabolic dysfunction also increases risk of dementia and AD. Facing a need for effective therapies and an aging global population, studies aimed at uncovering new therapeutic targets for AD have become critical. Insight into the biology underlying the effects of E4 and metabolic impairment on the brain may lead to novel therapies to reduce AD risk. An understudied hallmark of both AD patients and E4 individuals is a common metabolic impairment-cerebral glucose hypometabolism. This is a robust and replicated finding in humans, and begins decades prior to cognitive decline. Possession of E4 also appears to alter several other aspects of cerebral glucose metabolism, fatty acid metabolism, and management of oxidative stress through the pentose phosphate pathway. A critical knowledge gap in AD is the mechanism by which APOE alters cerebral metabolism and clarification as to its relevance to AD risk. Facing a need for effective therapies, studies aimed at uncovering new therapeutic targets have become critical. One such approach is to gain a better understanding of the metabolic mechanisms that may underlie E4-associated cognitive dysfunction and AD risk.
Collapse
Affiliation(s)
- Lance A Johnson
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, United States; Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States.
| |
Collapse
|
4
|
Dose J, Huebbe P, Nebel A, Rimbach G. APOE genotype and stress response - a mini review. Lipids Health Dis 2016; 15:121. [PMID: 27457486 PMCID: PMC4960866 DOI: 10.1186/s12944-016-0288-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/12/2016] [Indexed: 12/31/2022] Open
Abstract
The APOE gene is one of currently only two genes that have consistently been associated with longevity. Apolipoprotein E (APOE) is a plasma protein which plays an important role in lipid and lipoprotein metabolism. In humans, there are three major APOE isoforms, designated APOE2, APOE3, and APOE4. Of these three isoforms, APOE3 is most common while APOE4 was shown to be associated with age-related diseases, including cardiovascular and Alzheimer’s disease, and therefore an increased mortality risk with advanced age. Evidence accumulates, showing that oxidative stress and, correspondingly, mitochondrial function is affected in an APOE isoform-dependent manner. Accordingly, several stress response pathways implicated in the aging process, including the endoplasmic reticulum stress response and immune function, appear to be influenced by the APOE genotype. The investigation and development of treatment strategies targeting APOE4 have not resolved any therapeutic yet that could be entirely recommended. This mini-review provides an overview on the state of research concerning the impact of the APOE genotype on stress response-related processes, emphasizing the strong interconnection between mitochondrial function, endoplasmic reticulum stress and the immune response. Furthermore, this review addresses potential treatment strategies and associated pitfalls as well as lifestyle interventions that could benefit people with an at risk APOE4 genotype.
Collapse
Affiliation(s)
- Janina Dose
- Institute of Human Nutrition and Food Science, Kiel University, Hermann-Rodewald-Str. 6, D-24118, Kiel, Germany. .,Institute of Clinical Molecular Biology, Kiel University, Schittenhelmstr. 12, D-24105, Kiel, Germany.
| | - Patricia Huebbe
- Institute of Human Nutrition and Food Science, Kiel University, Hermann-Rodewald-Str. 6, D-24118, Kiel, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, Schittenhelmstr. 12, D-24105, Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Kiel University, Hermann-Rodewald-Str. 6, D-24118, Kiel, Germany
| |
Collapse
|
5
|
Morris MC, Brockman J, Schneider JA, Wang Y, Bennett DA, Tangney CC, van de Rest O. Association of Seafood Consumption, Brain Mercury Level, and APOE ε4 Status With Brain Neuropathology in Older Adults. JAMA 2016; 315:489-97. [PMID: 26836731 PMCID: PMC5460535 DOI: 10.1001/jama.2015.19451] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IMPORTANCE Seafood consumption is promoted for its many health benefits even though its contamination by mercury, a known neurotoxin, is a growing concern. OBJECTIVE To determine whether seafood consumption is correlated with increased brain mercury levels and also whether seafood consumption or brain mercury levels are correlated with brain neuropathologies. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional analyses of deceased participants in the Memory and Aging Project clinical neuropathological cohort study, 2004-2013. Participants resided in Chicago retirement communities and subsidized housing. The study included 286 autopsied brains of 554 deceased participants (51.6%). The mean (SD) age at death was 89.9 (6.1) years, 67% (193) were women, and the mean (SD) educational attainment was 14.6 (2.7) years. EXPOSURES Seafood intake was first measured by a food frequency questionnaire at a mean of 4.5 years before death. MAIN OUTCOMES AND MEASURES Dementia-related pathologies assessed were Alzheimer disease, Lewy bodies, and the number of macroinfarcts and microinfarcts. Dietary consumption of seafood and n-3 fatty acids was annually assessed by a food frequency questionnaire in the years before death. Tissue concentrations of mercury and selenium were measured using instrumental neutron activation analyses. RESULTS Among the 286 autopsied brains of 544 participants, brain mercury levels were positively correlated with the number of seafood meals consumed per week (ρ = 0.16; P = .02). In models adjusted for age, sex, education, and total energy intake, seafood consumption (≥ 1 meal[s]/week) was significantly correlated with less Alzheimer disease pathology including lower density of neuritic plaques (β = -0.69 score units [95% CI, -1.34 to -0.04]), less severe and widespread neurofibrillary tangles (β = -0.77 score units [95% CI, -1.52 to -0.02]), and lower neuropathologically defined Alzheimer disease (β = -0.53 score units [95% CI, -0.96 to -0.10]) but only among apolipoprotein E (APOE ε4) carriers. Higher intake levels of α-linolenic acid (18:3 n-3) were correlated with lower odds of cerebral macroinfarctions (odds ratio for tertiles 3 vs 1, 0.51 [95% CI, 0.27 to 0.94]). Fish oil supplementation had no statistically significant correlation with any neuropathologic marker. Higher brain concentrations of mercury were not significantly correlated with increased levels of brain neuropathology. CONCLUSIONS AND RELEVANCE In cross-sectional analyses, moderate seafood consumption was correlated with lesser Alzheimer disease neuropathology. Although seafood consumption was also correlated with higher brain levels of mercury, these levels were not correlated with brain neuropathology.
Collapse
Affiliation(s)
- Martha Clare Morris
- Section on Nutrition and Nutritional Epidemiology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | | | - Julie A Schneider
- Rush Alzheimer Disease Center, Rush University Medical Center, Chicago, Illinois4Department of Neurology, Rush University Medical Center, Chicago, Illinois5Department of Pathology, Rush University Medical Center, Chicago, Illinois
| | - Yamin Wang
- Section on Nutrition and Nutritional Epidemiology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - David A Bennett
- Rush Alzheimer Disease Center, Rush University Medical Center, Chicago, Illinois4Department of Neurology, Rush University Medical Center, Chicago, Illinois
| | - Christy C Tangney
- Department of Clinical Nutrition, Rush University Medical Center, Chicago, Illinois
| | - Ondine van de Rest
- Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
6
|
Wei GZ, Zhu MY, Wang F, Zhao YG, Li SS, Liu TY, Luo Y, Tang WR. Paraoxonase (PON1) polymorphisms Q192R and L55M are not associated with human longevity: A meta-analysis. Z Gerontol Geriatr 2015; 49:24-31. [PMID: 25962362 DOI: 10.1007/s00391-015-0892-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/25/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Genetic mutations in the paraoxonase 1 (PON1) encoding gene have been considered to affect mortality and of these the functional promoter region polymorphisms Q192R and L55M are among the most widely studied. OBJECTIVE The aim of this study was to determine whether the Q192R and L55M polymorphisms of PON1 can increase susceptibility to longevity. A meta-analysis was performed to obtain a comprehensive estimation of the association between Q192R and L55M and longevity in long-lived individuals (LLIs) aged 80 years or more. MATERIAL AND METHODS A search was carried out in the PubMed database (from January 2001 to May 2014) to obtain data on the role of PON1 polymorphisms in longevity and a pooled odds ratio (OR) with a 95% confidence interval (CI) was used to assess the associations. RESULTS The meta-analysis was based on 9 studies of PON1 Q192R and 5 studies of PON1 L55M that covered a total of 5086 LLIs and 4494 controls. Overall, significantly increased risks were not observed for either Q192R or L55M. The results of the statistical calculations were as follows: R vs. Q (additive model): OR = 1.080, 95% CI = 0.989-1.179, p = 0.088 and RR + RQ vs. QQ (dominant model): OR = 1.099, 95% CI = 0.975-1.240, p = 0.124; M vs. L (additive model): OR = 0.946, 95% CI = 0.862-1.039, p = 0.245 and MM + ML vs. LL (dominant model): OR = 0.951, 95% CI = 0.836-1.081, p = 0.442 for Q192R and L55M, respectively. The results did not change with an age cut-off among the LLIs of ≥ 93 years. CONCLUSION No evidence that the Q192R and L55M polymorphisms of PON1 impacted on the probability of reaching extreme ages was found although this cannot be completely ruled out; however, the possibility of population-specific effects due to the influence of and interaction between different genes or environmental factors could not be ruled out.
Collapse
Affiliation(s)
- Gan-Zhong Wei
- Laboratory of Molecular Genetics of Aging and Tumor, Medical Faculty, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, 650500, Kunming, Yunnan, China
| | - Mei-Yan Zhu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical Faculty, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, 650500, Kunming, Yunnan, China
| | - Fang Wang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical Faculty, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, 650500, Kunming, Yunnan, China
| | - Yue-Guang Zhao
- Laboratory of Molecular Genetics of Aging and Tumor, Medical Faculty, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, 650500, Kunming, Yunnan, China
| | - Shan-Shan Li
- Laboratory of Molecular Genetics of Aging and Tumor, Medical Faculty, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, 650500, Kunming, Yunnan, China
| | - Tong-Yang Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical Faculty, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, 650500, Kunming, Yunnan, China
| | - Ying Luo
- Laboratory of Molecular Genetics of Aging and Tumor, Medical Faculty, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, 650500, Kunming, Yunnan, China
| | - Wen-Ru Tang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical Faculty, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, 650500, Kunming, Yunnan, China.
| |
Collapse
|
7
|
Schaffer S, Lam VYM, Ernst IMA, Huebbe P, Rimbach G, Halliwell B. Variability in APOE genotype status in human-derived cell lines: a cause for concern in cell culture studies? GENES AND NUTRITION 2013; 9:364. [PMID: 24297645 DOI: 10.1007/s12263-013-0364-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/04/2013] [Indexed: 01/16/2023]
Abstract
Although cell culture studies have provided landmark discoveries in the basic and applied life sciences, it is often under-appreciated that cells grown in culture are prone to generating artifacts. Here, we introduce the genotype status (exemplified by apolipoprotein E) of human-derived cells as a further important parameter that requires attention in cell culture experiments. Epidemiological and clinical studies indicate that variations from the main apolipoprotein E3/E3 genotype might alter the risk of developing chronic diseases, especially neurodegeneration, cardiovascular disease, and cancer. Whereas the apolipoprotein E allele distribution in human populations is well characterized, the apolipoprotein E genotype of human-derived cell lines is only rarely considered in interpreting cell culture data. However, we find that primary and immortalized human cell lines show substantial variation in their apolipoprotein E genotype status. We argue that the apolipoprotein E genotype status and corresponding gene expression level of human-derived cell lines should be considered to better avoid (or at least account for) inconsistencies in cell culture studies when different cell lines of the same tissue or organ are used and before extrapolating cell culture data to human physiology in health and disease.
Collapse
Affiliation(s)
- Sebastian Schaffer
- Department of Biochemistry, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
The term 'antioxidant paradox' is often used to refer to the observation that oxygen radicals and other reactive oxygen species are involved in several human diseases, but giving large doses of dietary antioxidant supplements to human subjects has, in most studies, demonstrated little or no preventative or therapeutic effect. Why should this be? First, the role of reactive oxygen species in the origin and/or progression of most human diseases is unclear, although they are probably important in cancer, neurodegenerative diseases and perhaps some others. Second, the endogenous antioxidant defences in the human body are complex, interlocking and carefully regulated. The body's 'total antioxidant capacity' seems unresponsive to high doses of dietary antioxidants, so that the amount of oxidative damage to key biomolecules is rarely changed. Indeed, manipulation of endogenous antioxidant levels (e.g. by supplying weak pro-oxidants) may be a more useful approach to treatment and prevention of diseases in which reactive oxygen species are important than is consumption of large doses of dietary antioxidants.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
9
|
Soerensen M, Dato S, Tan Q, Thinggaard M, Kleindorp R, Beekman M, Suchiman HED, Jacobsen R, McGue M, Stevnsner T, Bohr VA, de Craen AJM, Westendorp RGJ, Schreiber S, Slagboom PE, Nebel A, Vaupel JW, Christensen K, Christiansen L. Evidence from case-control and longitudinal studies supports associations of genetic variation in APOE, CETP, and IL6 with human longevity. AGE (DORDRECHT, NETHERLANDS) 2013; 35:487-500. [PMID: 22234866 PMCID: PMC3592963 DOI: 10.1007/s11357-011-9373-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/15/2011] [Indexed: 05/31/2023]
Abstract
In this study, we investigated 102 single-nucleotide polymorphisms (SNPs) covering the common genetic variation in 16 genes recurrently regarded as candidates for human longevity: APOE; ACE; CETP; HFE; IL6; IL6R; MTHFR; TGFB1; APOA4; APOC3; SIRTs 1, 3, 6; and HSPAs 1A, 1L, 14. In a case-control study of 1,089 oldest-old (ages 92-93) and 736 middle-aged Danes, the minor allele frequency (MAF) of rs769449 (APOE) was significantly decreased in the oldest-old, while the MAF of rs9923854 (CETP) was significantly enriched. These effects were supported when investigating 1,613 oldest-old (ages 95-110) and 1,104 middle-aged Germans. rs769449 was in modest linkage equilibrium (R (2)=0.55) with rs429358 of the APOE-ε4 haplotype and adjusting for rs429358 eliminated the association of rs769449, indicating that the association likely reflects the well-known effect of rs429358. Gene-based analysis confirmed the effects of variation in APOE and CETP and furthermore pointed to HSPA14 as a longevity gene. In a longitudinal study with 11 years of follow-up on survival in the oldest-old Danes, only one SNP, rs2069827 (IL6), was borderline significantly associated with survival from age 92 (P-corrected=0.064). This advantageous effect of the minor allele was supported when investigating a Dutch longitudinal cohort (N=563) of oldest-old (age 85+). Since rs2069827 was located in a putative transcription factor binding site, quantitative RNA expression studies were conducted. However, no difference in IL6 expression was observed between rs2069827 genotype groups. In conclusion, we here support and expand the evidence suggesting that genetic variation in APOE, CETP, and IL6, and possible HSPA14, is associated with human longevity.
Collapse
Affiliation(s)
- Mette Soerensen
- The Danish Aging Research Center, Epidemiology, Institute of Public Health, University of Southern Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
A case-control study on the effect of Apolipoprotein E genotypes on gastric cancer risk and progression. BMC Cancer 2012; 12:494. [PMID: 23098561 PMCID: PMC3537647 DOI: 10.1186/1471-2407-12-494] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 10/11/2012] [Indexed: 12/22/2022] Open
Abstract
Background Apolipoprotein E (ApoE) is a multifunctional protein playing both a key role in the metabolism of cholesterol and triglycerides, and in tissue repair and inflammation. The ApoE gene (19q13.2) has three major isoforms encoded by ε2, ε3 and ε4 alleles with the ε4 allele associated with hypercholesterolemia and the ε2 allele with the opposite effect. An inverse relationship between cholesterol levels and gastric cancer (GC) has been previously reported, although the relationship between apoE genotypes and GC has not been explored so far. Methods One hundred and fifty-six gastric cancer cases and 444 hospital controls were genotyped for apoE polymorphism (ε2, ε3, ε4 alleles). The relationship between GC and putative risk factors was measured using the adjusted odds ratios (ORs) and their 95% confidence intervals (CIs) from logistic regression analysis. A gene-environment interaction analysis was performed. The effect of the apoE genotypes on survival from GC was explored by a Kaplan–Meier analysis and Cox proportional hazard regression model. Results Subjects carrying at least one apoE ε2 allele have a significant 60% decrease of GC risk (OR=0.40, 95% CI: 0.19 – 0.84) compared with ε3 homozygotes. No significant interaction emerged between the ε4 or ε2 allele and environmental exposures, nor ε2 or ε4 alleles affected the median survival times, even after correcting for age, gender and stadium. Conclusions Our study reports for the first time a protective effect of the ε2 allele against GC, that might be partly attributed to the higher antioxidant properties of ε2 compared with the ε3 or ε4 alleles. Given the study’s sample size, further studies are required to confirm our findings.
Collapse
|
11
|
ApoE genotype: from geographic distribution to function and responsiveness to dietary factors. Proc Nutr Soc 2012; 71:410-24. [DOI: 10.1017/s0029665112000249] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
ApoE is a key protein in lipid metabolism with three major isoforms.ApoEallele frequencies show non-random global distribution especially in Europe with highapoEε3frequency in the Mediterranean area, whereas theapoEε4genotype is enriched in Northern Europe. TheapoEε4genotype is one of the most important genetic risk factors for age-dependent chronic diseases, including CVD and Alzheimer's disease (AD). The apoE polymorphism has been shown to impact on blood lipids, biomarkers of oxidative stress and chronic inflammation, which all may contribute to the isoform-dependent disease risk. Studies in mice and human subjects indicate that theapoEε3but not theapoEε4genotype may significantly benefit from dietary flavonoids (e.g. quercetin) andn-3 fatty acids. Metabolism of lipid soluble vitamins E and D is likewise differentially affected by theapoEgenotype. Epidemiological and experimental evidence suggest a better vitamin D status inapoEε4than ε3subjects indicating a certain advantage of ε4over ε3. The present review aims at evaluation of current data available on interactions between apoE polymorphism and dietary responsiveness to flavonoids, fat soluble vitamins andn-3 fatty acids. Likewise, distinct geographic distribution and chronic disease risk of the different apoE isoforms are addressed.
Collapse
|
12
|
|
13
|
Apolipoprotein E genotype affects tissue metallothionein levels: studies in targeted gene replacement mice. GENES AND NUTRITION 2012; 7:247-55. [PMID: 22328270 DOI: 10.1007/s12263-012-0282-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/24/2012] [Indexed: 12/14/2022]
Abstract
The apolipoprotein E (APOE) genotype is an important risk factor for ageing and age-related diseases. The APOE4 genotype (in contrast to APOE3) has been shown to be associated with oxidative stress and chronic inflammation. Metallothioneins (MT) exhibit antioxidant and anti-inflammatory activity, and MT overexpression has been shown to increase lifespan in mice. Interactions between APOE and MT, however, are largely unknown. Hence, we determined the effect of the APOE4 versus APOE3 genotype on MT levels in targeted gene replacement mice. APOE4 versus APOE3 mice exhibited significantly lower hepatic MT1 and MT2 mRNA as well as lower MT protein levels. The decrease in hepatic MT protein levels in APOE4 as compared to APOE3 mice was accompanied by lower nuclear Nrf1, a protein partly controlling MT gene expression. Cell culture experiments using hepatocytes identified allyl-isothiocyanate (AITC) as a potent MT inductor in vitro. Therefore, we supplemented APOE3 and APOE4 mice with AITC. However, AITC (15 mg/kg b.w.) could only partly correct for decreased MT1 and MT2 gene expression in APOE4 mice in vivo. Furthermore, cholesterol significantly decreased both Nrf1 and MT mRNA levels in Huh7 cells indicating that differences in MT gene expression between the two genotypes could be related to differences in hepatic cholesterol concentrations. Overall, present data suggest that the APOE genotype is an important determinant of tissue MT levels in mice and that MT gene expression may be impaired by the APOE4 genotype.
Collapse
|
14
|
Fischer A, Schmelzer C, Rimbach G, Niklowitz P, Menke T, Döring F. Association between genetic variants in the Coenzyme Q10 metabolism and Coenzyme Q10 status in humans. BMC Res Notes 2011; 4:245. [PMID: 21774831 PMCID: PMC3160390 DOI: 10.1186/1756-0500-4-245] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/21/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Coenzyme Q10 (CoQ10) is essential for mitochondrial energy production and serves as an antioxidants in extra mitochondrial membranes. The genetics of primary CoQ10 deficiency has been described in several studies, whereas the influence of common genetic variants on CoQ10 status is largely unknown. Here we tested for non-synonymous single-nucleotidepolymorphisms (SNP) in genes involved in the biosynthesis (CoQ3G272S , CoQ6M406V, CoQ7M103T), reduction (NQO1P187S, NQO2L47F) and metabolism (apoE3/4) of CoQ10 and their association with CoQ10 status. For this purpose, CoQ10 serum levels of 54 healthy male volunteers were determined before (T0) and after a 14 days supplementation (T14) with 150 mg/d of the reduced form of CoQ10. FINDINGS At T0, the CoQ10 level of heterozygous NQO1P187S carriers were significantly lower than homozygous S/S carriers (0.93 ± 0.25 μM versus 1.34 ± 0.42 μM, p = 0.044). For this polymorphism a structure homology-based method (PolyPhen) revealed a possibly damaging effect on NQO1 protein activity. Furthermore, CoQ10 plasma levels were significantly increased in apoE4/E4 genotype after supplementation in comparison to apoE2/E3 genotype (5.93 ± 0.151 μM versus 4.38 ± 0.792 μM, p = 0.034). Likewise heterozygous CoQ3G272S carriers had higher CoQ10 plasma levels at T14 compared to G/G carriers but this difference did not reach significance (5.30 ± 0.96 μM versus 4.42 ± 1.67 μM, p = 0.082). CONCLUSIONS In conclusion, our pilot study provides evidence that NQO1P187S and apoE polymorphisms influence CoQ10 status in humans.
Collapse
Affiliation(s)
- Alexandra Fischer
- Institute of Human Nutrition and Food Science, Devision of Molecular Prevention, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Huebbe P, Nebel A, Siegert S, Moehring J, Boesch-Saadatmandi C, Most E, Pallauf J, Egert S, Müller MJ, Schreiber S, Nöthlings U, Rimbach G. APOE ε4 is associated with higher vitamin D levels in targeted replacement mice and humans. FASEB J 2011; 25:3262-70. [PMID: 21659554 DOI: 10.1096/fj.11-180935] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The allele ε4 of apolipoprotein E (APOE), which is a key regulator of lipid metabolism, represents a risk factor for cardiovascular diseases and Alzheimer's disease. Despite its adverse effects, the allele is common and shows a nonrandom global distribution that is thought to be the result of evolutionary adaptation. One hypothesis proposes that the APOE ε4 allele protects against vitamin D deficiency. Here we present, for the first time, experimental and epidemiological evidence that the APOE ε4 allele is indeed associated with higher serum vitamin D [25(OH)D] levels. In APOE4 targeted replacement mice, significantly higher 25(OH)D levels were found compared with those in APOE2 and APOE3 mice (70.9 vs. 41.8 and 27.8 nM, P<0.05). Furthermore, multivariate adjusted models show a positive association of the APOE ε4 allele with 25(OH)D levels in a small collective of human subjects (n=93; P=0.072) and a general population sample (n=699; P=0.003). The novel link suggests ε4 as a modulator of vitamin D status. Although this result agrees well with evolutionary aspects, it appears contradictory with regard to chronic diseases, especially cardiovascular disease. Large prospective cohort studies are now needed to investigate the potential implications of this finding for chronic disease risks.
Collapse
Affiliation(s)
- Patricia Huebbe
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Boesch-Saadatmandi C, Rimbach G, Schrader C, Kofler BM, Armah CK, Minihane AM. Determinants of paraoxonase activity in healthy adults. Mol Nutr Food Res 2011; 54:1842-50. [PMID: 20658496 DOI: 10.1002/mnfr.201000190] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
SCOPE Paraoxonase-1 (PON-1), associated with HDL, is regarded as anti-atherogenic, attributed to its ability to hydrolyze oxidized lipids. Here, the impact of PON and apolipoprotein E genotypes, age, alcohol and HDL-cholesterol (HDL-C) on PON activity is examined. METHODS AND RESULTS In total, 104 healthy UK adults participated in the study, with basal (PONA) and stimulated (PONB) PON-1 activities and arylesterase activity determined in these individuals. In univariate and correlation analysis age, HDL-C, alcohol intake and both PON genotypes were significantly associated with PONA and PONB activities (p<0.05). However, in the standard linear regression model, which explained 69% of the variability in both PONA (p<0.001) and PONB activities (p<0.001) only PON Q192R genotype emerged as a significant independent determinant, with four to fivefold higher levels in the RR versus wild-type QQ genotype groups. For PON arylesterase, HDL-C (p=0.030), apolipoprotein E (p=0.023) and PON Q192R (p=0.002) and PON L55M (p=0.002) genotypes collectively explained 14% of the total variability in the regression model. CONCLUSION Our results indicate that PON genotypes are stronger determinants of PON activity relative to the other potential modulators assessed. The relative impact of dietary components on PON activities remains to be established.
Collapse
|
17
|
Tien KJ, Tu ST, Chou CW, Yang CY, Hsiao JY, Shin SJ, Chen HC, Hsieh MC. Apolipoprotein E polymorphism and the progression of diabetic nephropathy in type 2 diabetes. Am J Nephrol 2011; 33:231-8. [PMID: 21346330 DOI: 10.1159/000324561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 01/25/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Three different apo E alleles (E2, E3 and E4) produce apo E isoproteins, which regulate the metabolism of lipoproteins. This study investigated the apo E polymorphisms as a prognostic factor for the development of diabetic nephropathy (DN). METHODS A total of 525 type 2 diabetic patients were enrolled to participate in this prospective observational study. Apo E gene polymorphisms were analyzed by polymerase chain reaction. The progression of DN was defined as a shift to a higher stage of DN or a doubling of the baseline serum creatinine level by the end of the study. RESULTS The mean follow-up period was 42.4 months. The patients whose DN progressed had significantly higher urine albumin/creatinine ratios and fewer used diuretics than those in whom DN did not progress. In the Cox regression analysis, the apo E4 carriers were found to be at greater risk of progression of DN than non-apo E4 carriers (p = 0.007, hazard ratio 2.252). After adjusting for confounding factors, apo E4 carriers remained at increased risk of progression to more severe DN (p = 0.002, hazard ratio 2.820). CONCLUSION Our study suggests the apo E4 carrier might serve as a predictor of DN progression in Taiwan.
Collapse
Affiliation(s)
- Kai-Jen Tien
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
18
|
De Feo E, Rowell J, Cadoni G, Nicolotti N, Arzani D, Giorgio A, Amore R, Paludetti G, Ricciardi G, Boccia S. A case-control study on the effect of apoliprotein E genotype on head and neck cancer risk. Cancer Epidemiol Biomarkers Prev 2010; 19:2839-46. [PMID: 20861397 DOI: 10.1158/1055-9965.epi-10-0624] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The apolipoprotein E gene (apoE) has three major isoforms encoded by the ε2, ε3, and ε4 alleles, with the ε4 allele associated with hypercholesterolemia and the ε2 allele with the opposite effect. An inverse relationship between cholesterolemia and head and neck cancer (HNC) has been previously reported, although the relationship between apoE genotypes and HNC has not been explored to date. METHODS Four hundred and seventeen HNC cases and 436 hospital controls were genotyped for apoE polymorphisms. Adjusted odds ratios (ORs) and 95% confidence intervals (CI) from logistic regression were used to explore the relationship between HNC and putative risk factors. A gene-environment interaction analysis was done. RESULTS A borderline significant 40% decreased HNC risk (OR, 0.58; 95% CI, 0.31-1.05) was observed for individuals carrying at least one ε2 allele. Females carrying at least one ε2 allele showed a 60% risk reduction (OR, 0.43; 95% CI, 0.21-0.90) for HNC compared with ε3 homozygotes. A statistically significant interaction was found between alcohol use and the ε4 allele (P for interaction = 0.04), with a 2-fold increased risk (OR, 2.06; 95% CI, 0.95-4.48) among ever drinkers with an ε4 allele, with respect to ε3 homozygote nondrinkers. CONCLUSIONS Our study provides novel evidence of a possible protective effect of the ε2 allele against HNC, probably due to its increased antioxidant properties. IMPACT According to our results, apolipoprotein E may play a different role in carcinogenesis other than its well-known role in regulating blood serum cholesterol levels.
Collapse
Affiliation(s)
- Emma De Feo
- Institute of Hygiene, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Huebbe P, Lodge JK, Rimbach G. Implications of apolipoprotein E genotype on inflammation and vitamin E status. Mol Nutr Food Res 2010; 54:623-30. [PMID: 20183830 DOI: 10.1002/mnfr.200900398] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In Western societies the apolipoprotein E4 (apoE4) genotype is associated with increased morbidity and mortality and represents a significant risk factor for cardiovascular and Alzheimer's disease. In a recent study we observed significantly lower tissue alpha-tocopherol (alpha-TOH) concentrations in apoE4 compared with apoE3 mice. Furthermore, genes encoding for proteins involved in peripheral alpha-TOH transport and degradation were affected by the apoE genotype. Thus, the apoE4 genotype may be associated with lower vitamin E retention in peripheral tissues. This is possibly related to an altered lipoprotein metabolism including increased alpha-TOH retention in LDL, a decreased expression of lipoprotein receptors and impaired cellular vitamin E delivery system, and a greater intracellular degradation of tocopherols in the apoE4 genotype. An increasing number of studies in cultured cells, transgenic mice and human volunteers indicate a more pro-inflammatory state associated with the apoE4 allele. In apoE4 macrophages there is an enhanced transactivation of the key redox sensitive transcription factor NF-kappaB accompanied by a higher production of pro-inflammatory molecules (tumor necrosis factor alpha, interleukin 1beta, macrophage inflammatory protein 1-alpha) and a lower production of anti-inflammatory interleukin 10, as compared with apoE3 macrophages. Both tissue vitamin E retention and biomarkers of chronic inflammation may be affected by the apoE genotype.
Collapse
Affiliation(s)
- Patricia Huebbe
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University, Kiel, Germany
| | | | | |
Collapse
|
20
|
Caliebe A, Kleindorp R, Blanché H, Christiansen L, Puca AA, Rea IM, Slagboom E, Flachsbart F, Christensen K, Rimbach G, Schreiber S, Nebel A. No or only population-specific effect of PON1 on human longevity: a comprehensive meta-analysis. Ageing Res Rev 2010; 9:238-44. [PMID: 20362697 DOI: 10.1016/j.arr.2010.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 03/05/2010] [Accepted: 03/23/2010] [Indexed: 12/22/2022]
Abstract
Paraoxonase 1 (PON1) has been suggested as a plausible candidate gene for human longevity due to its modulation of cardiovascular disease risk, by preventing oxidation of atherogenic low-density lipoprotein. The role of the PON1 192 Q/R polymorphism has been analyzed for association with survival at old age in several populations, albeit with controversial results. To reconcile the conflicting evidence, we performed a large association study with two samples of 2357 Germans and 1025 French, respectively. We combined our results with those from seven previous studies in the largest and most comprehensive meta-analysis on PON1 192 Q/R and longevity to-date, to include a total of 9580 individuals. No significant association of PON1 192 Q/R with longevity was observed, for either R allele or carriership. This finding relied on very large sample sizes, is supported by different analysis methods and is therefore considered very robust. Moreover, we have investigated a potential interaction of PON1 192 Q/R with APOE epsilon4 using data from four populations. Whereas a significant result was found in the German sample, this could not be confirmed in the other examined groups. Our large-scale meta-analysis provided no evidence that the PON1 192 Q/R polymorphism is associated with longevity, but this does not exclude the possibility of population-specific effects due to the influence of, and interaction between, different genetic and/or environmental factors (e.g. diet).
Collapse
|
21
|
Abstract
Cardiovascular disease (CVD) risk and rate of progression is determined by genetic, environmental and behavioural factors. Majority of genotype-diet-CVD phenotype research till date has focussed on the interactive impact of single nucleotide polymorphisms (SNP) and dietary fat composition, on blood lipids levels, with strong evidence of the existence of hypo- and hyper-responders. However, a recognised concern in the field of nutrigenetics is a lack of consistency between findings of different studies. This apparent lack of consistency is likely to be attributable to the impact of factors such as ethnicity and gender on the 'size' of nutrigenetic interactions, a clear understanding of which needs to be gained. Although not yet ready for widespread use, in the future a greater use of genetic profiling is likely to enhance current strategies of CVD prediction, and improve the design of more personalised approaches to minimise risk in the individual.
Collapse
Affiliation(s)
- Anne M Minihane
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
22
|
Rimbach G, Moehring J, Huebbe P, Lodge JK. Gene-regulatory activity of alpha-tocopherol. Molecules 2010; 15:1746-61. [PMID: 20336011 PMCID: PMC6257188 DOI: 10.3390/molecules15031746] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/05/2010] [Accepted: 03/09/2010] [Indexed: 12/30/2022] Open
Abstract
Vitamin E is an essential vitamin and a lipid soluble antioxidant, at least, under in vitro conditions. The antioxidant properties of vitamin E are exerted through its phenolic hydroxyl group, which donates hydrogen to peroxyl radicals, resulting in the formation of stable lipid species. Beside an antioxidant role, important cell signalling properties of vitamin E have been described. By using gene chip technology we have identified alpha-tocopherol sensitive molecular targets in vivo including christmas factor (involved in the blood coagulation) and 5alpha-steroid reductase type 1 (catalyzes the conversion of testosterone to 5alpha-dihydrotestosterone) being upregulated and gamma-glutamyl-cysteinyl synthetase (the rate limiting enzyme in GSH synthesis) being downregulated due to alpha-tocopherol deficiency. Alpha-tocopherol regulates signal transduction cascades not only at the mRNA but also at the miRNA level since miRNA 122a (involved in lipid metabolism) and miRNA 125b (involved in inflammation) are downregulated by alpha-tocopherol. Genetic polymorphisms may determine the biological and gene-regulatory activity of alpha-tocopherol. In this context we have recently shown that genes encoding for proteins involved in peripheral alpha-tocopherol transport and degradation are significantly affected by the apoE genotype.
Collapse
Affiliation(s)
- Gerald Rimbach
- Institute of Human Nutrition and Food Science, Christian Albrechts University 24118 Kiel, Germany; E-Mails: (J.M.); (P.H.)
| | - Jennifer Moehring
- Institute of Human Nutrition and Food Science, Christian Albrechts University 24118 Kiel, Germany; E-Mails: (J.M.); (P.H.)
| | - Patricia Huebbe
- Institute of Human Nutrition and Food Science, Christian Albrechts University 24118 Kiel, Germany; E-Mails: (J.M.); (P.H.)
| | - John K. Lodge
- Cranfield Health, Vincent Building, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK; E-Mail: (J.K.L.)
| |
Collapse
|
23
|
Boesch-Saadatmandi C, Niering J, Minihane AM, Wiswedel I, Gardeman A, Wolffram S, Rimbach G. Impact of apolipoprotein E genotype and dietary quercetin on paraoxonase 1 status in apoE3 and apoE4 transgenic mice. Atherosclerosis 2010; 211:110-3. [PMID: 20307882 DOI: 10.1016/j.atherosclerosis.2010.02.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/05/2010] [Accepted: 02/16/2010] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The aim of the present study was to determine hepatic paraoxonase 1 (PON1) status in response to apoE genotype and dietary quercetin supplementation in mice. METHODS AND RESULTS ApoE3 and apoE4 transgenic mice were fed semi-synthetic diets without (controls) and with quercetin (2 mg/g diet) for 6 weeks. Hepatic mRNA and protein levels of PON1 were significantly lower in apoE4 as compared to apoE3 mice. Feeding quercetin-enriched diets induced hepatic PON1 gene expression with a tendency for greater induction in apoE3 as compared to apoE4 mice. Furthermore, hepatic mRNA and protein levels of beta-glucuronidase and sulfatase, both enzymes centrally involved in the deconjugation of quercetin conjugates, were lower in apoE4 vs. apoE3 mice. PPARgamma (which partly controls PON1 gene expression) mRNA levels were lower in apoE4 vs. apoE3 mice. CONCLUSION We provide first evidence that PON1 is differentially regulated in response to apoE genotype.
Collapse
|
24
|
Egert S, Boesch-Saadatmandi C, Wolffram S, Rimbach G, Müller MJ. Serum lipid and blood pressure responses to quercetin vary in overweight patients by apolipoprotein E genotype. J Nutr 2010; 140:278-84. [PMID: 20032478 DOI: 10.3945/jn.109.117655] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Our objective was to examine the effect of a quercetin supplementation on blood pressure, lipid metabolism, markers of oxidative stress, inflammation, and body composition in an at-risk population of 93 overweight-obese volunteers aged 25-65 y with metabolic syndrome traits in relation to apolipoprotein (apo) E genotype. Participants were randomized to receive 150 mg/d quercetin in a double-blinded, placebo-controlled, crossover trial with 6-wk treatment periods separated by a 5-wk washout period. Retrospectively, 5 apoE genotype variants were found (epsilon2/epsilon3, n = 3; epsilon3/epsilon3, n = 60; epsilon3/epsilon4, n = 23; epsilon2/epsilon4, n = 4; and epsilon4/epsilon4, n = 3). Participants were classified into the following 3 apoE phenotypes: apoE2 (n = 3), apoE3 (n = 60), and apoE4 (n = 26). Data were analyzed for apoE3 and apoE4 subgroups. Quercetin decreased systolic blood pressure by 3.4 mm Hg (P < 0.01) in the apoE3 group, whereas no significant effect was observed in the apoE4 group. Quercetin decreased serum HDL cholesterol (P < 0.01) and apoA1 (P < 0.01) and increased the LDL:HDL cholesterol ratio (P < 0.05) in the apoE4 subgroup, whereas the apoE3 subgroup had no significant changes in these variables. Quercetin significantly decreased plasma oxidized LDL and tumor necrosis factor-alpha in the apoE3 and apoE4 groups, whereas no significant inter-group differences were found. Serum C-reactive protein and nutritional status (body weight, waist circumference, fat mass, fat-free mass) were unaffected compared with placebo. In conclusion, quercetin exhibited blood pressure-lowering effects in overweight-obese carriers of the apo epsilon3/epsilon3 genotype but not in carriers of the epsilon4 allele. Furthermore, quercetin supplementation resulted in a reduction in HDL cholesterol and apoA1 in apo epsilon4 carriers.
Collapse
Affiliation(s)
- Sarah Egert
- Institute of Nutrition and Food Science, Nutritional Physiology, University of Bonn, 53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
25
|
Lambrinoudaki I, Kaparos G, Rizos D, Galapi F, Alexandrou A, Sergentanis TN, Creatsa M, Christodoulakos G, Kouskouni E, Botsis D. Apolipoprotein E and paraoxonase 1 polymorphisms are associated with lower serum thyroid hormones in postmenopausal women. Clin Endocrinol (Oxf) 2009; 71:284-90. [PMID: 19018779 DOI: 10.1111/j.1365-2265.2008.03476.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Autoimmune thyroiditis and overt or subclinical hypothyroidism have been associated with increased prevalence of cardiovascular disease (CVD). DESIGN Cross-sectional investigation of the association between gene polymorphisms related to CVD with thyroid function and autoimmunity. PATIENTS In total 84 healthy postmenopausal women aged 49-69 years. MEASUREMENTS FT3, FT4, anti-TPO and anti-TG were assessed in the sera of participants. The following polymorphisms were assessed from peripheral lymphocyte DNA: Apolipoprotein E E2/E3/E4, paraoxonase 1 A/B, Glycoprotein IIIa leu33pro, MTHFR ala222val, ApoBarg3500gln, plasminogen activator inhibitor 1 4G/5G, cholesterol 7-alpha hydroxylase A204C and cholesterol ester transfer protein B1/B2. RESULTS A statistically significant correlation was found between Apolipoprotein E and paraoxonase 1 polymorphisms and serum thyroid hormones: carriers of the E2 or E4 allele of the ApoE gene had lower levels of FT4 (P = 0.0005) than women with the E3/E3 genotype. Carriers of the B allele of paraoxonase 1 gene had lower levels of FT3 compared to women with the wild-type genotype (P = 0.047). A statistically significant positive association (P = 0.049) was also observed between anti-TG antibodies and the presence of the E2 allele of the Apolipoprotein E gene. CONCLUSIONS Polymorphisms of apolipoprotein E and paraoxonase 1 are associated with different levels of thyroid hormone and anti-Tg antibody levels in the study population in this pilot study. The mechanism underlying this association remains to be elucidated.
Collapse
Affiliation(s)
- Irene Lambrinoudaki
- Second Department of Obstetrics and Gynaecology, University of Athens, Aretaieio Hospital, Athens, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nutrigenetics and personalised nutrition: how far have we progressed and are we likely to get there? Proc Nutr Soc 2009; 68:162-72. [DOI: 10.1017/s0029665109001116] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nutrigenetics and personalised nutrition are components of the concept that in the future genotyping will be used as a means of defining dietary recommendations to suit the individual. Over the last two decades there has been an explosion of research in this area, with often conflicting findings reported in the literature. Reviews of the literature in the area of apoE genotype and cardiovascular health, apoA5 genotype and postprandial lipaemia and perilipin and adiposity are used to demonstrate the complexities of genotype–phenotype associations and the aetiology of apparent between-study inconsistencies in the significance and size of effects. Furthermore, genetic research currently often takes a very reductionist approach, examining the interactions between individual genotypes and individual disease biomarkers and how they are modified by isolated dietary components or foods. Each individual possesses potentially hundreds of ‘at-risk’ gene variants and consumes a highly-complex diet. In order for nutrigenetics to become a useful public health tool, there is a great need to use mathematical and bioinformatic tools to develop strategies to examine the combined impact of multiple gene variants on a range of health outcomes and establish how these associations can be modified using combined dietary strategies.
Collapse
|
27
|
Ma SW, Benzie IFF, Yeung VTF. Type 2 diabetes mellitus and its renal complications in relation to apolipoprotein E gene polymorphism. Transl Res 2008; 152:134-42. [PMID: 18774543 DOI: 10.1016/j.trsl.2008.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 06/11/2008] [Accepted: 06/11/2008] [Indexed: 01/06/2023]
Abstract
The apolipoprotein E (APOE) epsilon2 allele is reported to be associated with greater risk of renal impairment in type 2 diabetes. Relationships among APOE polymorphisms, renal impairment, and biochemical parameters were explored. A prospective study of 405 consenting Chinese type 2 diabetic patients [mean age +/- standard deviation (SD): 59.2 +/- 10.3 years] without advanced complications at entry was conducted. APOE genotyping and measurement of plasma biomarkers of oxidative stress and antioxidants were performed at entry. HbA1C, plasma glucose, lipids, creatinine, urine albumin/creatinine, and blood pressure were measured at entry and at up to 4 years of follow-up. APOE allelic frequencies were in Hardy-Weinberg equilibrium. Odds ratios of albuminuria at entry and/or during follow-up for different APOE groups were not significantly different. The non-epsilon2 (epsilon3/3, epsilon3/4, epsilon4/4) group had significantly greater plasma ascorbate (51.6 +/- 20.1 mumol/L) than the epsilon2 (epsilon2/2, epsilon2/3) group (44.5 +/- 16.2 mumol/L, P = 0.021), but higher plasma ascorbate levels did not seem to decrease the risk of renal impairment in the non-epsilon2 group. Baseline plasma lipid-standardized alpha-tocopherol levels were least in epsilon2 subjects with persistent albuminuria (3.6 +/- 1.1 mumol/mmol of total cholesterol plus triglycerides, P = 0.008) compared with epsilon2 subjects who had no albuminuria at entry or during follow-up (4.5 +/- 0.8 mumol/mmol of total cholesterol plus triglycerides). The APOE epsilon2 allele does not seem to be associated with increased risk of renal impairment in Chinese type 2 diabetic patients. Plasma lipid-standardized alpha-tocopherol may play a role in determining risk of renal dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- Shuk-Woon Ma
- Department of Health Technology & Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | | | | |
Collapse
|
28
|
Influence of apolipoprotein E genotype and dietary α-tocopherol on redox status and C-reactive protein levels in apolipoprotein E3 and E4 targeted replacement mice. Br J Nutr 2008; 100:44-53. [DOI: 10.1017/s000711450788634x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The molecular basis of the positive association between apoE4 genotype and CVD remains unclear. There is directin vitroevidence indicating that apoE4 is a poorer antioxidant relative to the apoE3 isoform, with some indirectin vivoevidence also available. Therefore it was hypothesised that apoE4 carriers may benefit from α-tocopherol (α-Toc) supplementation. Targeted replacement mice expressing the human apoE3 and apoE4 were fed with a diet poor (0 mg/kg diet) or rich (200 mg/kg diet) in α-Toc for 12 weeks. Neither apoE genotype nor dietary α-Toc exerted any effects on the antioxidant defence system, including glutathione, catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase activities. In addition, no differences were observed in mitogen-induced lymphocyte proliferation. α-Toc concentrations were modestly higher in plasma and lower in tissues of apoE4 compared with apoE3 mice, with the greatest differences evident in the lung, suggesting that an apoE4 genotype may reduce α-Toc delivery to tissues. A tendency towards increased plasma F2-isoprostanes in apoE4 mice was observed, while liver thiobarbituric acid-reactive substances did not differ between apoE3 and apoE4 mice. In addition, C-reactive protein (CRP) concentrations were reduced in apoE4 mice indicating that this positive effect on CRP may in part negate the increased CVD risk associated with an apoE4 genotype.
Collapse
|
29
|
Jofre-Monseny L, Minihane AM, Rimbach G. Impact of apoE genotype on oxidative stress, inflammation and disease risk. Mol Nutr Food Res 2008; 52:131-45. [PMID: 18203129 DOI: 10.1002/mnfr.200700322] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although in developing countries an apolipoprotein E4 (apoE4) genotype may offer an evolutionary advantage, as it has been shown to offer protection against certain infectious disease, in Westernised societies it is associated with increased morbidity and mortality, and represents a significant risk factor for cardiovascular disease, late-onset Alzheimer's disease and other chronic disorders. ApoE is an important modulator of many stages of lipoprotein metabolism and traditionally the increased risk was attributed to higher lipid levels in E4 carriers. However, more recent evidence demonstrates the multifunctional nature of the apoE protein and the fact that the impact of genotype on disease risk may be in large part due to an impact on oxidative status or the immunomodulatory/anti-inflammatory properties of apoE. An increasing number of studies in cell lines, targeted replacement rodents and human volunteers indicate higher oxidative stress and a more pro-inflammatory state associated with the epsilon4 allele. The impact of genotype on the antioxidant and immunomodulatory/anti-inflammatory properties of apoE is the focus of the current review. Furthermore, current information on the impact of environment (diet, exercise, smoking status, alcohol) on apoE genotype-phenotype associations are discussed with a view to identifying particular lifestyle strategies that could be adapted to counteract the 'at-risk' E4 genotype.
Collapse
Affiliation(s)
- Laia Jofre-Monseny
- Institute of Human Nutrition and Food Science, Christian Albrechts University of Kiel, Kiel, Germany
| | | | | |
Collapse
|
30
|
Programme schedule for SFRR-E Berlin supplement. Free Radic Res 2008; 42 Suppl 1:2-126. [DOI: 10.1080/10715760802207914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Schmelzer C, Lindner I, Rimbach G, Niklowitz P, Menke T, Döring F. Functions of coenzyme Q10 in inflammation and gene expression. Biofactors 2008; 32:179-83. [PMID: 19096114 DOI: 10.1002/biof.5520320121] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Clinical studies demonstrated the efficacy of Coenzyme Q10 (CoQ10) as an adjuvant therapeutic in cardiovascular diseases, mitochondrial myopathies and neurodegenerative diseases. More recently, expression profiling revealed that Coenzyme Q10 (CoQ10) influences the expression of several hundred genes. To unravel the functional connections of these genes, we performed a text mining approach using the Genomatix BiblioSphere. We identified signalling pathways of G-protein coupled receptors, JAK/STAT, and Integrin which contain a number of CoQ10 sensitive genes. Further analysis suggested that IL5, thrombin, vitronectin, vitronectin receptor, and C-reactive protein are regulated by CoQ10 via the transcription factor NFkappaB1. To test this hypothesis, we studied the effect of CoQ10 on the NFkappaB1-dependent pro-inflammatory cytokine TNF-alpha. As a model, we utilized the murine macrophage cell lines RAW264.7 transfected with human apolipoprotein E3 (apoE3, control) or pro-inflammatory apoE4. In the presence of 2.5 microM or 75 microM CoQ10 the LPS-induced TNF-alpha response was significantly reduced to 73.3 +/- 2.8% and 74.7 +/- 8.9% in apoE3 or apoE4 cells, respectively. Therefore, the in silico analysis as well as the cell culture experiments suggested that CoQ10 exerts anti-inflammatory properties via NFkappaB1-dependent gene expression.
Collapse
Affiliation(s)
- Constance Schmelzer
- Institute of Human Nutrition and Food Science, Molecular Nutrition, Christian-Albrechts-University of Kiel, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Jofre-Monseny L, de Pascual-Teresa S, Plonka E, Huebbe P, Boesch-Saadatmandi C, Minihane AM, Rimbach G. Differential effects of apolipoprotein E3 and E4 on markers of oxidative status in macrophages. Br J Nutr 2007; 97:864-71. [PMID: 17381973 DOI: 10.1017/s0007114507669219] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
ApoE is secreted by macrophages at the lesion site of the atherosclerotic plaque, where it is thought to play a protective role against atherosclerosis independently of its effects on lipid metabolism. Of the three common isoforms for apoE, apoE4 is associated with higher risk of cardiovascular disease (CVD). In vitro studies have shown that recombinant apoE may act as an antioxidant in an isoform-dependent manner (E2 > E3 > E4). The oxidative status of the macrophages plays a key role in the process of atherosclerosis. In the present study the possible differential actions of apoE3 and apoE4 on several parameters of oxidative status were determined in stably transfected murine macrophages (RAW 264-7-apoE3 and - apoE4). No differences between genotypes were observed after peroxide challenge in either protection against cytotoxicity or in cell membrane oxidation, and modest differences were observed in the non-enzymatic antioxidants (glutathione and alpha-tocopherol) in apoE3 v. apoE4 macrophages. Importantly, cells secreting apoE4 showed increased membrane oxidation under basal conditions, and produced more NO and superoxide anion radicals than the apoE3 macrophages after stimulation. The present data suggest that apoE genotype influences the oxidative status of macrophages, and this could partly contribute to the higher CVD risk observed in apoE4 carriers.
Collapse
Affiliation(s)
- Laia Jofre-Monseny
- Institute of Human Nutrition and Food Science, Christian Albrechts University of Kiel, Hermann-Rodewald-Strasse 6, 24098 Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Glodzik-Sobanska L, Pirraglia E, Brys M, de Santi S, Mosconi L, Rich KE, Switalski R, Saint Louis L, Sadowski MJ, Martiniuk F, Mehta P, Pratico D, Zinkowski RP, Blennow K, de Leon MJ. The effects of normal aging and ApoE genotype on the levels of CSF biomarkers for Alzheimer's disease. Neurobiol Aging 2007; 30:672-81. [PMID: 17920160 DOI: 10.1016/j.neurobiolaging.2007.08.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 08/10/2007] [Accepted: 08/17/2007] [Indexed: 10/22/2022]
Abstract
While cerebrospinal fluid (CSF) biomarkers are of use in the prediction and diagnosis of Alzheimer's disease our understanding of the background effects of age and the ApoE genotype is limited. Seventy-eight community-based normal volunteers (mean age 60+/-10 years, range 36-86) were examined to determine the relationships between CSF measures of total tau (T-tau), hyperphosphorylated tau (P-tau 231), amyloid beta (Abeta42/Abeta40 ratio), and isoprostane (IP) with age and ApoE genotype. The results showed that age by epsilon4 genotype interactions were found for P-tau231 (beta=1.82; p<0.05) and IP (beta=1.6; p<0.05). T-tau CSF concentration increased with age. The increasing CSF concentrations of P-tau and IP in epsilon4 carriers suggest that early tauopathy and oxidative stress may be related to the increased risk for AD. The data also suggest that T-tau changes are more age dependent than Abeta changes. The evidence that P-tau231 and IP are the earliest markers for the neuronal damage related to AD awaits longitudinal study.
Collapse
|
34
|
|
35
|
Minihane AM, Jofre-Monseny L, Olano-Martin E, Rimbach G. ApoE genotype, cardiovascular risk and responsiveness to dietary fat manipulation. Proc Nutr Soc 2007; 66:183-97. [PMID: 17466101 DOI: 10.1017/s0029665107005435] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cardiovascular risk is determined by the complex interactions between genetic and environmental factors. The apoE genotype represents the most-widely-studied single nucleotide polymorphism in relation to CVD risk, with >3600 publications cited in PubMed. Although originally described as a mediator of lipoprotein metabolism, the lipoprotein-independent functions of apoE are being increasingly recognised, with limited data available on the potential impact of genotype on these metabolic processes. Furthermore, although meta-analyses suggest that apoE4 carriers may have a 40-50% increased CVD risk, the associations reported in individual studies are highly heterogeneous and it is recognised that environmental factors such as smoking status and dietary fat composition influence genotype-phenotype associations. However, information is often derived from observational studies or small intervention trials in which retrospective genotyping of the cohort results in small group sizes in the rarer E2 and E4 subgroups. Either larger well-standardised intervention trials or smaller trials with prospective recruitment according to apoE genotype are needed to fully establish the impact of diet on genotype-CVD associations and to establish the potential of dietary strategies such as reduced total fat, saturated fat, or increased antioxidant intakes to counteract the increased CVD burden in apoE4 carriers.
Collapse
Affiliation(s)
- A M Minihane
- Hugh Sinclair Unit of Human Nutrition, School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Reading RG6 6AP, UK.
| | | | | | | |
Collapse
|
36
|
Jofre-Monseny L, Loboda A, Wagner AE, Huebbe P, Boesch-Saadatmandi C, Jozkowicz A, Minihane AM, Dulak J, Rimbach G. Effects of apoE genotype on macrophage inflammation and heme oxygenase-1 expression. Biochem Biophys Res Commun 2007; 357:319-24. [PMID: 17416347 PMCID: PMC2096715 DOI: 10.1016/j.bbrc.2007.03.150] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 03/24/2007] [Indexed: 12/23/2022]
Abstract
In order to gain a more comprehensive understanding of the aetiology of apolipoprotein E4 genotype-cardiovascular disease (CVD) associations, the impact of the apoE genotype on the macrophage inflammatory response was examined. The murine monocyte-macrophage cell line (RAW 264.7) stably transfected to produce equal amounts of human apoE3 or apoE4 was used. Following LPS stimulation, apoE4-macrophages showed higher and lower concentrations of tumour necrosis factor alpha (pro-inflammatory) and interleukin 10 (anti-inflammatory), respectively, both at mRNA and protein levels. In addition, increased expression of heme oxygenase-1 (a stress-induced anti-inflammatory protein) was observed in the apoE4-cells. Furthermore, in apoE4-macrophages, an enhanced transactivation of the key redox sensitive transcription factor NF-kappaB was shown. Current data indicate that apoE4 macrophages have an altered inflammatory response, which may contribute to the higher CVD risk observed in apoE4 carriers.
Collapse
Affiliation(s)
- Laia Jofre-Monseny
- Institute of Human Nutrition and Food Science, Christian Albrechts University of Kiel, Hermann-Rodewald-Strasse 6, 24098 Kiel, Germany
| | - Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Anika E. Wagner
- Institute of Human Nutrition and Food Science, Christian Albrechts University of Kiel, Hermann-Rodewald-Strasse 6, 24098 Kiel, Germany
| | - Patricia Huebbe
- Institute of Human Nutrition and Food Science, Christian Albrechts University of Kiel, Hermann-Rodewald-Strasse 6, 24098 Kiel, Germany
| | - Christine Boesch-Saadatmandi
- Institute of Human Nutrition and Food Science, Christian Albrechts University of Kiel, Hermann-Rodewald-Strasse 6, 24098 Kiel, Germany
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Anne-Marie Minihane
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Reading RG6 6AP, UK
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Christian Albrechts University of Kiel, Hermann-Rodewald-Strasse 6, 24098 Kiel, Germany
- Corresponding author. Fax: +49 4318802628.
| |
Collapse
|
37
|
Majewicz J, Rimbach G, Proteggente AR, Lodge JK, Kraemer K, Minihane AM. Dietary vitamin C down-regulates inflammatory gene expression in apoE4 smokers. Biochem Biophys Res Commun 2005; 338:951-5. [PMID: 16248984 DOI: 10.1016/j.bbrc.2005.10.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Accepted: 10/07/2005] [Indexed: 10/25/2022]
Abstract
The deleterious impact of cigarette smoking on cardiovascular health may be in part attributable to a free radical mediated proinflammatory response in circulating monocytes. In the current investigation, the impact of vitamin C supplementation on monocyte gene expression was determined in apoE4 smokers versus non-smokers. A total of 10 smokers and 11 non-smokers consumed 60mg/day of vitamin C for four weeks and a fasting blood sample was taken at baseline and post-intervention for the determination of plasma vitamin C and monocyte gene expression profiles using cDNA array and real time PCR. In apoE4 smokers, supplementation resulted in a 43% increase in plasma vitamin C concentrations. Furthermore, a number of genes were differentially expressed more than 2-fold in response to treatment, including a downregulation of the proinflammatory mediators tumor necrosis factor (TNF) beta, TNF receptor, neurotrophin-3 growth factor receptor, and monocyte chemoattractant protein 1 receptor. The study has identified a number of molecular mechanisms underlying the benefit of vitamin C supplementation in smokers.
Collapse
Affiliation(s)
- Jonathan Majewicz
- Hugh Sinclair Unit of Human Nutrition, School of Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AP, UK
| | | | | | | | | | | |
Collapse
|