1
|
Yuan X, Liu R, Wei M, Li H, Sun J, Ji H. Fish oil replacement with different vegetable oils in Onychostoma macrolepis: Effects on fatty acid metabolism based on whole-body fatty acid balance method and genes expression. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1583-1603. [PMID: 38739220 DOI: 10.1007/s10695-024-01357-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
To evaluate the fatty acid (FA) metabolism status and possibility as a DHA source of farmed Onychostoma macrolepis, a total of 168 fish (2.03 ± 0.23 g) were fed four diets supplemented with fish oil (FO), linseed oil (LO), soybean oil (SO), and a mixture of LO and SO oil (MO), respectively, for 70 days. Body FA compositions were modified reflecting dietary FAs. Comparing liver and intestine fatty acids with fish fed four diets, the content of ARA in fish fed SO was significantly higher than others (P < 0.05), but showed no difference in muscle. The tissue FA profile showed that the FO-fed group successfully deposited DHA, while the LO-fed group converted ALA to DHA effectively, as well as the liver and intestine EPA was notably highest in the FO group, whereas no difference between the FO and LO group in the muscle. The FA results showed that the DHA contents in the muscle of Onychostoma macrolepis are at a medium-high level compared with several other fish species with the highest aquaculture yield. Correspondingly, in the fish fed diet with LO, SO, and MO, the genes of most FA biosynthesis, transportation, and transcriptional regulation factors were increased in the liver and muscle, but no significant difference was observed in the gene expression of Elovl4b, FATP1, and FABP10 in the muscle. In addition, the enzyme activity involved in PUFA metabolism was higher in fish fed vegetable oil-based diets, corroborating the results of the gene expression. Increased in vivo elongase and desaturase (Δ5, Δ6, and Δ9) activities were recorded in fish fed fish oil-devoid diets, which resulted in the appearance of products associated with elongase and desaturase activities in fish. Besides, as the specific n-3 PUFA synthesis substrate, the dietary supplementation of ALA not only retains most of the nutrition value but also ensures the muscular texture, such as fiber diameter and density. It is concluded that farmed O. macrolepis owns strong n-3 LC-PUFA biosynthetic capacity and high DHA contents so it can be a good DHA source for the population.
Collapse
Affiliation(s)
- Xiangtong Yuan
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Ruofan Liu
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Mingkui Wei
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Handong Li
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
2
|
Sinclair AJ. Navigating my career in lipid research. Eur J Clin Nutr 2024:10.1038/s41430-024-01452-6. [PMID: 38802606 DOI: 10.1038/s41430-024-01452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Affiliation(s)
- Andrew J Sinclair
- Faculty of Health, Deakin University, Burwood, VIC, 3125, Australia.
- Department of Nutrition, Dietetics and Food, Notting Hill, VIC, 3168, Australia.
| |
Collapse
|
3
|
Chinarak K, Panpipat W, Panya A, Phonsatta N, Cheong LZ, Chaijan M. Improved long-chain omega-3 polyunsaturated fatty acids in sago palm weevil (Rhynchophorus ferrugineus) larvae by dietary fish oil supplementation. Food Chem 2022; 393:133354. [PMID: 35667178 DOI: 10.1016/j.foodchem.2022.133354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/29/2022] [Accepted: 05/28/2022] [Indexed: 01/21/2023]
Abstract
The nutritional values of sago palm weevil larvae (SPWL) reared on mixed plant-based diets (ground sago palm trunk (GS), cornmeal, rice bran, soybean, and perilla seed), containing different levels of dietary fish oil (FO) were compared to those reared on commercial pig feed (PF) and GS. Increased FO content resulted in an increase in ω-3 fatty acids (FA) in SPWL (p < 0.05), especially α-linolenic acid and eicosapentaenoic acid. When fed FO-fortified diets instead of PF, the health-promoting indices of the SPWL lipid improved significantly (e.g., decreased ω-6/ω-3 ratio, thrombogenicity index, and hypercholesterolemic FA with increased PUFA content). The lipid, protein, and mineral contents of SPWL were increased while growth performance was maintained on a 1.5% FO-fortified diet. Higher FO levels (3-5%) had a negative impact on the nutritional values and growth performance of the SPWL. Thus, there was a reasonable chance of developing a high-nutrient alternative insect for human consumption.
Collapse
Affiliation(s)
- Khanittha Chinarak
- Food Technology and Innovation Research Centre of Excellence, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Worawan Panpipat
- Food Technology and Innovation Research Centre of Excellence, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| | - Atikorn Panya
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Centre for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Rd., Khlong Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Natthaporn Phonsatta
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Centre for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Rd., Khlong Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Ling-Zhi Cheong
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Manat Chaijan
- Food Technology and Innovation Research Centre of Excellence, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
4
|
Mattioli S, Dimauro C, Cesarani A, Dal Bosco A, Bartolini D, Galli F, Migni A, Sebastiani B, Signorini C, Oger C, Collodel G, Castellini C. A Dynamic Model for Estimating the Interaction of ROS–PUFA–Antioxidants in Rabbit. Antioxidants (Basel) 2022; 11:antiox11030531. [PMID: 35326181 PMCID: PMC8944554 DOI: 10.3390/antiox11030531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Defining optimal nutrition in animals and humans remains a main scientific challenge. The objective of the work was to develop a dynamic model of reactive oxygen species (ROS)–polyunsaturated fatty acid (PUFA)–antioxidant homeostasis using the rabbit as a model. The problem entity was to evaluate the main metabolites generated from interactions between traits included in the conceptual model and identified by three main sub–models: (i) ROS generation, (ii) PUFA oxidation and (iii) antioxidant defence. A mathematical model (VENSIM software) that consisted of molecular stocks (INPUTs, OUTPUTs), exchange flows (intermediate OUTPUTs) and process rates was developed. The calibration was performed by using standard experimental data (Experiment 1), whereas the validation was carried out in Experiments 2 and 3 by using supra–nutritional dietary inputs (VIT E+ and PUFA+). The accuracy of the models was measured using 95% confidence intervals. Analytical OUTPUTs (ROS, PUFA, Vit E, Ascorbic acid, Iso–/NeuroProstanes, Aldehydes) were well described by the standard model. There was also good accuracy for the VIT E+ scenario, whereas some compensatory rates (Kc1–Kc4) were added to assess body compensation when high levels of dietary PUFA were administered (Experiment 3). In conclusion, the model can be very useful for predicting the effects of dietary treatments on the redox homeostasis of rabbits.
Collapse
Affiliation(s)
- Simona Mattioli
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo 20 Giugno, 74, 06123 Perugia, Italy
| | - Corrado Dimauro
- Department of Agricultural Sciences, University of Sassari, Sassari, Viale Italia, 39, 07100 Sassari, Italy
| | - Alberto Cesarani
- Department of Agricultural Sciences, University of Sassari, Sassari, Viale Italia, 39, 07100 Sassari, Italy
| | - Alessandro Dal Bosco
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo 20 Giugno, 74, 06123 Perugia, Italy
| | - Desiree Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Via Enrico Dal Pozzo, 06126 Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Via Enrico Dal Pozzo, 06126 Perugia, Italy
| | - Anna Migni
- Department of Life Science and System Biology, Università di Torino, Via Accademia Albertina, 13, 10123 Torino, Italy
| | - Bartolomeo Sebastiani
- Department of Chemistry, Biology and Biotechnology, Via del Giochetto, University of Perugia, 06126 Perugia, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci 16, 53100 Siena, Italy
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, 1919 route de Mende, CEDEX 05, 34293 Montpellier, France
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci 16, 53100 Siena, Italy
| | - Cesare Castellini
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo 20 Giugno, 74, 06123 Perugia, Italy
| |
Collapse
|
5
|
Cartoni Mancinelli A, Di Veroli A, Mattioli S, Cruciani G, Dal Bosco A, Castellini C. Lipid metabolism analysis in liver of different chicken genotypes and impact on nutritionally relevant polyunsaturated fatty acids of meat. Sci Rep 2022; 12:1888. [PMID: 35115659 PMCID: PMC8814176 DOI: 10.1038/s41598-022-05986-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
Humans and mammalian species are unable to synthesize significant amounts of polyunsaturated fatty acids (PUFA), which therefore must be introduced with the diet. In birds, lipogenesis takes place primarily in the liver, whereas adipose tissue serves as the storage site for triacylglycerols (TG, composed by 80-85% esterified fatty acids). However, both the nature (unsaturation level, n-3, or n-6 series) and the allocation (such as constituents of complexed lipids) of PUFA are very important to evaluate their function in lipid metabolism. The objective of the present investigation was to study the liver lipid metabolism, with particular attention to non-esterified fatty acids (NEFA), TG, phospholipids (PL), FADS2 gene expression, and Δ6-desaturase activity of three chicken genotypes, Leghorn (Leg), Ross 308 (Ross), and their crossbreed (LxR), by LC/MS analysis. The concentration of single fatty acids in muscle was quantified by GC-FID. The results showed that the Ross has a lipid metabolism related mainly to storage and structural roles, exhibiting higher levels of TG, phosphatidylethanolamine (PE) and phosphatidylcholine (PC) that are largely unsaturated. Meanwhile Leg showed a relevant amount of n-3 NEFA characterized by a higher phosphatidylserine (PS) unsaturation level, FADS2 gene expression and enzyme activity. The LxR seem to have a moderate trend: n-6 and n-3 NEFA showed intermediate values compared with that of the Ross and Leg and the TG trend was similar to that of the Ross, while PE and PC were largely unsaturated (mainly 6 and 7 UNS most of the metabolic energy for storage fatty acids in their tissues (TG) whereas, the Leg birds were characterized by different lipid metabolism showing in their liver a higher content of n-3 NEFA and higher unsaturation level in PS. Furthers details are needed to better attribute the lipid energy to the different metabolic portion.
Collapse
Affiliation(s)
- Alice Cartoni Mancinelli
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo XX Giugno, 74, 06123, Perugia, Italy
| | - Alessandra Di Veroli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8, 06123, Perugia, Italy
| | - Simona Mattioli
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo XX Giugno, 74, 06123, Perugia, Italy.
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8, 06123, Perugia, Italy
| | - Alessandro Dal Bosco
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo XX Giugno, 74, 06123, Perugia, Italy
| | - Cesare Castellini
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo XX Giugno, 74, 06123, Perugia, Italy
| |
Collapse
|
6
|
Vlaicu PA, Panaite TD, Turcu RP. Enriching laying hens eggs by feeding diets with different fatty acid composition and antioxidants. Sci Rep 2021; 11:20707. [PMID: 34667227 PMCID: PMC8526598 DOI: 10.1038/s41598-021-00343-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/11/2021] [Indexed: 11/11/2022] Open
Abstract
The current study was conducted to evaluate egg quality, egg yolk fatty acids, health-related indices and antioxidants from laying hens' eggs fed different combined vegetable by-products, rich in fatty acids and antioxidants. One hundred twenty 50 weeks-old Tetra SL laying hens were divided into three groups. They were given daily a standard diet (Control, C), a diet containing 9% rapeseed meal with 3% grapeseed meal (T1 diet), or a diet containing 9% flaxseed meal and 3% sea buckthorn meal (T2 diet). Hen production performances, egg quality, egg yolk fatty acids total polyphenols content and antioxidant capacity were determined. The T1 diet significantly reduced the egg yolk content of palmitic acid from 76.615 mg (C) to 46.843 mg (T1) and that of oleic acid from 788.13 mg (C) to 682.83 mg (T1). Feeding flaxseed and sea buckthorn meals significantly increased the egg yolk content of α-linolenic acid in T2 yolks (35.297 mg) compared with C yolks (4.752 mg) and that of docosahexaenoic acid (DHA) from 16.282 mg (C) to 74.918 mg (T2). The atherogenicity indices (AI) were not significantly affected, whereas the thrombogenicity indices (TI) decreased significantly (p < 0.0007) from 0.72 (C) to 0.60 (T1) and 0.66 (T2), respectively. Adding this combination of meals to the hens' diets, increased the total polyphenol content and antioxidant capacity in T1 and T2 eggs compared to C eggs. The significant enrichment of eggs with n-3 fatty acids and antioxidant capacity, as well on the health-related indices especially from T2 eggs, represents a potential functional feed ingredient in poultry feeding, to obtain eggs as functional food.
Collapse
Affiliation(s)
- Petru Alexandru Vlaicu
- Department of Chemistry and Animal Nutrition Physiology, National Research and Development Institute for Animal Biology and Nutrition, Balotesti, Romania.
| | - Tatiana Dumitra Panaite
- Department of Chemistry and Animal Nutrition Physiology, National Research and Development Institute for Animal Biology and Nutrition, Balotesti, Romania
| | - Raluca Paula Turcu
- Department of Chemistry and Animal Nutrition Physiology, National Research and Development Institute for Animal Biology and Nutrition, Balotesti, Romania
| |
Collapse
|
7
|
Xu H, Turchini GM, Francis DS, Liang M, Mock TS, Rombenso A, Ai Q. Are fish what they eat? A fatty acid’s perspective. Prog Lipid Res 2020; 80:101064. [DOI: 10.1016/j.plipres.2020.101064] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022]
|
8
|
Endogenous production of n-3 long-chain PUFA from first feeding and the influence of dietary linoleic acid and the α-linolenic:linoleic ratio in Atlantic salmon ( Salmo salar). Br J Nutr 2019; 122:1091-1102. [PMID: 31409428 DOI: 10.1017/s0007114519001946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Atlantic salmon (Salmo salar) possess enzymes required for the endogenous biosynthesis of n-3 long-chain PUFA (LC-PUFA), EPA and DHA, from α-linolenic acid (ALA). Linoleic acid (LA) competes with ALA for LC-PUFA biosynthesis enzymes leading to the production of n-6 LC-PUFA, including arachidonic acid (ARA). We aimed to quantify the endogenous production of EPA and DHA from ALA in salmon fed from first feeding on diets that contain no EPA and DHA and to determine the influence of dietary LA and ALA:LA ratio on LC-PUFA production. Salmon were fed from first feeding for 22 weeks with three diets formulated with linseed and sunflower oils to provide ALA:LA ratios of approximately 3:1, 1:1 and 1:3. Endogenous production of n-3 LC-PUFA was 5·9, 4·4 and 2·8 mg per g fish and that of n-6 LC-PUFA was 0·2, 0·5 and 1·4 mg per g fish in salmon fed diets with ALA:LA ratios of 3:1, 1:1 and 1:3, respectively. The ratio of n-3:n-6 LC-PUFA production decreased from 27·4 to 2·0, and DHA:EPA ratio increased and EPA:ARA and DHA:ARA ratios decreased, as dietary ALA:LA ratio decreased. In conclusion, with a dietary ALA:LA ratio of 1, salmon fry/parr produced about 28 μg n-3 LC-PUFA per g fish per d, with a DHA:EPA ratio of 3·4. Production of n-3 LC-PUFA exceeded that of n-6 LC-PUFA by almost 9-fold. Reducing the dietary ALA:LA ratio reduced n-3 LC-PUFA production and EPA:ARA and DHA:ARA ratios but increased n-6 LC-PUFA production and DHA:EPA ratio.
Collapse
|
9
|
Viegas I, Trenkner LH, Rito J, Palma M, Tavares LC, Jones JG, Glencross BD, Wade NM. Impact of dietary starch on extrahepatic tissue lipid metabolism in farmed European (Dicentrarchus labrax) and Asian seabass (Lates calcarifer). Comp Biochem Physiol A Mol Integr Physiol 2019; 231:170-176. [PMID: 30818019 DOI: 10.1016/j.cbpa.2019.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/23/2019] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
Abstract
In aquaculture, there is high interest in substituting marine-derived with vegetable-based ingredients as energy source. Farmed carnivorous fish under high carbohydrate diets tend to increase adiposity but it remains unclear if this happens by increased lipid retention/accumulation, promotion of lipogenic pathways, or both. In order to determine the response of extrahepatic tissue to dietary starch, European (Dicentrarchus labrax) and Asian (Lates calcarifer) seabass were fed a control (low starch; LS) or experimental (high starch; HS) diet, for at least 21 days and then transferred for 6 days to saltwater enriched with deuterated water 2H2O. Incorporation of 2H-labelling follows well-defined metabolic steps, and analysis of triacylglycerols (TAG) 2H-enrichment by 2HNMR allowed evaluation of de novo lipogenesis (DNL) in muscle and visceral adipose tissue (VAT). Fractional synthetic rates for TAG-bound fatty acids and glycerol were quantified separately providing a detailed lipogenic profile. The FA profile differed substantially between muscle and VAT in both species, but their lipogenic fluxes revealed even greater differences. In European seabass, HS promoted DNL of TAG-bound FA, in muscle and VAT. High 2H-enrichment also found in muscle TAG-bound glycerol was indicative of its role on lipid cycling. In Asian seabass, HS had no effect on muscle FA composition and lipogenic flux, with no 2H-enriched TAG being detected. VAT on the other hand revealed a strong enhancement of DNL in HS-fed fish along with high TAG-bound glycerol cycling. This study consolidated the use of 2H2O as tracer for fish lipid metabolism in different tissues, under different dietary conditions and suitable to use in different fish models.
Collapse
Affiliation(s)
- Ivan Viegas
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal.
| | - Lauren H Trenkner
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, St Lucia, QLD 4067, Australia; School of Agricultural and Food Sciences, The University of Queensland, St Lucia, QLD, 4067, Australia
| | - João Rito
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Mariana Palma
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Ludgero C Tavares
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - John G Jones
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Brett D Glencross
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, St Lucia, QLD 4067, Australia
| | - Nicholas M Wade
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, St Lucia, QLD 4067, Australia
| |
Collapse
|
10
|
Colombo SM, Parrish CC, Wijekoon MPA. Optimizing long chain-polyunsaturated fatty acid synthesis in salmonids by balancing dietary inputs. PLoS One 2018; 13:e0205347. [PMID: 30304012 PMCID: PMC6179257 DOI: 10.1371/journal.pone.0205347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022] Open
Abstract
The increasing use of terrestrial plant lipids to replace of fish oil in commercial aquafeeds requires understanding synthesis and storage of long chain-polyunsaturated fatty acids (LC-PUFA) in farmed fish. Manipulation of dietary fatty acids may maximize tissue storage of LC-PUFA, through increased production and selective utilization. A data synthesis study was conducted to estimate optimal levels of fatty acids that may maximize the production and storage of LC-PUFA in the edible portion of salmonids. Data were compiled from four studies with Atlantic salmon, rainbow trout, and steelhead trout (total n = 180) which were fed diets containing different terrestrial-based oils to replace fish oil. LC-PUFA (%) were linearly correlated between diet and muscle tissue (p < 0.001; r2 > 44%), indicating proportional storage after consumption. The slope, or retention rate, was highest for docosahexaenoic acid (DHA) at 1.23, indicating that an additional 23% of DHA was stored in the muscle. Dietary saturated fatty acids were positively related to DHA stored in the muscle (p < 0.001; r2 = 22%), which may involve membrane structural requirements, as well as selective catabolism. DHA was found to be optimally stored with a dietary n-3: n-6 ratio of 1.03: 1. These new results provide a baseline of optimal dietary ratios that can be tested experimentally to determine the efficacy of balancing dietary fatty acids for maximum LC-PUFA storage.
Collapse
Affiliation(s)
- Stefanie M. Colombo
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
- * E-mail:
| | - Christopher C. Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | | |
Collapse
|
11
|
A n-3 PUFA depletion applied to rainbow trout fry (Oncorhynchus mykiss) does not modulate its subsequent lipid bioconversion capacity. Br J Nutr 2017; 117:187-199. [PMID: 28112058 PMCID: PMC5314960 DOI: 10.1017/s0007114516004487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nutritional strategies are currently developed to produce farmed fish rich in
n-3 long-chain PUFA (LC-PUFA) whilst replacing fish oil by plant-derived
oils in aquafeeds. The optimisation of such strategies requires a thorough understanding
of fish lipid metabolism and its nutritional modulation. The present study evaluated the
fatty acid bioconversion capacity of rainbow trout (Oncorhynchus mykiss)
fry previously depleted in n-3 PUFA through a 60-d pre-experimental
feeding period with a sunflower oil-based diet (SO) followed by a 36-d experimental period
during which fish were fed either a linseed oil-based diet (LO) (this treatment being
called SO/LO) or a fish oil-based diet (FO) (this treatment being called SO/FO). These
treatments were compared with fish continuously fed on SO, LO or FO for 96 d. At the end
of the 36-d experimental period, SO/LO and SO/FO fish recovered >80 % of the
n-3 LC-PUFA reported for LO and FO fish, respectively. Fish fed on LO
showed high apparent in vivo elongation and desaturation activities along
the n-3 biosynthesis pathway. However, at the end of the experimental
period, no impact of the fish n-3 PUFA depletion was observed on apparent
in vivo elongation and desaturation activities of SO/LO fish as
compared with LO fish. In contrast, the fish n-3 PUFA depletion
negatively modulated the n-6 PUFA bioconversion capacity of fish in terms
of reduced apparent in vivo elongation and desaturation activities. The
effects were similar after 10 or 36 d of the experimental period, indicating the absence
of short-term effects.
Collapse
|
12
|
Mellery J, Geay F, Tocher DR, Kestemont P, Debier C, Rollin X, Larondelle Y. Temperature Increase Negatively Affects the Fatty Acid Bioconversion Capacity of Rainbow Trout (Oncorhynchus mykiss) Fed a Linseed Oil-Based Diet. PLoS One 2016; 11:e0164478. [PMID: 27736913 PMCID: PMC5063364 DOI: 10.1371/journal.pone.0164478] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/26/2016] [Indexed: 02/03/2023] Open
Abstract
Aquaculture is meant to provide fish rich in omega-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA). This objective must be reached despite (1) the necessity to replace the finite and limited fish oil in feed production and (2) the increased temperature of the supply water induced by the global warming. The objective of the present paper was to determine to what extent increased water temperature influences the fatty acid bioconversion capacity of rainbow trout (Oncorhynchus mykiss) fed a plant-derived diet. Fish were fed two diets formulated with fish oil (FO) or linseed oil (LO) as only added lipid source at the optimal water temperature of 15°C or at the increased water temperature of 19°C for 60 days. We observed that a temperature increase close to the upper limit of the species temperature tolerance range negatively affected the feed efficiency of rainbow trout fed LO despite a higher feed intake. The negative impact of increased water temperature on fatty acid bioconversion capacity appeared also to be quite clear considering the reduced expression of fatty acid desaturase 2 in liver and intestine and the reduced Δ6 desaturase enzymatic activity in intestinal microsomes. The present results also highlighted a negative impact of increased temperature on the apparent in vivo enzymatic activity of Δ5 and Δ6 desaturases of fish fed LO. Interestingly, this last parameter appeared less affected than those mentioned above. This study highlights that the increased temperature that rainbow trout may face due to global warming could reduce their fatty acid bioconversion capacity. The unavoidable replacement of finite fish oil by more sustainable, readily available and economically viable alternative lipid sources in aquaculture feeds should take this undeniable environmental issue on aquaculture productivity into account.
Collapse
Affiliation(s)
- Julie Mellery
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Florian Geay
- Unité de Recherche en Biologie Environnementale et Evolutive, Université de Namur, Namur, Belgium
| | - Douglas R. Tocher
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Patrick Kestemont
- Unité de Recherche en Biologie Environnementale et Evolutive, Université de Namur, Namur, Belgium
| | - Cathy Debier
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Xavier Rollin
- Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Yvan Larondelle
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
13
|
Salini MJ, Poppi D, Turchini GM, Glencross BD. Defining the allometric relationship between size and individual fatty acid turnover in barramundi Lates calcarifer. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:79-86. [PMID: 27371113 DOI: 10.1016/j.cbpa.2016.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 01/10/2023]
Abstract
An experiment was conducted with barramundi (Asian seabass; Lates calcarifer) to examine the allometric scaling effect of individual fatty acids. Six treatment size classes of fish were deprived of food for 21days (Treatment A, 10.5±0.13g; Treatment B, 19.2±0.11g; Treatment C, 28.3±0.05g; Treatment D, 122.4±0.10g; Treatment E, 217.6±0.36g; Treatment F, 443.7±1.48g; mean±SD) with each treatment comprising of fifteen fish, in triplicate. The assessment of somatic losses of whole-body energy and lipid were consistent with previous studies, validating the methodology to be extended to individual fatty acids. Live-weight (LW) exponent values were determined to be 0.817±0.010 for energy and 0.895±0.007 for lipid. There were significant differences among the fatty acids ranging from 0.687±0.005 for 20:5n-3 (eicosapentaenoic acid) and 0.954±0.008 for 18:1n-9 (oleic acid). The LW exponent values were applied to existing fatty acid intake and deposition data of barramundi fed with either 100% fish oil or 100% poultry oil. From this the maintenance requirement for each fatty acid was determined. The metabolic demands for maintenance and growth were then iteratively determined for fish over a range of size classes. Application of these exponent values to varying levels of fatty acid intake demonstrated that the biggest driver in the utilisation of fatty acids in this species is deposition demand and despite their reputed importance, the long-chain polyunsaturated fatty acids had nominal to no maintenance requirement.
Collapse
Affiliation(s)
- Michael J Salini
- Deakin University, Geelong, Australia; School of Life and Environmental Sciences, Warrnambool Campus, Princess Hwy, Warrnambool, VIC, Australia; CSIRO Agriculture, 144 North Street, Woorim, QLD, Australia; CSIRO Agriculture, QLD Biosciences Precinct, Services Rd, St Lucia, QLD, Australia.
| | - David Poppi
- CSIRO Agriculture, 144 North Street, Woorim, QLD, Australia; CSIRO Agriculture, QLD Biosciences Precinct, Services Rd, St Lucia, QLD, Australia
| | - Giovanni M Turchini
- Deakin University, Geelong, Australia; School of Life and Environmental Sciences, Warrnambool Campus, Princess Hwy, Warrnambool, VIC, Australia
| | - Brett D Glencross
- Institute of Aquaculture, Stirling University, FK9 4LA Stirling, United Kingdom
| |
Collapse
|
14
|
Uncoupling EPA and DHA in Fish Nutrition: Dietary Demand is Limited in Atlantic Salmon and Effectively Met by DHA Alone. Lipids 2016; 51:399-412. [DOI: 10.1007/s11745-016-4136-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/23/2016] [Indexed: 01/23/2023]
|
15
|
Sawyer JM, Arts MT, Arhonditsis G, Diamond ML. A general model of polyunsaturated fatty acid (PUFA) uptake, loss and transformation in freshwater fish. Ecol Modell 2016. [DOI: 10.1016/j.ecolmodel.2015.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature. PLoS One 2015; 10:e0143622. [PMID: 26599513 PMCID: PMC4658193 DOI: 10.1371/journal.pone.0143622] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/06/2015] [Indexed: 01/17/2023] Open
Abstract
Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad-time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature recorded a significantly increased feed intake, these results clearly suggested that at high, sub-optimal water temperature, fish metabolism attempted to increment its overall ARA status -the most bioactive LC-PUFA participating in the inflammatory response- by modulating the metabolic fate of dietary ARA (expressed as % of net intake), reducing its β-oxidation and favouring synthesis and deposition. This correlates also with results from other recent studies showing that both immune- and stress- responses in fish are up regulated in fish held at high temperatures. This is a novel and fundamental information that warrants industry and scientific attention, in consideration of the imminent increase in water temperatures, continuous expansion of aquaculture operations, resources utilisation in aquafeed and much needed seasonal/adaptive nutritional strategies.
Collapse
|
17
|
Rapid effects of essential fatty acid deficiency on growth and development parameters and transcription of key fatty acid metabolism genes in juvenile barramundi (Lates calcarifer). Br J Nutr 2015; 114:1784-96. [PMID: 26411329 DOI: 10.1017/s0007114515003529] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Barramundi (Lates calcarifer), a catadromous teleost of significant and growing commercial importance, are reported to have limited fatty acid bioconversion capability and therefore require preformed long-chain PUFA (LC-PUFA) as dietary essential fatty acid (EFA). In this study, the response of juvenile barramundi (47·0 g/fish initial weight) fed isolipidic and isoenergetic diets with 8·2% added oil was tested. The experimental test diets were either devoid of fish oil (FO), and thus with no n-3 LC-PUFA (FO FREE diet), or with a low inclusion of FO (FO LOW diet). These were compared against a control diet containing only FO (FO CTRL diet) as the added lipid source, over an 8-week period. Interim samples and measurements were taken fortnightly during the trial in order to define the aetiology of the onset and progression of EFA deficiency. After 2 weeks, the fish fed the FO FREE and FO LOW diets had significantly lower live-weights, and after 8 weeks significant differences were detected for all performance parameters. The fish fed the FO FREE diet also had a significantly higher incidence of external abnormalities. The transcription of several genes involved in fatty acid metabolism was affected after 2 weeks of feeding, showing a rapid nutritional regulation. This experiment documents the aetiology of the onset and the progression of EFA deficiency in juvenile barramundi and demonstrates that such deficiencies can be detected within 2 weeks in juvenile fish.
Collapse
|
18
|
Metabolic fate (absorption, β-oxidation and deposition) of long-chain n-3 fatty acids is affected by sex and by the oil source (krill oil or fish oil) in the rat. Br J Nutr 2015; 114:684-92. [DOI: 10.1017/s0007114515002457] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effects of krill oil as an alternative source of n-3 long-chain PUFA have been investigated recently. There are conflicting results from the few available studies comparing fish oil and krill oil. The aim of this study was to compare the bioavailability and metabolic fate (absorption, β-oxidation and tissue deposition) of n-3 fatty acids originating from krill oil (phospholipid-rich) or fish oil (TAG-rich) in rats of both sexes using the whole-body fatty acid balance method. Sprague–Dawley rats (thirty-six male, thirty-six female) were randomly assigned to be fed either a krill oil diet (EPA+DHA+DPA=1·38 mg/g of diet) or a fish oil diet (EPA+DHA+DPA=1·61 mg/g of diet) to constant ration for 6 weeks. The faeces, whole body and individual tissues were analysed for fatty acid content. Absorption of fatty acids was significantly greater in female rats and was only minimally affected by the oil type. It was estimated that most of EPA (>90 %) and more than half of DHA (>60 %) were β-oxidised in both diet groups. Most of the DPA was β-oxidised (57 and 67 % for female and male rats, respectively) in the fish oil group; however, for the krill oil group, the majority of DPA was deposited (82–83 %). There was a significantly greater deposition of DPA and DHA in rats fed krill oil compared with those fed fish oil, not due to a difference in bioavailability (absorption) but rather due to a difference in metabolic fate (anabolism v. catabolism).
Collapse
|
19
|
Ghasemifard S, Sinclair AJ, Kaur G, Lewandowski P, Turchini GM. What Is the Most Effective Way of Increasing the Bioavailability of Dietary Long Chain Omega-3 Fatty Acids--Daily vs. Weekly Administration of Fish Oil? Nutrients 2015; 7:5628-45. [PMID: 26184297 PMCID: PMC4517018 DOI: 10.3390/nu7075241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/24/2015] [Accepted: 07/01/2015] [Indexed: 12/28/2022] Open
Abstract
The recommendations on the intake of long chain omega-3 polyunsaturated fatty acids (n-3 LC-PUFA) vary from eating oily fish ("once to twice per week") to consuming specified daily amounts of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) ("250-500 mg per day"). It is not known if there is a difference in the uptake/bioavailability between regular daily consumption of supplementsvs. consuming fish once or twice per week. In this study, the bioavailability of a daily dose of n-3 LC-PUFA (Constant treatment), representing supplements, vs. a large weekly dose of n-3 LC-PUFA (Spike treatment), representing consuming once or twice per week, was assessed. Six-week old healthy male Sprague-Dawley rats were fed either a Constant treatment, a Spike treatment or Control treatment (no n-3 LC-PUFA), for six weeks. The whole body, tissues and faeces were analysed for fatty acid content. The results showed that the major metabolic fate of the n-3 LC-PUFA (EPA+docosapentaenoic acid (DPA) + DHA) was towards catabolism (β-oxidation) accounting for over 70% of total dietary intake, whereas deposition accounted less than 25% of total dietary intake. It was found that significantly more n-3 LC-PUFA were β-oxidised when originating from the Constant treatment (84% of dose), compared with the Spike treatment (75% of dose). Conversely, it was found that significantly more n-3 LC-PUFA were deposited when originating from the Spike treatment (23% of dose), than from the Constant treatment (15% of dose). These unexpected findings show that a large dose of n-3 LC-PUFA once per week is more effective in increasing whole body n-3 LC-PUFA content in rats compared with a smaller dose delivered daily.
Collapse
Affiliation(s)
| | | | - Gunveen Kaur
- Centre for Physical Activity and Nutrition Research (CPAN), School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Australia.
| | | | - Giovanni M Turchini
- School of Life and Environmental Sciences, Deakin University, Warrnambool 3280, Australia.
| |
Collapse
|
20
|
Norambuena F, Hermon K, Skrzypczyk V, Emery JA, Sharon Y, Beard A, Turchini GM. Algae in fish feed: performances and fatty acid metabolism in juvenile Atlantic Salmon. PLoS One 2015; 10:e0124042. [PMID: 25875839 PMCID: PMC4398455 DOI: 10.1371/journal.pone.0124042] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/10/2015] [Indexed: 01/03/2023] Open
Abstract
Algae are at the base of the aquatic food chain, producing the food resources that fish are adapted to consume. Previous studies have proven that the inclusion of small amounts (<10% of the diet) of algae in fish feed (aquafeed) resulted in positive effects in growth performance and feed utilisation efficiency. Marine algae have also been shown to possess functional activities, helping in the mediation of lipid metabolism, and therefore are increasingly studied in human and animal nutrition. The aim of this study was to assess the potentials of two commercially available algae derived products (dry algae meal), Verdemin (derived from Ulva ohnoi) and Rosamin (derived from diatom Entomoneis spp.) for their possible inclusion into diet of Atlantic Salmon (Salmo salar). Fish performances, feed efficiency, lipid metabolism and final product quality were assessed to investigated the potential of the two algae products (in isolation at two inclusion levels, 2.5% and 5%, or in combination), in experimental diets specifically formulated with low fish meal and fish oil content. The results indicate that inclusion of algae product Verdemin and Rosamin at level of 2.5 and 5.0% did not cause any major positive, nor negative, effect in Atlantic Salmon growth and feed efficiency. An increase in the omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) content in whole body of fish fed 5% Rosamin was observed.
Collapse
Affiliation(s)
- Fernando Norambuena
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria, Australia
- * E-mail:
| | - Karen Hermon
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria, Australia
| | - Vanessa Skrzypczyk
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria, Australia
| | - James A. Emery
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria, Australia
| | - Yoni Sharon
- MBD Energy ltd. Melbroune, Victoria, Australia
| | | | - Giovanni M. Turchini
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria, Australia
| |
Collapse
|
21
|
Francis DS, Thanuthong T, Senadheera SPSD, Paolucci M, Coccia E, De Silva SS, Turchini GM. n-3 LC-PUFA deposition efficiency and appetite-regulating hormones are modulated by the dietary lipid source during rainbow trout grow-out and finishing periods. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:577-593. [PMID: 24078221 DOI: 10.1007/s10695-013-9868-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/23/2013] [Indexed: 06/02/2023]
Abstract
Largely attributable to concerns surrounding sustainability, the utilisation of omega-3 long-chain polyunsaturated fatty acid-rich (n-3 LC-PUFA) fish oils in aquafeeds for farmed fish species is an increasingly concerning issue. Therefore, strategies to maximise the deposition efficiency of these key health beneficial fatty acids are being investigated. The present study examined the effects of four vegetable-based dietary lipid sources (linseed, olive, palm and sunflower oil) on the deposition efficiency of n-3 LC-PUFA and the circulating blood plasma concentrations of the appetite-regulating hormones, leptin and ghrelin, during the grow-out and finishing phases in rainbow trout culture. Minimal detrimental effects were noted in fish performance; however, major modifications were apparent in tissue fatty acid compositions, which generally reflected that of the diet. These modifications diminished somewhat following the fish oil finishing phase, but longer-lasting effects remained evident. The fatty acid composition of the alternative oils was demonstrated to have a modulatory effect on the deposition efficiency of n-3 LC-PUFA and on the key endocrine hormones involved in appetite regulation, growth and feed intake during both the grow-out and finishing phases. In particular, n-6 PUFA (sunflower oil diet) appeared to 'spare' the catabolism of n-3 LC-PUFA and, as such, resulted in the highest retention of these fatty acids, ultimately highlighting new nutritional approaches to maximise the maintenance of the qualitative benefits of fish oils when they are used in feeds for aquaculture species.
Collapse
|
22
|
Hixson SM, Parrish CC. Substitution of fish oil with camelina oil and inclusion of camelina meal in diets fed to Atlantic cod (Gadus morhua) and their effects on growth, tissue lipid classes, and fatty acids1. J Anim Sci 2014; 92:1055-67. [DOI: 10.2527/jas.2013-7146] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- S. M. Hixson
- Department of Ocean Sciences, Memorial University of Newfoundland, Marine Lab Road, St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - C. C. Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, Marine Lab Road, St. John's, Newfoundland and Labrador A1C 5S7, Canada
| |
Collapse
|
23
|
Norambuena F, Lewis M, Hamid NKA, Hermon K, Donald JA, Turchini GM. Fish oil replacement in current aquaculture feed: is cholesterol a hidden treasure for fish nutrition? PLoS One 2013; 8:e81705. [PMID: 24324720 PMCID: PMC3852530 DOI: 10.1371/journal.pone.0081705] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/26/2013] [Indexed: 11/18/2022] Open
Abstract
Teleost fish, as with all vertebrates, are capable of synthesizing cholesterol and as such have no dietary requirement for it. Thus, limited research has addressed the potential effects of dietary cholesterol in fish, even if fish meal and fish oil are increasingly replaced by vegetable alternatives in modern aquafeeds, resulting in progressively reduced dietary cholesterol content. The objective of this study was to determine if dietary cholesterol fortification in a vegetable oil-based diet can manifest any effects on growth and feed utilization performance in the salmonid fish, the rainbow trout. In addition, given a series of studies in mammals have shown that dietary cholesterol can directly affect the fatty acid metabolism, the apparent in vivo fatty acid metabolism of fish fed the experimental diets was assessed. Triplicate groups of juvenile fish were fed one of two identical vegetable oil-based diets, with additional cholesterol fortification (high cholesterol; H-Chol) or without (low cholesterol; L-Chol), for 12 weeks. No effects were observed on growth and feed efficiency, however, in fish fed H-Col no biosynthesis of cholesterol, and a remarkably decreased apparent in vivo fatty acid β-oxidation were recorded, whilst in L-Chol fed fish, cholesterol was abundantly biosynthesised and an increased apparent in vivo fatty acid β-oxidation was observed. Only minor effects were observed on the activity of stearyl-CoA desaturase, but a significant increase was observed for both the transcription rate in liver and the apparent in vivo activity of the fatty acid Δ-6 desaturase and elongase, with increasing dietary cholesterol. This study showed that the possible effects of reduced dietary cholesterol in current aquafeeds can be significant and warrant future investigations.
Collapse
Affiliation(s)
- Fernando Norambuena
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria, Australia
| | - Michael Lewis
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria, Australia
| | - Noor Khalidah Abdul Hamid
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Geelong, Victoria, Australia
| | - Karen Hermon
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria, Australia
| | - John A. Donald
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Geelong, Victoria, Australia
| | - Giovanni M. Turchini
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria, Australia
- * E-mail:
| |
Collapse
|
24
|
Turchini G, Moretti V, Hermon K, Caprino F, Busetto M, Bellagamba F, Rankin T, Keast R, Francis D. Monola oil versus canola oil as a fish oil replacer in rainbow trout feeds: Effects on growth, fatty acid metabolism and final eating quality. Food Chem 2013; 141:1335-44. [DOI: 10.1016/j.foodchem.2013.03.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/04/2013] [Accepted: 03/07/2013] [Indexed: 11/16/2022]
|
25
|
Bioconversion of α-linolenic acid into n-3 long-chain polyunsaturated fatty acid in hepatocytes and ad hoc cell culture optimisation. PLoS One 2013; 8:e73719. [PMID: 24040040 PMCID: PMC3770698 DOI: 10.1371/journal.pone.0073719] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/23/2013] [Indexed: 11/23/2022] Open
Abstract
This study aimed to establish optimal conditions for a cell culture system that would allow the measurement of 18∶3n-3 (ALA) bioconversion into n-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA), and to determine the overall pathway kinetics. Using rat hepatocytes (FaO) as model cells, it was established that a maximum 20∶5n-3 (EPA) production from 50 µM ALA initial concentration was achieved after 3 days of incubation. Next, it was established that a gradual increase in the ALA concentration from 0 up to 125µM lead to a proportional increase in EPA, without concomitant increase in further elongated or desaturated products, such as 22∶5n-3 (DPA) and 22∶6n-3 (DHA) in 3 day incubations. Of interest, ALA bioconversion products were observed in the culture medium. Therefore, in vitro experiments disregarding the medium fatty acid content are underestimating the metabolism efficiency. The novel application of the fatty acid mass balance (FAMB) method on cell culture system (cells with medium) enabled quantifying the apparent enzymatic activities for the biosynthesis of n-3 LC-PUFA. The activity of the key enzymes was estimated and showed that, under these conditions, 50% (Km) of the theoretical maximal (Vmax = 3654 µmol.g−1 of cell protein.hour−1) Fads2 activity on ALA can be achieved with 81 µM initial ALA. Interestingly, the apparent activity of Elovl2 (20∶5n-3 elongation) was the slowest amongst other biosynthesis steps. Therefore, the possible improvement of Elovl2 activity is suggested toward a more efficient DHA production from ALA. The present study proposed and described an ad hoc optimised cell culture conditions and methodology towards achieving a reliable experimental platform, using FAMB, to assist in studying the efficiency of ALA bioconversion into n-3 LC-PUFA in vitro. The FAMB proved to be a powerful and inexpensive method to generate a detailed description of the kinetics of n-3 LC-PUFA biosynthesis enzymes activities in vitro.
Collapse
|
26
|
Eroldoğan TO, Yılmaz AH, Turchini GM, Arslan M, Sirkecioğlu NA, Engin K, Özşahinoğlu I, Mumoğullarında P. Fatty acid metabolism in European sea bass (Dicentrarchus labrax): effects of n-6 PUFA and MUFA in fish oil replaced diets. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:941-955. [PMID: 23212581 DOI: 10.1007/s10695-012-9753-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 11/23/2012] [Indexed: 06/01/2023]
Abstract
Monounsaturated fatty acids (MUFA)-rich and n-6 polyunsaturated fatty acid (n-6 PUFA)-rich vegetable oils are increasingly used as fish oil replacers for aquafeed formulation. The present study investigated the fatty acid metabolism in juvenile European sea bass (Dicentrarchus labrax, 38.4 g) fed diets containing fish oil (FO, as the control treatment) or two different vegetable oils (the MUFA-rich canola/rapeseed oil, CO; and the n-6 PUFA-rich cottonseed oil, CSO) tested individually or as a 50/50 blend (CO/CSO). The whole-body fatty acid balance method was used to deduce the apparent in vivo fatty acid metabolism. No effect on growth performance and feed utilization was recorded. However, it should be noted that the fish meal content of the experimental diets was relatively high, and thus the requirement for n-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) may have likely been fulfilled even if dietary fish oil was fully replaced by vegetable oils. Overall, relatively little apparent in vivo fatty acid bioconversion was recorded, whilst the apparent in vivo β-oxidation of dietary fatty acid was largely affected by the dietary lipid source, with higher rate of β-oxidation for those fatty acids which were provided in dietary surplus. The deposition of 20:5n-3 and 22:6n-3, as % of the dietary intake, was greatest for the fish fed on the CSO diet. It has been shown that European sea bass seems to be able to efficiently use n-6 PUFA for energy substrate, and this may help in minimizing the β-oxidation of the health benefiting n-3 LC-PUFA and thus increase their deposition into fish tissues.
Collapse
Affiliation(s)
- Tufan O Eroldoğan
- Department of Aquaculture, Faculty of Fisheries, Çukurova University, 01330 Adana, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Teoh CY, Ng WK. Evaluation of the impact of dietary petroselinic acid on the growth performance, fatty acid composition, and efficacy of long chain-polyunsaturated fatty acid biosynthesis of farmed Nile tilapia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6056-6068. [PMID: 23718861 DOI: 10.1021/jf400904j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The present study aimed to investigate the potential role of dietary petroselinic acid (PSA) in enhancing the n-3 long-chain polyunsaturated fatty acid (LC-PUFA) content in fish tissues. Three isolipidic casein-based diets were formulated to comprise graded levels of PSA (0, 10, or 20% of total fatty acid) with the incremented inclusion of coriander seed oil. Fish growth and nutrient digestibility were not significantly (P > 0.05) influenced by dietary PSA level. In general, dietary PSA affected the fatty acid composition of tilapia tissues and whole-body, which reflected dietary fatty acid ratios. Dietary PSA significantly (P < 0.05) increased β-oxidation, particularly on α-linolenic acid (18:3n-3) and linoleic acid (18:2n-6). This study provided evidence that PSA, a pseudoproduct mimicking the structure of 18:3n-6, did reduce Δ-6 desaturation on 18:2n-6 but, contrary to popular speculation, did not stimulate more Δ-6 desaturase activity on 18:3n-3. The overall Δ-6 desaturase enzyme activity may be suppressed at high dietary levels of PSA. Nevertheless, the n-3 and n-6 LC-PUFA biosynthesis was not significantly inhibited by dietary PSA, indicating that the bioconversion efficiency is not modulated only by Δ-6 desaturase. The deposition of n-3 LC-PUFA in liver and fillet lipids was higher in fish fed PSA-supplemented diets.
Collapse
Affiliation(s)
- Chaiw-Yee Teoh
- Fish Nutrition Laboratory, School of Biological Sciences, Universiti Sains Malaysia , Penang 11800, Malaysia
| | | |
Collapse
|
28
|
Δ-6 Desaturase substrate competition: dietary linoleic acid (18:2n-6) has only trivial effects on α-linolenic acid (18:3n-3) bioconversion in the teleost rainbow trout. PLoS One 2013; 8:e57463. [PMID: 23460861 PMCID: PMC3583879 DOI: 10.1371/journal.pone.0057463] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/22/2013] [Indexed: 01/08/2023] Open
Abstract
It is generally accepted that, in vertebrates, omega-3 (n-3) and omega-6 (n-6) poly-unsaturated fatty acids (PUFA) compete for Δ-6 desaturase enzyme in order to be bioconverted into long-chain PUFA (LC-PUFA). However, recent studies into teleost fatty acid metabolism suggest that these metabolic processes may not conform entirely to what has been previously observed in mammals and other animal models. Recent work on rainbow trout has led us to question specifically if linoleic acid (LA, 18∶2n-6) and α-linolenic acid (ALA, 18∶3n-3) (Δ-6 desaturase substrates) are in direct competition for access to Δ-6 desaturase. Two experimental diets were formulated with fixed levels of ALA, while LA levels were varied (high and low) to examine if increased availability of LA would result in decreased bioconversion of ALA to its LC-PUFA products through substrate competition. No significant difference in ALA metabolism towards n-3 LC-PUFA was exhibited between diets while significant differences were observed in LA metabolism towards n-6 LC-PUFA. These results are evidence for minor if any competition between substrates for Δ-6 desaturase, suggesting that, paradoxically, the activity of Δ-6 desaturase on n-3 and n-6 substrates is independent. These results call for a paradigm shift in the way we approach teleost fatty acid metabolism. The findings are also important with regard to diet formulation in the aquaculture industry as they indicate that there should be no concern for possible substrate competition between 18∶3n-3 and 18∶2n-6, when aiming at increased n-3 LC-PUFA bioconversion in vivo.
Collapse
|
29
|
Cleveland BJ, Francis DS, Turchini GM. Echium oil provides no benefit over linseed oil for (n-3) long-chain PUFA biosynthesis in rainbow trout. J Nutr 2012; 142:1449-55. [PMID: 22739372 DOI: 10.3945/jn.112.161497] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The implementation of alternative lipid sources for use in aquaculture is of considerable interest globally. However, the possible benefit of using stearidonic acid (SDA)-rich fish oil (FO) alternatives has led to scientific confusion. Two hundred and forty rainbow trout (Oncorhynchus mykiss) were fed 1 of 4 diets (3 replicate tanks/treatment) containing either FO, linseed oil (LO), echium oil, or mixed vegetable oil (72% LO, 23% sunflower oil, and 6% canola oil) as the dietary lipid source (16.5%) for 73 d to investigate the competition and long-chain PUFA (LC-PUFA) biosynthesis between the fatty acid substrates α-linolenic acid (ALA) and SDA. SDA was more efficiently bioconverted to LC-PUFA compared with ALA. However, when the dietary lipid sources were directly compared, the increased provision of C18 PUFA within the LO diet resulted in no significant differences in (n-3) LC-PUFA content compared with fish fed the other diets. This study therefore shows that, rather than the previously speculated substrate competition, the limiting process in the apparent in vivo (n-3) LC-PUFA biosynthesis appears to be substrate availability. Rainbow trout fed the SDA- and ALA-rich dietary lipid sources subsequently had similar significant reductions in (n-3) LC-PUFA compared with fish fed the FO diet, therefore providing no additional dietary benefit on (n-3) LC-PUFA concentrations.
Collapse
Affiliation(s)
- Benjamin J Cleveland
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria, Australia
| | | | | |
Collapse
|
30
|
Senadheera SD, Turchini GM, Thanuthong T, Francis DS. Effects of dietary vitamin B6 supplementation on fillet fatty acid composition and fatty acid metabolism of rainbow trout fed vegetable oil based diets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:2343-2353. [PMID: 22335789 DOI: 10.1021/jf204963w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Fish oil replacement in aquaculture feeds results in major modifications to the fatty acid makeup of cultured fish. Therefore, in vivo fatty acid biosynthesis has been a topic of considerable research interest. Evidence suggests that pyridoxine (vitamin B(6)) plays a role in fatty acid metabolism, and in particular, the biosynthesis of LC-PUFA has been demonstrated in mammals. However, there is little information on the effects of dietary pyridoxine availability in fish fed diets lacking LC-PUFA. This study demonstrates a relationship between dietary pyridoxine supplementation and fatty acid metabolism in rainbow trout. In particular, the dietary pyridoxine level was shown to modulate and positively stimulate the activity of the fatty acid elongase and Δ-6 and Δ-5 desaturase enzymes, deduced by the whole-body fatty acid balance method. This activity was insufficient to compensate for a diet lacking in LC-PUFA but does highlight potential strategies to maximize this activity in cultured fish, especially when fish oil is replaced with vegetable oils.
Collapse
Affiliation(s)
- Shyamalie D Senadheera
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria 3280, Australia
| | | | | | | |
Collapse
|
31
|
Sanden M, Stubhaug I, Berntssen MHG, Lie Ø, Torstensen BE. Atlantic salmon (Salmo salar L.) as a net producer of long-chain marine ω-3 fatty acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:12697-706. [PMID: 22017199 DOI: 10.1021/jf203289s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The objective of the present study was to investigate the effects of replacing high levels of marine ingredients with vegetable raw materials and with emphasis on lipid metabolism and net production of long-chain polyunsaturated ω-3 fatty acids (EPA + DHA). Atlantic salmon were fed three different replacement vegetable diets and one control marine diet before sensory attributes, β-oxidation capacity, and fatty acid productive value (FAPV) of ingested fatty acids (FAs) were evaluated. Fish fed the high replacement diet had a net production of 0.8 g of DHA and a FAPV of 142%. Fish fed the marine diet had a net loss of DHA. The present work shows that Atlantic salmon can be a net producer of marine DHA when dietary fish oil is replaced by vegetable oil with minor effects on sensory attributes and lipid metabolism.
Collapse
Affiliation(s)
- Monica Sanden
- National Institute of Nutrition and Seafood Research (NIFES), N-5817 Bergen, Norway.
| | | | | | | | | |
Collapse
|
32
|
Thanuthong T, Francis DS, Senadheera SPSD, Jones PL, Turchini GM. LC-PUFA biosynthesis in rainbow trout is substrate limited: use of the whole body fatty acid balance method and different 18:3n-3/18:2n-6 ratios. Lipids 2011; 46:1111-27. [PMID: 21892784 DOI: 10.1007/s11745-011-3607-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
Five experimental diets with constant total C(18) PUFA and varying 18:3n-3/18:2n-6 ratios were fed to rainbow trout over an entire production cycle. The whole-body fatty acid balance method demonstrated a clear trend of progressively reduced fatty acid bioconversion activity along the n-3 and n-6 pathways, up to the production of 20:5n-3 and 20:4n-6, respectively. This suggests that the pathway exhibits a "funnel like" progression of activity rather than the existence of a single rate limiting step. The production of 22:5n-3 and 22:6n-3 was more active than that of 20:5n-3. However, despite this trend in reduced apparent in vivo net enzyme activity, the efficiency of the various bioconversion steps (measured as % of bioconverted substrate) confirmed an opposing trend. A 3.2-fold higher Δ-6 desaturase affinity towards 18:3n-3 over 18:2n-6 and an 8-fold greater Δ-5 desaturase affinity towards 20:4n-3 over 20:3n-6 were recorded. The main results of the study were that (1) rainbow trout are quite efficient at bioconverting 18:3n-3 to 22:6n-3, and (2) the LC-PUFA biosynthetic pathway is substrate limited. Fillet n-3 LC-PUFA concentrations increased with the increasing dietary supply of 18:3n-3. Despite an almost identical dietary supply of n-3 LC-PUFA, originating from the fish meal fraction of the diets, the fillets of trout fed the diet richest in 18:3n-3 were 2-fold higher in n-3 LC-PUFA than fish fed low 18:3n-3 diets. Nevertheless, fillets of trout fed a fish oil control diet contained more than double the amount of n-3 LC-PUFA compared to fish fed the diets richest in 18:3n-3.
Collapse
Affiliation(s)
- T Thanuthong
- School of Life and Environmental Sciences, Deakin University, Warrnambool, VIC, Australia
| | | | | | | | | |
Collapse
|
33
|
Senadheera SD, Turchini GM, Thanuthong T, Francis DS. Effects of dietary α-linolenic acid (18:3n-3)/linoleic acid (18:2n-6) ratio on fatty acid metabolism in Murray cod (Maccullochella peelii peelii). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:1020-1030. [PMID: 21222433 DOI: 10.1021/jf104242y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Global shortages in fish oil are forcing the aquaculture feed industry to use alternative oil sources, the use of which negatively affects the final fatty acid makeup of cultured fish. Thus, the modulation of fatty acid metabolism in cultured fish is the core of an intensive global research effort. The present study aimed to evaluate the effects of various dietary α-linolenic acid (ALA, 18:3n-3)/linoleic acid (LA, 18:2n-6) ratios in cultured fish. A feeding trial was implemented on the freshwater finfish Murray cod, in which fish were fed either a fish oil-based control diet or one of five fish oil-deprived experimental diets formulated to contain an ALA/LA ratio ranging from 0.3 to 2.9, but with a constant total C₁₈ PUFA (ALA+LA) content. The whole-body fatty acid balance method was used to evaluate fish in vivo fatty acid metabolism. The results indicate that dietary ALA was more actively β-oxidized and bioconverted, whereas LA appears to be more efficiently deposited. LA was β-oxidized at a constant level (~36% of net intake) independent of dietary availability, whereas ALA was oxidized proportionally to dietary supply. The in vivo apparent Δ-6 desaturase activity on n-3 and n-6 PUFA exhibited an increasing and decreasing trend, respectively, in conjunction with the increasing dietary ALA/LA ratio, clearly indicating that this enzymatic activity is substrate dependent. However, the maximum Δ-6 desaturase activity acting on ALA peaked at the substrate level of 3.2186 (μmol g fish⁻¹ day⁻¹), suggesting that additional inclusion of ALA is not only wasteful but counterproductive in terms of n-3 LC-PUFA production. Despite a constant total supply of ALA+LA, the recorded total in vivo apparent Δ-6 desaturase activity on both substrates (ALA and LA) increased in synchrony with the ALA/LA ratio, peaking at 1.54, and a 3.2-fold greater Δ-6 desaturase affinity toward ALA over LA was recorded.
Collapse
Affiliation(s)
- Shyamalie D Senadheera
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria 3280, Australia
| | | | | | | |
Collapse
|
34
|
Effect of feeding Atlantic salmon (Salmo salar L.) a diet enriched with stearidonic acid from parr to smolt on growth and n-3 long-chain PUFA biosynthesis. Br J Nutr 2011; 105:1772-82. [DOI: 10.1017/s0007114510005714] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vegetable oils (VO) have become the predominant substitute for fish oil (FO) in aquafeeds; however, the resultant lower content of n-3 long-chain ( ≥ C20) PUFA (n-3 LC-PUFA) in fish has put their use under scrutiny. The need to investigate new oil sources exists. The present study tested the hypothesis that in Atlantic salmon (Salmo salar L.), a high intake of stearidonic acid (SDA) from Echium oil (EO) would result in increased n-3 LC-PUFA biosynthesis due to a lower requirement for Δ6 desaturase. Comparisons were made with fish fed on diets containing rapeseed oil (RO) and FO in freshwater for 112 d followed by 96 d in seawater. EO fish had higher whole-carcass SDA and eicosatetraenoic acid (ETA) in freshwater and prolonged feeding on the EO diet in seawater resulted in higher SDA, ETA, EPA and docosapentaenoic acid (DPA) compared with RO fish. Fatty acid mass balance of freshwater fish indicated higher biosynthesis of ETA and EPA in EO fish compared with fish fed on the other diets and a twofold increase in n-3 LC-PUFA synthesis compared with RO fish. In seawater, n-3 biosynthetic activity was low, with higher biosynthesis of ETA in EO fish and appearance of all desaturated and elongated products along the n-3 pathway. SDA-enriched VO are more suitable substitutes than conventional VO from a human consumer perspective due to the resulting higher SDA content, higher total n-3 and improved n-3:n-6 ratio obtained in fish, although both VO were not as effective as FO in maintaining EPA and DHA content in Atlantic salmon.
Collapse
|
35
|
Abstract
The present study was conducted to evaluate the effect of different dietary lipid sources, age and sex on the SFA and MUFA metabolism in broiler chickens using a whole body fatty acid balance method. Four dietary lipid sources (palm fat, Palm; soyabean oil, Soya; linseed oil, Lin; and fish oil, Fish) were added at 3 % to a basal diet containing 5 % Palm. Diets were fed to female and male chickens from day 1 to either day 21 or day 42 of age. The accumulation (percentage of net intake andex novoproduction) of SFA and MUFA was significantly lower in broilers fed on Palm than in broilers fed on the other diets (85·7v.97·4 %). Conversely, β-oxidation was significantly higher in Palm-fed birds than the average of the other dietary treatments (14·3v.2·6 %). On average, 33·1 % of total SFA and MUFA accumulated in the body were elongated, and 13·8 % were Δ-9 desaturated to longer chain or more unsaturated metabolites, with lower proportions being elongated and desaturated for the Palm and Fish diets than for the Soya and Lin diets. Totalin vivoapparent elongase activity decreased exponentially in relation to the net intake of SFA and MUFA, while it increased with age. Totalin vivoapparent Δ-9 desaturase activity was not significantly affected by dietary treatment or age. Totalex novoproduction and β-oxidation of SFA and MUFA showed a negative and positive curvilinear relationship with net intake of SFA and MUFA, respectively. Sex had no effect on SFA and MUFA metabolism.
Collapse
|
36
|
Effect of diet, sex and age on fatty acid metabolism in broiler chickens:n-3 andn-6 PUFA. Br J Nutr 2010; 104:189-97. [DOI: 10.1017/s0007114510000395] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The PUFA metabolism in broiler chicken was studied through the whole body fatty acid balance method. Four dietary lipid sources (palm fat, Palm; soyabean oil, Soya; linseed oil, Lin; fish oil, Fish) were added at 3 % to a basal diet containing 5 % palm fat. Diets were fed to female and male birds from day 1 to either day 21 or day 42 of age. Birds fed the Lin diet showed a significantly higher 18 : 2n-6 accumulation compared with the other diets (85·2v.73·6 % of net intake), whereas diet did not affect 18 : 3n-3 accumulation (mean 63 % of net intake). Bioconversion of 18 : 2n-6 significantly decreased in the order Palm>Lin>Soya>Fish (4·7, 3·9, 3·4 and 1 % of net intake, respectively). The 18 : 3n-3 bioconversion on the Palm and Soya diets was similar and significantly higher than in broilers on the Lin diet (9·1v.5·8 % of net intake). The β-oxidation of 18 : 2n-6 was significantly lower on the Lin diet than on the other diets (10·8v.23·3 % of net intake), whereas β-oxidation of 18 : 3n-3 was significantly higher on the Fish diet than on the other diets (41·5v.27·3 % of net intake). Feeding fish oil suppressed apparent elongase and desaturase activity, whereas a higher dietary supply of 18 : 3n-3 and 18 : 2n-6 enhanced apparent elongation and desaturation activity on the PUFA involved in then-3 andn-6 pathway, respectively. Accumulation of 18 : 2n-6 and 18 : 3n-3 increased and β-oxidation decreased with age. Sex had a marginal effect on the PUFA metabolism.
Collapse
|
37
|
Francis DS, Peters DJ, Turchini GM. Apparent in vivo Δ-6 desaturase activity, efficiency, and affinity are affected by total dietary C18 PUFA in the freshwater fish murray cod. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:4381-4390. [PMID: 19374332 DOI: 10.1021/jf900094w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Dietary fatty acids are known to modulate fatty acid metabolism in fish. However, the innate capability of fish to bioconvert short chain fatty acids to health promoting long chain fatty acids (LCPUFA) is insufficient to compensate for a reduced dietary intake. While many studies have focused on the dietary regulation of the fatty acid bioconversion pathways, there is little known regarding the effects of the dietary levels of C(18) polyunsaturated fatty acids (PUFA) on fatty acid metabolism. Here, we show a greater degree of apparent enzyme activity (Δ-6 desaturase) in fish fed a diet with higher amounts of dietary C(18) PUFA. In particular, fish receiving high amounts of dietary C(18) PUFA had a greater amount of Δ-6 desaturase activity acting on 18:3n-3 than 18:2n-6. However, with the gradual reduction of dietary C(18) PUFA there was a shift in substrate preference of Δ-6 desaturase from 18:3n-3 to 18:2n-6. This information will provide valuable insight for the implementation of low fish oil diets, which permit the maintenance of n-3 LCPUFA levels in farmed Murray cod.
Collapse
Affiliation(s)
- David S Francis
- School of Life & Environmental Sciences, Deakin University, PO Box 423, Warrnambool, Victoria 3280, Australia.
| | | | | |
Collapse
|
38
|
Fatty acid metabolism (desaturation, elongation and beta-oxidation) in rainbow trout fed fish oil- or linseed oil-based diets. Br J Nutr 2009; 102:69-81. [PMID: 19123959 DOI: 10.1017/s0007114508137874] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In consideration of economical and environmental concerns, fish oil (FO) substitution in aquaculture is the focus of many fish nutritionists. The most stringent drawback of FO replacement in aquafeeds is the consequential modification to the final fatty acid (FA) make-up of the fish fillet. However, it is envisaged that a solution may be achieved through a better understanding of fish FA metabolism. Therefore, the present study investigated the fate of individual dietary FA in rainbow trout (Oncorhynchus mykiss) fed a FO-based diet (rich in 20 : 5n-3) or a linseed oil-based diet (LO; rich in 18 : 3n-3). The study demonstrated that much of the 18 : 3n-3 content from the LO diet was oxidised and, despite the significantly increased accretion of Delta-6 and Delta-5 desaturated FA, a 2- and 3-fold reduction in the fish body content of 20 : 5n-3 and 22 : 6n-3, respectively, compared with the FO-fed fish, was recorded. The accretion of longer-chain FA was unaffected by the dietary treatments, while there was a greater net disappearance of FA provided in dietary surplus. SFA and MUFA recorded a net accretion of FA produced ex novo. In the fish fed the FO diet, the majority of dietary 20 : 5n-3 was accumulated (53.8 %), some was oxidised (14.7 %) and a large proportion (31.6 %) was elongated and desaturated up to 22 : 6n-3. In the fish fed the LO diet, the majority of dietary 18 : 3n-3 was accumulated (58.1 %), a large proportion was oxidised (29.5 %) and a limited amount (12.4 %) was bio-converted to longer and more unsaturated homologues.
Collapse
|