1
|
Krieger AC, Macias LA, Goodman JC, Brodbelt JS, Eberlin LS. Mass Spectrometry Imaging Reveals Abnormalities in Cardiolipin Composition and Distribution in Astrocytoma Tumor Tissues. Cancers (Basel) 2023; 15:2842. [PMID: 37345179 PMCID: PMC10216144 DOI: 10.3390/cancers15102842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 06/23/2023] Open
Abstract
Cardiolipin (CL) is a mitochondrial lipid with diverse roles in cellular respiration, signaling, and organelle membrane structure. CL content and composition are essential for proper mitochondrial function. Deranged mitochondrial energy production and signaling are key components of glial cell cancers and altered CL molecular species have been observed in mouse brain glial cell xenograft tumors. The objective of this study was to describe CL structural diversity trends in human astrocytoma tumors of varying grades and correlate these trends with histological regions within the heterogeneous astrocytoma microenvironment. To this aim, we applied desorption electrospray ionization coupled with high field asymmetric ion mobility mass spectrometry (DESI-FAIMS-MS) to map CL molecular species in human normal cortex (N = 29), lower-grade astrocytoma (N = 19), and glioblastoma (N = 28) tissues. With this platform, we detected 46 CL species and 12 monolysocardiolipin species from normal cortex samples. CL profiles detected from glioblastoma tissues lacked diversity and abundance of longer chain polyunsaturated fatty acid containing CL species when compared to CL detected from normal and lower-grade tumors. CL profiles correlated with trends in tumor viability and tumor infiltration. Structural characterization of the CL species by tandem MS experiments revealed differences in fatty acid and double bond isomer composition among astrocytoma tissues compared with normal cortex and glioblastoma tissues. The GlioVis platform was used to analyze astrocytoma gene expression data from the CGGA dataset. Decreased expression of several mitochondrial respiratory enzyme encoding-genes was observed for higher-grade versus lower-grade tumors, however no significant difference was observed for cardiolipin synthesis enzyme CRLS1.
Collapse
Affiliation(s)
- Anna C. Krieger
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Luis A. Macias
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - J. Clay Goodman
- Departments of Pathology & Immunology and Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Livia S. Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Du C, Huang Z, Wei B, Li M. Comprehensive metabolomics study on the pathogenesis of anaplastic astrocytoma via UPLC-Q/TOF-MS. Medicine (Baltimore) 2022; 101:e29594. [PMID: 35945752 PMCID: PMC9351860 DOI: 10.1097/md.0000000000029594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Anaplastic astrocytoma (AA) is a malignant carcinoma whose pathogenesis remains to be fully elucidated. System biology techniques have been widely used to clarify the mechanism of diseases from a systematic perspective. The present study aimed to explore the pathogenesis and novel potential biomarkers for the diagnosis of AA according to metabolic differences. Patients with AA (n = 12) and healthy controls (n = 15) were recruited. Serum was assayed with untargeted ultraperformance liquid chromatography-quadrupole/time-of-flight-mass spectrometry (UPLC-Q/TOF-MS) metabolomic techniques. The data were further evaluated using multivariate analysis and bioinformatic methods based on the KEGG database to determine the distinct metabolites and perturbed pathways. Principal component analysis and orthogonal projections to latent structures-discriminant analysis (OPLS-DA) identified the significance of the distinct metabolic pattern between patients with AA and healthy controls (P < .001) in both ESI modes. Permutation testing confirmed the validity of the OPLS-DA model (permutation = 200, Q2 < 0.5). In total, 24 differentiated metabolites and 5 metabolic pathways, including sphingolipid, glycerophospholipid, caffeine, linoleic acid, and porphyrin metabolism, were identified based on the OPLS-DA model. 3-Methylxanthine, sphinganine, LysoPC(18:1), and lactosylceramide were recognized as potential biomarkers with excellent sensitivity and specificity (area under the curve > 98%). These findings indicate that the perturbed metabolic pattern related to immune regulation and cellular signal transduction is associated with the pathogenesis of AA. 3-Methylxanthine, sphinganine, LysoPC(18:1), and lactosylceramide could be used as biomarkers of AA in future clinical practice. This study provides a therapeutic basis for further studies on the mechanism and precise clinical diagnosis of AA.
Collapse
Affiliation(s)
- Chao Du
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin
| | - Zhehao Huang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin
| | - Bo Wei
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin
| | - Miao Li
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin
- * Correspondence: Miao Li, MD, Department of Neurosurgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, PR China (e-mail: )
| |
Collapse
|
3
|
Song X, Wang X, Liao G, Pan Y, Qian Y, Qiu J. Toxic effects of fipronil and its metabolites on PC12 cell metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112677. [PMID: 34450423 DOI: 10.1016/j.ecoenv.2021.112677] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Fipronil and its metabolites (fipronil sulfone, fipronil sulfide and fipronil desulfinyl) adversely affect the environment and human health. Targeted metabolomics and lipidomics based on ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was used to analyse the alterations of glycerophospholipids and amino acids after exposure to fipronil and its metabolites at dosages of 0.5, 12.5 and 50 μM for 72 h and to evaluate their different toxic effects. Results showed that fipronil sulfone and fipronil desulfinyl are more toxic than their parent compound, with fipronil desulfinyl as the most toxic and fipronil sulfide as the least toxic. Fipronil and its metabolites affected the metabolism of PC18:1/16:0, PI18:0/20:4, arginine, leucine and tyrosine and the "phenylalanine, tyrosine and tryptophan biosynthesis" pathway, indicating their possible inducing role in cellular macromolecule damage, nerve signal transmission disturbance and energy metabolism disruption caused by oxidative stress. Importantly, fipronil sulfone and fipronil desulfinyl more strongly influenced lipid and amino acid metabolism, mainly reflected in the number of changed glycerophospholipids and differential metabolites associated with oxidative stress, including PS18:0/20:4, glutamate, phenylalanine and histidine for fipronil sulfone and PS18:0/20:4, glutamate, phenylalanine, serine and aspartic acid for fipronil desulfinyl. Therefore, the higher toxicity of fipronil desulfinyl and fipronil sulfone may be also related to oxidative stress. This study provides implications for risk assessment and toxic mechanism research on fipronil and its metabolites.
Collapse
Affiliation(s)
- Xiao Song
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xinlu Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Guangqin Liao
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yecan Pan
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yongzhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
4
|
Abstract
Barth syndrome (BTHS) is a rare, X-linked recessive, infantile-onset debilitating disorder characterized by early-onset cardiomyopathy, skeletal muscle myopathy, growth delay, and neutropenia, with a worldwide incidence of 1/300,000-400,000 live births. The high mortality rate throughout infancy in BTHS patients is related primarily to progressive cardiomyopathy and a weakened immune system. BTHS is caused by defects in the TAZ gene that encodes tafazzin, a transacylase responsible for the remodeling and maturation of the mitochondrial phospholipid cardiolipin (CL), which is critical to normal mitochondrial structure and function (i.e., ATP generation). A deficiency in tafazzin results in up to a 95% reduction in levels of structurally mature CL. Because the heart is the most metabolically active organ in the body, with the highest mitochondrial content of any tissue, mitochondrial dysfunction plays a key role in the development of heart failure in patients with BTHS. Changes in mitochondrial oxidative phosphorylation reduce the ability of mitochondria to meet the ATP demands of the human heart as well as skeletal muscle, namely ATP synthesis does not match the rate of ATP consumption. The presence of several cardiomyopathic phenotypes have been described in BTHS, including dilated cardiomyopathy, left ventricular noncompaction, either alone or in conjunction with other cardiomyopathic phenotypes, endocardial fibroelastosis, hypertrophic cardiomyopathy, and an apical form of hypertrophic cardiomyopathy, among others, all of which can be directly attributed to the lack of CL synthesis, remodeling, and maturation with subsequent mitochondrial dysfunction. Several mechanisms by which these cardiomyopathic phenotypes exist have been proposed, thereby identifying potential targets for treatment. Dysfunction of the sarcoplasmic reticulum Ca2+-ATPase pump and inflammation potentially triggered by circulating mitochondrial components have been identified. Currently, treatment modalities are aimed at addressing symptomatology of HF in BTHS, but do not address the underlying pathology. One novel therapeutic approach includes elamipretide, which crosses the mitochondrial outer membrane to localize to the inner membrane where it associates with cardiolipin to enhance ATP synthesis in several organs, including the heart. Encouraging clinical results of the use of elamipretide in treating patients with BTHS support the potential use of this drug for management of this rare disease.
Collapse
Affiliation(s)
- Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.
| |
Collapse
|
5
|
Doxorubicin Inhibits Phosphatidylserine Decarboxylase and Modifies Mitochondrial Membrane Composition in HeLa Cells. Int J Mol Sci 2020; 21:ijms21041317. [PMID: 32075281 PMCID: PMC7072979 DOI: 10.3390/ijms21041317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/25/2022] Open
Abstract
Doxorubicin (DXR) is a drug widely used in chemotherapy. Its mode of action is based on its intercalation properties, involving the inhibition of topoisomerase II. However, few studies have reported the mitochondrial effects of DXR while investigating cardiac toxicity induced by the treatment, mostly in pediatric cases. Here, we demonstrate that DXR alters the mitochondrial membrane composition associated with bioenergetic impairment and cell death in human cancer cells. The remodeling of the mitochondrial membrane was explained by phosphatidylserine decarboxylase (PSD) inhibition by DXR. PSD catalyzes phosphatidylethanolamine (PE) synthesis from phosphatidylserine (PS), and DXR altered the PS/PE ratio in the mitochondrial membrane. Moreover, we observed that DXR localized to the mitochondrial compartment and drug uptake was rapid. Evaluation of other topoisomerase II inhibitors did not show any impact on the mitochondrial membrane composition, indicating that the DXR effect was specific. Therefore, our findings revealed a side molecular target for DXR and PSD, potentially involved in DXR anti-cancer properties and the associated toxicity.
Collapse
|
6
|
Liu X, Xu G. Recent advances in using mass spectrometry for mitochondrial metabolomics and lipidomics - A review. Anal Chim Acta 2017; 1037:3-12. [PMID: 30292306 DOI: 10.1016/j.aca.2017.11.080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 01/09/2023]
Abstract
Metabolomics and lipidomics generally targets a huge number of intermediate and end products of cellular metabolism in body fluids, tissues, and cells etc. At present, mass spectrometry (MS) based metabolic or lipid profiling of routine biological specimens including the whole cells, tissues, plasma, serum and urine etc., can cover hundreds of metabolites or lipid species in one analysis, which has qualified deep elucidation of global metabolic and lipid networks. Mitochondria are important intracellular organelles and many critical biochemical reactions occur here, they provide building block for new cells, control redox balance, participate in apoptosis and behave as a signalling platform. Evidence suggests high prevalence of mitochondrial dysfunction occurs in a variety of cancers and other diseases, thus there is an urgent demand for investigating and clarifying mitochondrial metabolic and lipid alterations induced by diseases. Nevertheless, mitochondria contribute a small fraction to cellular contents, profiling of whole cell is probably unsuitable for monitoring alterations in mitochondria. Therefore, metabolomics and lipidomics analyses specially for mitochondria are necessary to understand disturbed metabolic and lipid pathways induced by environment and diseases. However, methods for comprehensively profiling metabolites and lipids in mitochondria have been limited at present. This review summarizes the current states and progress of MS-based mitochondrial metabolomics and lipidomics study. Details of mitochondrial isolation procedure, analytical methods and their applications are described. The challenges and opportunities are also given.
Collapse
Affiliation(s)
- Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
7
|
Sampetrean O, Saya H. Modeling phenotypes of malignant gliomas. Cancer Sci 2017; 109:6-14. [PMID: 28796931 PMCID: PMC5765309 DOI: 10.1111/cas.13351] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022] Open
Abstract
Malignant gliomas are primary tumors of the central nervous system characterized by diffuse infiltration into the brain and a high recurrence rate. Advances in comprehensive genomic studies have provided unprecedented insight into the genetic and molecular heterogeneity of these tumors and refined our understanding of their evolution from low to high grade. However, similar levels of phenotypic characterization are indispensable to understanding the complexity of malignant gliomas. Experimental glioma models have also achieved great progress in recent years. Advances in transgenic technologies and cell culture have allowed the establishment of mouse models that mirror the human disease with increasing fidelity and which support single-cell resolution for phenotypic analyses. Here we review the major types of preclinical glioma models, with an emphasis on how recent developments in experimental modeling have shed new light on two fundamental aspects of glioma phenotype, their cell of origin and their invasive potential.
Collapse
Affiliation(s)
- Oltea Sampetrean
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
8
|
Bradley RM, Stark KD, Duncan RE. Influence of tissue, diet, and enzymatic remodeling on cardiolipin fatty acyl profile. Mol Nutr Food Res 2016; 60:1804-18. [PMID: 27061349 DOI: 10.1002/mnfr.201500966] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/21/2016] [Accepted: 03/28/2016] [Indexed: 11/10/2022]
Abstract
Cardiolipin is a specialized phospholipid found primarily in the inner mitochondrial membrane. Because of its unique dimeric structure, cardiolipin plays an important role in mitochondrial function, stability, and membrane fluidity. As such, cardiolipin is subject to a high degree of remodeling by phospholipases, acyltransferases, and transacylases that create a fatty acyl profile that tends to be highly tissue-specific. Despite this overarching regulation, the molecular species of cardiolipin produced are also influenced by dietary lipid composition. A number of studies have characterized the tissue-specific profile of cardiolipin species and have investigated the specific nature of cardiolipin remodeling, including the role of both enzymes and diet. The aim of this review is to highlight tissue specific differences in cardiolipin composition and, collectively, the enzymatic and dietary factors that contribute to these differences. Consequences of aberrant cardiolipin fatty acyl remodeling are also discussed.
Collapse
Affiliation(s)
- Ryan M Bradley
- Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Ken D Stark
- Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Robin E Duncan
- Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
9
|
Poff AM, Ari C, Arnold P, Seyfried TN, D'Agostino DP. Ketone supplementation decreases tumor cell viability and prolongs survival of mice with metastatic cancer. Int J Cancer 2014; 135:1711-20. [PMID: 24615175 PMCID: PMC4235292 DOI: 10.1002/ijc.28809] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 02/11/2014] [Indexed: 12/18/2022]
Abstract
Cancer cells express an abnormal metabolism characterized by increased glucose consumption owing to genetic mutations and mitochondrial dysfunction. Previous studies indicate that unlike healthy tissues, cancer cells are unable to effectively use ketone bodies for energy. Furthermore, ketones inhibit the proliferation and viability of cultured tumor cells. As the Warburg effect is especially prominent in metastatic cells, we hypothesized that dietary ketone supplementation would inhibit metastatic cancer progression in vivo. Proliferation and viability were measured in the highly metastatic VM-M3 cells cultured in the presence and absence of β-hydroxybutyrate (βHB). Adult male inbred VM mice were implanted subcutaneously with firefly luciferase-tagged syngeneic VM-M3 cells. Mice were fed a standard diet supplemented with either 1,3-butanediol (BD) or a ketone ester (KE), which are metabolized to the ketone bodies βHB and acetoacetate. Tumor growth was monitored by in vivo bioluminescent imaging. Survival time, tumor growth rate, blood glucose, blood βHB and body weight were measured throughout the survival study. Ketone supplementation decreased proliferation and viability of the VM-M3 cells grown in vitro, even in the presence of high glucose. Dietary ketone supplementation with BD and KE prolonged survival in VM-M3 mice with systemic metastatic cancer by 51 and 69%, respectively (p < 0.05). Ketone administration elicited anticancer effects in vitro and in vivo independent of glucose levels or calorie restriction. The use of supplemental ketone precursors as a cancer treatment should be further investigated in animal models to determine potential for future clinical use.
Collapse
Affiliation(s)
- A M Poff
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, Hyperbaric Biomedical Research Laboratory, University of South Florida, Tampa, FL
| | | | | | | | | |
Collapse
|
10
|
Lipidomics Reveals Mitochondrial Membrane Remodeling Associated with Acute Thermoregulation in a Rodent with a Wide Thermoneutral Zone. Lipids 2014; 49:715-30. [DOI: 10.1007/s11745-014-3900-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/20/2014] [Indexed: 12/13/2022]
|
11
|
Autosomal dominant inheritance of brain cardiolipin fatty acid abnormality in VM/DK mice: association with hypoxic-induced cognitive insensitivity. Lipids 2013; 49:113-7. [PMID: 24243001 DOI: 10.1007/s11745-013-3857-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/05/2013] [Indexed: 10/26/2022]
Abstract
Cardiolipin is a complex polyglycerol phospholipid found almost exclusively in the inner mitochondrial membrane and regulates numerous enzyme activities especially those related to oxidative phosphorylation and coupled respiration. Abnormalities in cardiolipin can impair mitochondrial function and bioenergetics. We recently demonstrated that the ratio of shorter chain saturated and monounsaturated fatty acids (C16:0; C18:0; C18:1) to longer chain polyunsaturated fatty acids (C18:2; C20:4; C22:6) was significantly greater in the brains of adult VM/DK (VM) inbred mice than in the brains of C57BL/6 J (B6) mice. The cardiolipin fatty acid abnormalities in VM mice are also associated with alterations in the activity of mitochondrial respiratory complexes. In this study we found that the abnormal brain fatty acid ratio in the VM strain was inherited as an autosomal dominant trait in reciprocal B6 × VM F1 hybrids. To evaluate the potential influence of brain cardiolipin fatty acid composition on cognitive sensitivity, we placed the parental B6 and VM mice and their reciprocal male and female B6VMF1 hybrid mice (3-month-old) in a hypoxic chamber (5 % O2). Cognitive awareness (conscientiousness) under hypoxia was significantly lower in the VM parental mice and F1 hybrid mice (11.4 ± 0.4 and 11.0 ± 0.4 min, respectively) than in the parental B6 mice (15.3 ± 1.4 min), indicating an autosomal dominant inheritance like that of the brain cardiolipin abnormalities. These findings suggest that impaired cognitive awareness under hypoxia is associated with abnormalities in neural lipid composition.
Collapse
|
12
|
Monteiro JP, Oliveira PJ, Jurado AS. Mitochondrial membrane lipid remodeling in pathophysiology: a new target for diet and therapeutic interventions. Prog Lipid Res 2013; 52:513-28. [PMID: 23827885 DOI: 10.1016/j.plipres.2013.06.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 12/22/2022]
Abstract
Mitochondria are arbiters in the fragile balance between cell life and death. These organelles present an intricate membrane system, with a peculiar lipid composition and displaying transverse as well as lateral asymmetry. Some lipids are synthesized inside mitochondria, while others have to be imported or acquired in the form of precursors. Here, we review different processes, including external interventions (e.g., diet) and a range of biological events (apoptosis, disease and aging), which may result in alterations of mitochondrial membrane lipid content. Cardiolipin, the mitochondria lipid trademark, whose biosynthetic pathway is highly regulated, will deserve special attention in this review. The modulation of mitochondrial membrane lipid composition, especially by diet, as a therapeutic strategy for the treatment of some pathologies will be also addressed.
Collapse
Affiliation(s)
- João P Monteiro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Portugal
| | | | | |
Collapse
|
13
|
Satori CP, Henderson MM, Krautkramer EA, Kostal V, Distefano MM, Arriaga EA. Bioanalysis of eukaryotic organelles. Chem Rev 2013; 113:2733-811. [PMID: 23570618 PMCID: PMC3676536 DOI: 10.1021/cr300354g] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chad P. Satori
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Michelle M. Henderson
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Elyse A. Krautkramer
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Vratislav Kostal
- Tescan, Libusina trida 21, Brno, 623 00, Czech Republic
- Institute of Analytical Chemistry ASCR, Veveri 97, Brno, 602 00, Czech Republic
| | - Mark M. Distefano
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Edgar A. Arriaga
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| |
Collapse
|
14
|
Loizides-Mangold U. On the future of mass-spectrometry-based lipidomics. FEBS J 2013; 280:2817-29. [PMID: 23432956 DOI: 10.1111/febs.12202] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/09/2013] [Accepted: 02/12/2013] [Indexed: 01/02/2023]
Abstract
Lipids have highly diverse functions that go beyond cellular membrane structure and energy storage. One of the great challenges in lipid research will be to understand how the enormous complexity of lipid homeostasis is maintained. Genetic approaches combined with mass spectrometry-based lipidomics will help to elucidate how cells create and maintain their nonrandom lipid distribution within tissues, cells, organelles and lipid bilayers. Lipid homeostasis is crucial for many cellular processes and we are currently only beginning to understand the specific functions of lipids and the local environment that they create.
Collapse
Affiliation(s)
- Ursula Loizides-Mangold
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
15
|
Denny Joseph K, Muralidhara M. Fish oil prophylaxis attenuates rotenone-induced oxidative impairments and mitochondrial dysfunctions in rat brain. Food Chem Toxicol 2012; 50:1529-37. [DOI: 10.1016/j.fct.2012.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 01/06/2012] [Accepted: 01/15/2012] [Indexed: 12/21/2022]
|
16
|
Zhang L, Bell RJA, Kiebish MA, Seyfried TN, Han X, Gross RW, Chuang JH. A mathematical model for the determination of steady-state cardiolipin remodeling mechanisms using lipidomic data. PLoS One 2011; 6:e21170. [PMID: 21695174 PMCID: PMC3112230 DOI: 10.1371/journal.pone.0021170] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 05/23/2011] [Indexed: 11/19/2022] Open
Abstract
Technical advances in lipidomic analysis have generated tremendous amounts of quantitative lipid molecular species data, whose value has not been fully explored. We describe a novel computational method to infer mechanisms of de novo lipid synthesis and remodeling from lipidomic data. We focus on the mitochondrial-specific lipid cardiolipin (CL), a polyglycerol phospholipid with four acyl chains. The lengths and degree of unsaturation of these acyl chains vary across CL molecules, and regulation of these differences is important for mitochondrial energy metabolism. We developed a novel mathematical approach to determine mechanisms controlling the steady-state distribution of acyl chain combinations in CL . We analyzed mitochondrial lipids from 18 types of steady-state samples, each with at least 3 replicates, from mouse brain, heart, lung, liver, tumor cells, and tumors grown in vitro. Using a mathematical model for the CL remodeling mechanisms and a maximum likelihood approach to infer parameters, we found that for most samples the four chain positions have an independent and identical distribution, indicating they are remodeled by the same processes. Furthermore, for most brain samples and liver, the distribution of acyl chains is well-fit by a simple linear combination of the pools of acyl chains in phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylglycerol (PG). This suggests that headgroup chemistry is the key determinant of acyl donation into CL, with chain length/saturation less important. This canonical remodeling behavior appears damaged in some tumor samples, which display a consistent excess of CL molecules having particular masses. For heart and lung, the “proportional incorporation” assumption is not adequate to explain the CL distribution, suggesting additional acyl CoA-dependent remodeling that is chain-type specific. Our findings indicate that CL remodeling processes can be described by a small set of quantitative relationships, and that bioinformatic approaches can help determine these processes from high-throughput lipidomic data.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Robert J. A. Bell
- Department of Biomedical Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Michael A. Kiebish
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Thomas N. Seyfried
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Xianlin Han
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, Florida, United States of America
| | - Richard W. Gross
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jeffrey H. Chuang
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
17
|
Rosivatz E, Woscholski R. Removal or masking of phosphatidylinositol(4,5)bisphosphate from the outer mitochondrial membrane causes mitochondrial fragmentation. Cell Signal 2011; 23:478-86. [PMID: 21044681 PMCID: PMC3032883 DOI: 10.1016/j.cellsig.2010.10.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 09/23/2010] [Accepted: 10/26/2010] [Indexed: 12/11/2022]
Abstract
Mitochondria are central players in programmed cell death and autophagy. While phosphoinositides are well established regulators of membrane traffic, cellular signalling and the destiny of certain organelles, their presence and role for mitochondria remain elusive. In this study we show that removal of PtdIns(4,5)P₂ by phosphatases or masking the lipid with PH domains leads to fission of mitochondria and increased autophagy. Induction of general autophagy by amino acid starvation also coincides with the loss of mitochondrial PtdIns(4,5)P₂, suggesting an important role for this lipid in the processes that govern mitophagy. Our findings reveal that PKCα can rescue the removal or masking of PtdIns(4,5)P₂, indicating that the inositol lipid is upstream of PKC.
Collapse
Key Words
- ptdins(4,5)p2, phosphatidylinositol(4,5)bisphosphate
- ptdins, phosphatidylinositol
- omm, outer mitochondrial membrane
- imm, inner mitochondrial membrane
- plc, phospholipase c
- pma, 12-o-tetradecanoylphorbol 13-acetate
- pkc, protein kinase c
- ins(1,4,5)p3, inositol 1,4,5-trisphosphate
- dag, 1,2-diacylglycerol
- n.d., not determined
- mitochondria
- autophagy
- phosphatidylinositol(4,5)bisphosphate
- protein kinase c
- ph domain
Collapse
Affiliation(s)
| | - Rudiger Woscholski
- The Division of Cell and Molecular Biology, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| |
Collapse
|
18
|
Sparvero LJ, Amoscato AA, Kochanek PM, Pitt BR, Kagan VE, Bayir H. Mass-spectrometry based oxidative lipidomics and lipid imaging: applications in traumatic brain injury. J Neurochem 2010; 115:1322-36. [PMID: 20950335 PMCID: PMC3285274 DOI: 10.1111/j.1471-4159.2010.07055.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Lipids, particularly phospholipids, are fundamental to CNS tissue architecture and function. Endogenous polyunsaturated fatty acid chains of phospholipids possess cis-double bonds each separated by one methylene group. These phospholipids are very susceptible to free-radical attack and oxidative modifications. A combination of analytical methods including different versions of chromatography and mass spectrometry allows detailed information to be obtained on the content and distribution of lipids and their oxidation products thus constituting the newly emerging field of oxidative lipidomics. It is becoming evident that specific oxidative modifications of lipids are critical to a number of cellular functions, disease states and responses to oxidative stresses. Oxidative lipidomics is beginning to provide new mechanistic insights into traumatic brain injury which may have significant translational potential for development of therapies in acute CNS insults. In particular, selective oxidation of a mitochondria-specific phospholipid, cardiolipin, has been associated with the initiation and progression of apoptosis in injured neurons thus indicating new drug discovery targets. Furthermore, imaging mass-spectrometry represents an exciting new opportunity for correlating maps of lipid profiles and their oxidation products with structure and neuropathology. This review is focused on these most recent advancements in the field of lipidomics and oxidative lipidomics based on the applications of mass spectrometry and imaging mass spectrometry as they relate to studies of phospholipids in traumatic brain injury.
Collapse
Affiliation(s)
- Louis J Sparvero
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
19
|
Acehan D, Vaz F, Houtkooper RH, James J, Moore V, Tokunaga C, Kulik W, Wansapura J, Toth MJ, Strauss A, Khuchua Z. Cardiac and skeletal muscle defects in a mouse model of human Barth syndrome. J Biol Chem 2010; 286:899-908. [PMID: 21068380 DOI: 10.1074/jbc.m110.171439] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Barth syndrome is an X-linked genetic disorder caused by mutations in the tafazzin (taz) gene and characterized by dilated cardiomyopathy, exercise intolerance, chronic fatigue, delayed growth, and neutropenia. Tafazzin is a mitochondrial transacylase required for cardiolipin remodeling. Although tafazzin function has been studied in non-mammalian model organisms, mammalian genetic loss of function approaches have not been used. We examined the consequences of tafazzin knockdown on sarcomeric mitochondria and cardiac function in mice. Tafazzin knockdown resulted in a dramatic decrease of tetralinoleoyl cardiolipin in cardiac and skeletal muscles and accumulation of monolysocardiolipins and cardiolipin molecular species with aberrant acyl groups. Electron microscopy revealed pathological changes in mitochondria, myofibrils, and mitochondrion-associated membranes in skeletal and cardiac muscles. Echocardiography and magnetic resonance imaging revealed severe cardiac abnormalities, including left ventricular dilation, left ventricular mass reduction, and depression of fractional shortening and ejection fraction in tafazzin-deficient mice. Tafazzin knockdown mice provide the first mammalian model system for Barth syndrome in which the pathophysiological relationships between altered content of mitochondrial phospholipids, ultrastructural abnormalities, myocardial and mitochondrial dysfunction, and clinical outcome can be completely investigated.
Collapse
Affiliation(s)
- Devrim Acehan
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Glioma cell death: cell-cell interactions and signalling networks. Mol Neurobiol 2010; 42:89-96. [PMID: 20443079 DOI: 10.1007/s12035-010-8135-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 04/05/2010] [Indexed: 01/03/2023]
Abstract
The prognosis for patients with malignant gliomas is poor, but improvements may emerge from a better understanding of the pathophysiology of glioma signalling. Recent therapeutic developments have implicated lipid signalling in glioma cell death. Stress signalling in glioma cell death involves mitochondria and endoplasmic reticulum. Lipid mediators also signal via extrinsic pathways in glioma cell proliferation, migration and interaction with endothelial and microglial cells. Glioma cell death and tumour regression have been reported using polyunsaturated fatty acids in animal models, human ex vivo explants, glioma cell preparations and in clinical case reports involving intratumoral infusion. Cell death signalling was associated with generation of reactive oxygen intermediates and mitochondrial and other signalling pathways. In this review, evidence for mitochondrial responses to stress signals, including polyunsaturated fatty acids, peroxidizing agents and calcium is presented. Additionally, evidence for interaction of glioma cells with primary brain endothelial cells is described, modulating human glioma peroxidative signalling. Glioma responses to potential therapeutic agents should be analysed in systems reflecting tumour connectivity and CNS structural and functional integrity. Future insights may also be derived from studies of signalling in glioma-derived tumour stem cells.
Collapse
|
21
|
The Role of Mitochondria in Glioma Pathophysiology. Mol Neurobiol 2010; 42:64-75. [DOI: 10.1007/s12035-010-8133-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
|
22
|
Kiebish MA, Bell R, Yang K, Phan T, Zhao Z, Ames W, Seyfried TN, Gross RW, Chuang JH, Han X. Dynamic simulation of cardiolipin remodeling: greasing the wheels for an interpretative approach to lipidomics. J Lipid Res 2010; 51:2153-70. [PMID: 20410019 DOI: 10.1194/jlr.m004796] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cardiolipin is a class of mitochondrial specific phospholipid, which is intricately involved in mitochondrial functionality. Differences in cardiolipin species exist in a variety of tissues and diseases. It has been demonstrated that the cardiolipin profile is a key modulator of the functions of many mitochondrial proteins. However, the chemical mechanism(s) leading to normal and/or pathological distribution of cardiolipin species remain elusive. Herein, we describe a novel approach for investigating the molecular mechanism of cardiolipin remodeling through a dynamic simulation. This approach applied data from shotgun lipidomic analyses of the heart, liver, brain, and lung mitochondrial lipidomes to model cardiolipin remodeling, including relative content, regiospecificity, and isomeric composition of cardiolipin species. Generated cardiolipin profiles were nearly identical to those determined by shotgun lipidomics. Importantly, the simulated isomeric compositions of cardiolipin species were further substantiated through product ion analysis. Finally, unique enzymatic activities involved in cardiolipin remodeling were assessed from the parameters used in the dynamic simulation of cardiolipin profiles. Collectively, we described, verified, and demonstrated a novel approach by integrating both lipidomic analysis and dynamic simulation to study cardiolipin biology. We believe this study provides a foundation to investigate cardiolipin metabolism and bioenergetic homeostasis in normal and disease states.
Collapse
Affiliation(s)
- Michael A Kiebish
- Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
In vitro growth environment produces lipidomic and electron transport chain abnormalities in mitochondria from non-tumorigenic astrocytes and brain tumours. ASN Neuro 2009; 1:AN20090011. [PMID: 19570033 PMCID: PMC2695587 DOI: 10.1042/an20090011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mitochondrial lipidome influences ETC (electron transport chain) and cellular bioenergetic efficiency. Brain tumours are largely dependent on glycolysis for energy due to defects in mitochondria and oxidative phosphorylation. In the present study, we used shotgun lipidomics to compare the lipidome in highly purified mitochondria isolated from normal brain, from brain tumour tissue, from cultured tumour cells and from non-tumorigenic astrocytes. The tumours included the CT-2A astrocytoma and an EPEN (ependymoblastoma), both syngeneic with the C57BL/6J (B6) mouse strain. The mitochondrial lipidome in cultured CT-2A and EPEN tumour cells were compared with those in cultured astrocytes and in solid tumours grown in vivo. Major differences were found between normal tissue and tumour tissue and between in vivo and in vitro growth environments for the content or composition of ethanolamine glycerophospholipids, phosphatidylglycerol and cardiolipin. The mitochondrial lipid abnormalities in solid tumours and in cultured cells were associated with reductions in multiple ETC activities, especially Complex I. The in vitro growth environment produced lipid and ETC abnormalities in cultured non-tumorigenic astrocytes that were similar to those associated with tumorigenicity. It appears that the culture environment obscures the boundaries of the Crabtree and the Warburg effects. These results indicate that in vitro growth environments can produce abnormalities in mitochondrial lipids and ETC activities, thus contributing to a dependency on glycolysis for ATP production.
Collapse
|
25
|
Kiebish MA, Han X, Cheng H, Chuang JH, Seyfried TN. Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: lipidomic evidence supporting the Warburg theory of cancer. J Lipid Res 2008; 49:2545-56. [PMID: 18703489 DOI: 10.1194/jlr.m800319-jlr200] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Otto Warburg first proposed that cancer originated from irreversible injury to mitochondrial respiration, but the structural basis for this injury has remained elusive. Cardiolipin (CL) is a complex phospholipid found almost exclusively in the inner mitochondrial membrane and is intimately involved in maintaining mitochondrial functionality and membrane integrity. Abnormalities in CL can impair mitochondrial function and bioenergetics. We used shotgun lipidomics to analyze CL content and composition in highly purified brain mitochondria from the C57BL/6J (B6) and VM/Dk (VM) inbred strains and from subcutaneously grown brain tumors derived from these strains to include an astrocytoma and ependymoblastoma (B6 tumors), a stem cell tumor, and two microgliomas (VM tumors). Major abnormalities in CL content or composition were found in all tumors. The compositional abnormalities involved an abundance of immature molecular species and deficiencies of mature molecular species, suggesting major defects in CL synthesis and remodeling. The tumor CL abnormalities were also associated with significant reductions in both individual and linked electron transport chain activities. A mathematical model was developed to facilitate data interpretation. The implications of our findings to the Warburg cancer theory are discussed.
Collapse
|