1
|
Duché G, Sanderson JM. The Chemical Reactivity of Membrane Lipids. Chem Rev 2024; 124:3284-3330. [PMID: 38498932 PMCID: PMC10979411 DOI: 10.1021/acs.chemrev.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.
Collapse
Affiliation(s)
- Genevieve Duché
- Génie
Enzimatique et Cellulaire, Université
Technologique de Compiègne, Compiègne 60200, France
| | - John M Sanderson
- Chemistry
Department, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
2
|
Chang Y, Xia Y, Liu X, Yu P, Fan F, Shi Y, Yan S, Yan S. Integrated 16 S rRNA gene sequencing and serum metabolomics approaches to decipher the mechanism of Qingre Lidan decoction in the treatment of cholestatic liver injury. J Pharm Biomed Anal 2023; 234:115535. [PMID: 37390604 DOI: 10.1016/j.jpba.2023.115535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Cholestasis is a commonly occurring disorder induced by impaired bile flow, for which there is no effective treatment so far. Qingre Lidan decoction (QRLD) is a clinically used herbal compound for the long-term treatment of bile circulation disorders arising from inflammation and obstruction in the gallbladder and bile ducts. The objective of this study was to investigate the protective effect of QRLD on cholestatic liver injury and its possible mechanism. METHODS α-Naphthyl isothiocyanate (ANIT) was used to induce cholestatic liver injury in rats. Liver histopathology and serum biochemical markers were used to assess QRLD's protective impact. The possible biomarkers and mechanism of the therapeutic benefits of QRLD were investigated using a UHPLC-based Q-Exactive Orbitrap MS / MS untargeted serum metabolomics technique together with 16 S rRNA microbiota profiling. Afterwards, using RT-qPCR as well as Western Blot techniques, the expression of pertinent indicators was determined. RESULTS The intervention effect of QRLD was stronger at medium and high dosages than at low doses, and it dramatically decreased the levels of serum biochemical markers in cholestatic rats reflecting alterations in liver function and relieving ANIT-induced abnormalities in the liver's histopathology. Serum metabolomics showed that QRLD could affect the metabolic profile of cholestatic rats, mainly related to glycerophospholipid metabolism, taurine and hypotaurine metabolism, alanine, aspartate and glutamate metabolism, and histidine metabolic pathway. Additionally, analysis of 16 S rRNA gene sequencing indicated that QRLD could moderate ANIT-induced microbiota disorders, particularly Romboutsia, Bifidobacterium, Fusicatenibacter, Prevotella_9, Prevotellaceae_NK3B31_group and Prevotella_1. Other experimental results showed that QRLD significantly upregulated the mRNA and protein expression of PPARα, CYP7A1 and NTCP in the liver, inhibited the expression of p-IκBα, p-p65 and TNFα while increasing the anti-inflammatory factor IL-10, and downregulated the expression of MDA (a peroxidation product) and D-lactic acid (an intestinal barrier indicator) while increasing the expression of SOD and GSH. CONCLUSIONS QRLD can effectively regulate endogenous metabolites and microbiota disorders in cholestatic rats that are correlated with the attenuation of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Yang Chang
- Tianjin Medical University Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin 300100, China
| | - Yafei Xia
- Tianjin Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin 300100, China
| | - Xiaojun Liu
- Tianjin Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin 300100, China
| | - Putian Yu
- Tianjin Medical University Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin 300100, China
| | - Furong Fan
- Tianjin Medical University Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin 300100, China
| | - Yangyang Shi
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, JinghaiDistrict, Tianjin 301617, China
| | - Shixin Yan
- Tianjin Medical University Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin 300100, China
| | - Shu Yan
- Tianjin Medical University Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin 300100, China; Tianjin Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin 300100, China.
| |
Collapse
|
3
|
Snell JA, Jandova J, Wondrak GT. Hypochlorous Acid: From Innate Immune Factor and Environmental Toxicant to Chemopreventive Agent Targeting Solar UV-Induced Skin Cancer. Front Oncol 2022; 12:887220. [PMID: 35574306 PMCID: PMC9106365 DOI: 10.3389/fonc.2022.887220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
A multitude of extrinsic environmental factors (referred to in their entirety as the 'skin exposome') impact structure and function of skin and its corresponding cellular components. The complex (i.e. additive, antagonistic, or synergistic) interactions between multiple extrinsic (exposome) and intrinsic (biological) factors are important determinants of skin health outcomes. Here, we review the role of hypochlorous acid (HOCl) as an emerging component of the skin exposome serving molecular functions as an innate immune factor, environmental toxicant, and topical chemopreventive agent targeting solar UV-induced skin cancer. HOCl [and its corresponding anion (OCl-; hypochlorite)], a weak halogen-based acid and powerful oxidant, serves two seemingly unrelated molecular roles: (i) as an innate immune factor [acting as a myeloperoxidase (MPO)-derived microbicidal factor] and (ii) as a chemical disinfectant used in freshwater processing on a global scale, both in the context of drinking water safety and recreational freshwater use. Physicochemical properties (including redox potential and photon absorptivity) determine chemical reactivity of HOCl towards select biochemical targets [i.e. proteins (e.g. IKK, GRP78, HSA, Keap1/NRF2), lipids, and nucleic acids], essential to its role in innate immunity, antimicrobial disinfection, and therapeutic anti-inflammatory use. Recent studies have explored the interaction between solar UV and HOCl-related environmental co-exposures identifying a heretofore unrecognized photo-chemopreventive activity of topical HOCl and chlorination stress that blocks tumorigenic inflammatory progression in UV-induced high-risk SKH-1 mouse skin, a finding with potential implications for the prevention of human nonmelanoma skin photocarcinogenesis.
Collapse
Affiliation(s)
| | | | - Georg T. Wondrak
- Department of Pharmacology and Toxicology, R.K. Coit College of Pharmacy & UA Cancer Center, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
4
|
Sperm Lipid Markers of Male Fertility in Mammals. Int J Mol Sci 2021; 22:ijms22168767. [PMID: 34445473 PMCID: PMC8395862 DOI: 10.3390/ijms22168767] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Sperm plasma membrane lipids are essential for the function and integrity of mammalian spermatozoa. Various lipid types are involved in each key step within the fertilization process in their own yet coordinated way. The balance between lipid metabolism is tightly regulated to ensure physiological cellular processes, especially referring to crucial steps such as sperm motility, capacitation, acrosome reaction or fusion. At the same time, it has been shown that male reproductive function depends on the homeostasis of sperm lipids. Here, we review the effects of phospholipid, neutral lipid and glycolipid homeostasis on sperm fertilization function and male fertility in mammals.
Collapse
|
5
|
Semproli R, Robescu MS, Cambò M, Mema K, Bavaro T, Rabuffetti M, Ubiali D, Speranza G. Chemical and Enzymatic Approaches to Esters of
sn
‐Glycero‐3‐Phosphoric Acid. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Riccardo Semproli
- Department of Drug Sciences University of Pavia Viale Taramelli, 12 I-27100 Pavia Italy
| | - Marina S. Robescu
- Department of Drug Sciences University of Pavia Viale Taramelli, 12 I-27100 Pavia Italy
| | - Mattia Cambò
- Department of Chemistry University of Milano Via Golgi, 19 I-20133 Milano Italy
| | - Klodiana Mema
- Department of Drug Sciences University of Pavia Viale Taramelli, 12 I-27100 Pavia Italy
- Consorzio Italbiotec Piazza della Trivulziana 4/A 20126 Milano Italy
| | - Teodora Bavaro
- Department of Drug Sciences University of Pavia Viale Taramelli, 12 I-27100 Pavia Italy
| | - Marco Rabuffetti
- Department of Chemistry University of Milano Via Golgi, 19 I-20133 Milano Italy
| | - Daniela Ubiali
- Department of Drug Sciences University of Pavia Viale Taramelli, 12 I-27100 Pavia Italy
| | - Giovanna Speranza
- Department of Chemistry University of Milano Via Golgi, 19 I-20133 Milano Italy
| |
Collapse
|
6
|
Turi KN, McKennan C, Gebretsadik T, Snyder B, Seroogy CM, Lemanske RF, Zoratti E, Havstad S, Ober C, Lynch S, McCauley K, Yu C, Jackson DJ, Gern JE, Hartert TV. Unconjugated bilirubin is associated with protection from early-life wheeze and childhood asthma. J Allergy Clin Immunol 2021; 148:128-138. [PMID: 33434532 DOI: 10.1016/j.jaci.2020.12.639] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/11/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Wheeze and allergic sensitization are the strongest early-life predictors of childhood asthma development; the molecular origins of these early-life phenotypes are poorly understood. OBJECTIVES We sought to identify metabolites associated with early-life wheeze, allergic sensitization, and childhood asthma. METHODS We conducted a nested case-control study using Environmental influences on Child Health Outcomes Program cohorts for discovery and independent replication. Wheeze and allergic sensitization were defined by number of wheeze episodes and positive specific IgE at age 1 year, respectively. Asthma was defined as physician diagnosis of asthma at age 5 or 6 years. We used untargeted metabolomics, controlling for observed and latent confounding factors, to assess associations between the plasma metabolome and early-life wheeze, allergy, and childhood asthma. RESULTS Eighteen plasma metabolites were associated with first-year wheeze in the discovery cohort (n = 338). Z,Z unconjugated bilirubin (UCB) and its related metabolites exhibited a dose-response relationship with wheeze frequency; UCB levels were 13% (β = 0.87; 95% CI, 0.74-1.02) and 22% (β = 0.78; 95% CI, 0.68-0.91) lower in children with 1 to 3 and 4+ wheeze episodes compared with those who never wheezed, respectively. UCB levels were also associated with childhood asthma (β = 0.82; 95% CI, 0.68-0.98). Similar trends were observed in 2 independent cohorts. UCB was significantly negatively correlated with eicosanoid- and oxidative stress-related metabolites. There were no significant associations between metabolites and allergic sensitization. CONCLUSIONS We identified a novel inverse, dose-dependent association between UCB and recurrent wheeze and childhood asthma. Inflammatory lipid mediators and oxidative stress byproducts inversely correlated with UCB, suggesting that UCB modulates pathways critical to the development of early-life recurrent wheeze and childhood asthma.
Collapse
Affiliation(s)
- Kedir N Turi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | | | - Tebeb Gebretsadik
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tenn
| | - Brittney Snyder
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | | | | | - Edward Zoratti
- Department of Internal Medicine, Henry Ford Hospital, Detroit, Mich
| | - Suzanne Havstad
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Mich
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Susan Lynch
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, Calif
| | - Kathyrn McCauley
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, Calif
| | - Chang Yu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tenn
| | | | - James E Gern
- Department of Pediatrics, University of Wisconsin, Madison, Wis.
| | - Tina V Hartert
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn.
| |
Collapse
|
7
|
Wang H, Wang J, He C. Exploration of potential lipid biomarkers for premature canities by UPLC‐QTOF‐MS analyses of hair follicle roots. Exp Dermatol 2020; 29:776-781. [DOI: 10.1111/exd.14128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/17/2020] [Accepted: 06/06/2020] [Indexed: 12/01/2022]
Affiliation(s)
- Hecong Wang
- Beijing Key Laboratory of Plant Resources Research and Development Beijing China
- Beijing Technology and Business University Beijing China
| | - Jiateng Wang
- Beijing Key Laboratory of Plant Resources Research and Development Beijing China
- Beijing Technology and Business University Beijing China
| | - Congfen He
- Beijing Key Laboratory of Plant Resources Research and Development Beijing China
| |
Collapse
|
8
|
B. Gowda SG, Fuda H, Yamamoto Y, Chiba H, Hui S. A Simple and Efficient Method for Synthesis ofsn‐Glycero‐Phosphoethanolamine. Lipids 2020; 55:395-401. [DOI: 10.1002/lipd.12243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/01/2020] [Accepted: 04/17/2020] [Indexed: 11/08/2022]
Affiliation(s)
| | - Hirotoshi Fuda
- Faculty of Health SciencesHokkaido University Kita‐12, Nishi‐5, Kita‐ku, Sapporo 060‐0812 Japan
| | - Yusuke Yamamoto
- Graduate School of Health SciencesHokkaido University Kita‐12, Nishi‐5, Kita‐ku, Sapporo 060‐0812 Japan
| | - Hitoshi Chiba
- Department of NutritionSapporo University of Health Sciences Nakanuma, Nishi 4‐2‐1‐15, Higashi‐ku, Sapporo 007‐0894 Japan
| | - Shu‐Ping Hui
- Faculty of Health SciencesHokkaido University Kita‐12, Nishi‐5, Kita‐ku, Sapporo 060‐0812 Japan
| |
Collapse
|
9
|
Lathe R, Darlix JL. Prion protein PrP nucleic acid binding and mobilization implicates retroelements as the replicative component of transmissible spongiform encephalopathy. Arch Virol 2020; 165:535-556. [PMID: 32025859 PMCID: PMC7024060 DOI: 10.1007/s00705-020-04529-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/13/2019] [Indexed: 12/21/2022]
Abstract
The existence of more than 30 strains of transmissible spongiform encephalopathy (TSE) and the paucity of infectivity of purified PrPSc, as well as considerations of PrP structure, are inconsistent with the protein-only (prion) theory of TSE. Nucleic acid is a strong contender as a second component. We juxtapose two key findings: (i) PrP is a nucleic-acid-binding antimicrobial protein that is similar to retroviral Gag proteins in its ability to trigger reverse transcription. (ii) Retroelement mobilization is widely seen in TSE disease. Given further evidence that PrP also mediates nucleic acid transport into and out of the cell, a strong case is to be made that a second element – retroelement nucleic acid – bound to PrP constitutes the second component necessary to explain the multiple strains of TSE.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, University of Edinburgh School of Medicine, Edinburgh, UK. .,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow, Moscow Region, Russia.
| | - Jean-Luc Darlix
- Faculté de Pharmacie, Centre Nationale de la Recherche Scientifique (CNRS) Laboratory of Bioimaging and Pathologies (Unité Mixte de Recherche 7021), Université de Strasbourg, Illkirch, France.
| |
Collapse
|
10
|
Engel KM, Jakop U, Müller K, Grunewald S, Paasch U, Schiller J. MALDI MS Analysis to Investigate the Lipid Composition of Sperm. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411014666181030123256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The sperm plasma membrane meets the requirements of sperm transit
through the female genital tract and subsequent fertilization. Commonly, the (phospho)lipid composition
of sperm is characterized by tremendous amounts of highly unsaturated fatty acyl residues such
as docosahexaenoic and docosapentaenoic acid. While human sperm contain almost exclusively diacyl
lipids, many animal sperm additionally contain significant amounts of ether lipids such as alkylacyl-
and alkenyl-acyl lipids (plasmalogens).
Hypothesis/Objective:
It is suggested that deviations from the typical lipid composition are indicative
of pathological changes. Therefore, simple methods to elucidate the sperm lipid composition are essential.
Method:
Matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS) is a fast
and simple method. Since the selection of the most suitable matrix is a crucial step in MALDI MS,
this topic will be highlighted. It will also be shown that MALDI MS can be easily combined with
thin-layer chromatography to overcome ion suppression effects.
Results:
The lipid composition of sperm from different species can be elucidated by MALDI MS.
However, different matrix compounds have to be used to record positive and negative ion mass spectra.
Since some sperm (glyco)lipids are characterized by the presence of sulfate residues which suppress
the detection of less acidic lipids in the negative ion mode, previous separation is often necessary.
It will be also emphasized that plasmalogens can be easily identified by either enzymatic digestion
or treatment with acids.
Conclusion:
MALDI MS is a reliable method to obtain sperm lipid fingerprints in a simple and convenient
way.
Collapse
Affiliation(s)
- Kathrin M. Engel
- Faculty of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Ulrike Jakop
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany
| | - Karin Müller
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany
| | - Sonja Grunewald
- Dermatology, Venerology and Allergology Clinic, Andrological Unit, University Hospital Leipzig, Philipp-Rosenthal- Straße 23, D-04103, Leipzig, Germany
| | - Uwe Paasch
- Dermatology, Venerology and Allergology Clinic, Andrological Unit, University Hospital Leipzig, Philipp-Rosenthal- Straße 23, D-04103, Leipzig, Germany
| | - Jürgen Schiller
- Faculty of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| |
Collapse
|
11
|
Plasma lipidomic profile signature of rheumatoid arthritis versus Lyme arthritis patients. Arch Biochem Biophys 2018; 654:105-114. [PMID: 30059653 DOI: 10.1016/j.abb.2018.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/09/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Distinguishing of rheumatoid arthritis (RA) and Lyme arthritis (LA) is difficult, because of similar symptoms. This presents a significant clinical problem since treatments are quite different in both diseases. We investigated the plasma phospholipid profiles of RA and LA patients versus healthy subjects to find metabolic changes responsible for differentiation of both diseases. METHODS Plasma was collected from 9 RA, 9 LA, and 9 healthy subjects. Extracted lipids were analyzed using LC- MS/MS to characterize phospholipid profiles of RA, LA and healthy subjects. Principal components analysis (PCA), partial least squares-discriminate analysis (PLS-DA) and variable importance in projection (VIP) scores were used to estimate the importance of each phospholipid variable. RESULTS We identified 114 phospholipids in plasma. Phospholipid profiles were significantly different in RA and LA patients than in healthy subjects. Principal discriminant phospholipids between RA and LA groups were LPE (14:0), LPC(14:0) PI(18:0/20:4), PI(18:2/18:0), PI(16:1/18:2), PI(18:1/18:0), and PI(18:0/20:3). CONCLUSIONS Our study provides insights into the alteration of the plasma phospholipid profile of LA patients, resulting from Borrelia burgdorferi infection, that may lead to improved LA diagnosis and differentiation of this disease from RA. Furthermore, LPE (14:0) was found to have a high potential to be a possible biomarker of LA.
Collapse
|
12
|
Chlorinated Phospholipids and Fatty Acids: (Patho)physiological Relevance, Potential Toxicity, and Analysis of Lipid Chlorohydrins. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8386362. [PMID: 28090245 PMCID: PMC5206476 DOI: 10.1155/2016/8386362] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/24/2016] [Accepted: 11/06/2016] [Indexed: 12/17/2022]
Abstract
Chlorinated phospholipids are formed by the reaction of hypochlorous acid (HOCl), generated by the enzyme myeloperoxidase under inflammatory conditions, and the unsaturated fatty acyl residues or the head group. In the first case the generated chlorohydrins are both proinflammatory and cytotoxic, thus having a significant impact on the structures of biomembranes. The latter case leads to chloramines, the properties of which are by far less well understood. Since HOCl is also widely used as a disinfecting and antibacterial agent in medicinal, industrial, and domestic applications, it may represent an additional source of danger in the case of abuse or mishandling. This review discusses the reaction behavior of in vivo generated HOCl and biomolecules like DNA, proteins, and carbohydrates but will focus on phospholipids. Not only the beneficial and pathological (toxic) effects of chlorinated lipids but also the importance of these chlorinated species is discussed. Some selected cleavage products of (chlorinated) phospholipids and plasmalogens such as lysophospholipids, (chlorinated) free fatty acids and α-chloro fatty aldehydes, which are all well known to massively contribute to inflammatory diseases associated with oxidative stress, will be also discussed. Finally, common analytical methods to study these compounds will be reviewed with focus on mass spectrometric techniques.
Collapse
|
13
|
Non-targeted metabolite profiling reveals changes in oxidative stress, tryptophan and lipid metabolisms in fearful dogs. Behav Brain Funct 2016; 12:7. [PMID: 26867941 PMCID: PMC4751666 DOI: 10.1186/s12993-016-0091-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/02/2016] [Indexed: 12/25/2022] Open
Abstract
Background Anxieties, such as shyness, noise phobia and separation anxiety, are common but poorly understood behavioural problems in domestic dogs, Canis familiaris. Although studies have demonstrated genetic and environmental contributions to anxiety pathogenesis, better understanding of the molecular underpinnings is needed to improve diagnostics, management and treatment plans. As a part of our ongoing canine anxiety genetics efforts, this study aimed to pilot a metabolomics approach in fearful and non-fearful dogs to identify candidate biomarkers for more objective phenotyping purposes and to refer to potential underlying biological problem. Methods We collected whole blood samples from 10 fearful and 10 non-fearful Great Danes and performed a liquid chromatography combined with mass spectrometry (LC–MS)-based non-targeted metabolite profiling. Results Non-targeted metabolomics analysis detected six 932 metabolite entities in four analytical modes [RP and HILIC; ESI(−) and ESI(+)], of which 239 differed statistically between the test groups. We identified changes in 13 metabolites (fold change ranging from 1.28 to 2.85) between fearful and non-fearful dogs, including hypoxanthine, indoxylsulfate and several phospholipids. These molecules are involved in oxidative stress, tryptophan and lipid metabolisms. Conclusions We identified significant alterations in the metabolism of fearful dogs, and some of these changes appear relevant to anxiety also in other species. This pilot study demonstrates the feasibility of the non-targeted metabolomics and warrants a larger replication study to confirm the role of the identified biomarkers and pathways in canine anxiety.
Collapse
|
14
|
Fuchs B. Analytical methods for (oxidized) plasmalogens: Methodological aspects and applications. Free Radic Res 2015; 49:599-617. [DOI: 10.3109/10715762.2014.999675] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Mass spectrometry and inflammation—MS methods to study oxidation and enzyme-induced changes of phospholipids. Anal Bioanal Chem 2013; 406:1291-306. [DOI: 10.1007/s00216-013-7534-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 11/14/2013] [Accepted: 11/21/2013] [Indexed: 10/25/2022]
|
16
|
Donovan EL, Pettine SM, Hickey MS, Hamilton KL, Miller BF. Lipidomic analysis of human plasma reveals ether-linked lipids that are elevated in morbidly obese humans compared to lean. Diabetol Metab Syndr 2013; 5:24. [PMID: 23672807 PMCID: PMC3663699 DOI: 10.1186/1758-5996-5-24] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/09/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Lipidomic analysis was performed to explore differences in lipid profiles between plasma from lean and obese subjects, followed by in vitro methods to examine a role for the identified lipids in endothelial cell pathophysiology. METHODS Plasma was collected from 15 morbidly obese and 13 control subjects. Lipids were extracted from plasma and analyzed using LC/MS, and MS/MS to characterize lipid profiles and identify lipids that are elevated in obese subjects compared to lean. RESULTS Orthogonal partial least squares-discriminant analysis (OPLS-DA) modelling showed that lipid profiles were significantly different in obese subjects compared to lean. Analysis of lipids that were driving group separation in the OPLS-DA model and that were significantly elevated in the obese group led to identification of a group of ether-linked phosphatidylcholine (PC) and phosphatidylethanolamine (PE) lipids of interest. Treatment of human coronary artery endothelial cells with the ether-linked phosphatidylethanolamine induced expression of cell adhesion molecules, a hallmark of endothelial cell activation. However, oxidized phosphatidylcholine products that can induce endothelial cell activation in vitro, were not significantly different between groups in vivo. CONCLUSION These data suggest a role for ether-linked lipids in obesity associated dyslipidemia and vascular disease.
Collapse
Affiliation(s)
- Elise L Donovan
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 8052, USA
- The Liggins Institute, University of Auckland, 85 Park Rd Grafton, Auckland, NZ 1142, New Zealand
| | | | - Matthew S Hickey
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 8052, USA
| | - Karyn L Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 8052, USA
| | - Benjamin F Miller
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 8052, USA
| |
Collapse
|
17
|
Yamamoto K, Yoon KD, Ueda K, Hashimoto M, Sparrow JR. A novel bisretinoid of retina is an adduct on glycerophosphoethanolamine. Invest Ophthalmol Vis Sci 2011; 52:9084-90. [PMID: 22039245 DOI: 10.1167/iovs.11-8632] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Fluorescent bisretinoid compounds accumulate in retinal pigment epithelial (RPE) cells as a consequence of two processes: random reactions of vitamin A aldehyde in photoreceptor cell outer segments, and phagocytosis of discarded photoreceptor outer segment discs by RPE. The formation of bisretinoid is accentuated in some forms of retinal degeneration. The detection of a novel bisretinoid fluorophore that is a conjugate of all-trans-retinal and glycerophosphoethanolamine is reported. METHODS Human RPE/choroid, eyes harvested from Abca4 (ATP-binding cassette transporter 4) null mutant mice, and biosynthetic reaction mixtures were analyzed by ultra performance liquid chromatography coupled to mass spectrometry and by nuclear magnetic resonance spectra and spectrofluorometry. RESULTS A fluorescent compound in mouse eyes and in human RPE/choroid corresponded to the product of the reaction between all-trans-retinal and glycerophosphoethanolamine (A2-GPE), as determined on the basis of molecular weight (m/z 746), absorbance (approximately 338,443 nm), and retention time. Nuclear magnetic resonance spectra were consistent with a pyridinium molecule with a glycerophosphate moiety. The emission maximum of A2-GPE was approximately 610 nm. A2-GPE accumulated with age in mouse eyes and was more abundant in Abca4(-/-) mice, a model of recessive Stargardt disease. CONCLUSIONS To date, several bisretinoids of RPE lipofuscin have been isolated and characterized, and for all of these, formation involves the membrane phospholipid phosphatidylethanolamine. Conversely, the bisretinoid A2-GPE is detected as sn-glycero-3-phosphoethanolamine (GPE) derivatized by two all-trans-retinal. The pathways by which A2-GPE may form under conditions of increased availability of all-trans-retinal, for instance in the Abca4(-/-) mouse, are discussed.
Collapse
Affiliation(s)
- Kazunori Yamamoto
- Department of Ophthalmology, Columbia University, 630 W. 168th Street, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
18
|
Fuchs B, Bresler K, Schiller J. Oxidative changes of lipids monitored by MALDI MS. Chem Phys Lipids 2011; 164:782-95. [PMID: 21964445 DOI: 10.1016/j.chemphyslip.2011.09.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/03/2011] [Accepted: 09/15/2011] [Indexed: 11/29/2022]
Abstract
Oxidation processes of lipids are of paramount interest from many viewpoints. For instance, oxidation processes are highly important under in vivo conditions because molecules with regulatory functions are generated by oxidation of lipids or free fatty acids. Additionally, many inflammatory diseases are accompanied by lipid oxidation and, therefore, oxidation products are also useful disease (bio)markers. Thus, there is also considerable interest in methods of (oxidized) lipid analysis. Nowadays, soft ionization mass spectrometric (MS) methods are regularly used to study oxidative lipid modifications due to their high sensitivities and the extreme mass resolution. Although electrospray ionization (ESI) MS is so far most popular, applications of matrix-assisted laser desorption and ionization (MALDI) MS are increasing. This review aims to summarize the so far available data on MALDI analyses of oxidized lipids. In addition to model systems, special attention will be paid to the monitoring of oxidized lipids under in vivo conditions, particularly the oxidation of (human) lipoproteins. It is not the aim of this review to praise MALDI as the "best" method but to provide a critical survey of the advantages and drawbacks of this method.
Collapse
Affiliation(s)
- Beate Fuchs
- University of Leipzig, Faculty of Medicine, Institute of Medical Physics and Biophysics, Härtelstrasse16/18, Leipzig, Germany
| | | | | |
Collapse
|
19
|
O'Donnell VB. Mass spectrometry analysis of oxidized phosphatidylcholine and phosphatidylethanolamine. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:818-26. [PMID: 21835265 DOI: 10.1016/j.bbalip.2011.07.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 06/30/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
Abstract
Oxidized phospholipids (OxPLs) are rapidly becoming recognized as important mediators of cellular and immune signaling. They are generated either enzymatically or non-enzymatically and 100s of structures exist of which only a small fraction have been analyzed to date. Pleiotropic activities, including regulation of adhesion molecule expression, pro-coagulant activity and inhibition of Toll-like receptor signaling have been observed and some are detected in models of human and animal disease, including atherosclerosis and infection. More recently, the acute generation of specific oxidized phospholipids by cellular enzymes in immune cells was reported. Assays for analysis and quantification of OxPLs were first developed approx 15years ago, primarily for hydro(pero)xy-species. Many were based on monitoring a single precursor ion with/without LC separation, based on the PL headgroup. Others combined LC with monitoring precursor to product transitions, but were unable to provide information regarding position of oxidation on unsaturated sn-2 fatty acid due to sensitivity issues. More recently, LC/MS/MS methods for specific OxPLs have been reported that enable high sensitivity quantitation in biological samples. In this review, widely used methods for detecting and quantifying various classes of OxPL will be summarized, along with practical advice for their use. In particular, the focus will be on LC/MS/MS, which today is almost universally the method of choice.
Collapse
|
20
|
Magnusson CD, Haraldsson GG. Ether lipids. Chem Phys Lipids 2011; 164:315-40. [PMID: 21635876 DOI: 10.1016/j.chemphyslip.2011.04.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 04/11/2011] [Accepted: 04/28/2011] [Indexed: 11/25/2022]
Abstract
The naturally occurring 1-O-alkyl-sn-glycerols and their methoxylated congeners, 1-O-(2'-methoxyalkyl)-sn-glycerols, are biologically active compounds, ubiquitously found in nature as diacyl glyceryl ether lipids and phosphoether lipids. The chief objective of this article is to provide a comprehensive and up to date review on such ether lipids. The occurrence and distribution of these compounds in nature are extensively reviewed, their chemical structure and molecular variety, their biosynthesis and chemical synthesis and, finally, their various biological effects are described and discussed. An unprecedented biosynthesis of the 2'-methoxylated alkylglycerols is proposed. The first synthesis of enantiopure (Z)-(2'R)-1-O-(2'-methoxyhexadec-4'-enyl)-sn-glycerol, the most prevalent 2'-methoxylated type alkylglycerol present in cartilaginous fish, is described. It was accomplished by a highly convergent five step process.
Collapse
|