1
|
Badawy S, Liu Y, Guo M, Liu Z, Xie C, Marawan MA, Ares I, Lopez-Torres B, Martínez M, Maximiliano JE, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Conjugated linoleic acid (CLA) as a functional food: Is it beneficial or not? Food Res Int 2023; 172:113158. [PMID: 37689911 DOI: 10.1016/j.foodres.2023.113158] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
Conjugated linoleic acid (CLA) has attracted great attention in recent years as a popular class of functional food that is broadly used. It refers to a group of geometric and positional isomers of linoleic acid (LA) with a conjugated double bond. The main natural sources of CLA are dairy products, beef and lamb, whereas only trace amounts occur naturally in plant lipids. CLA has been shown to improve various health issues, having effects on obesity, inflammatory, anti-carcinogenicity, atherogenicity, immunomodulation, and osteosynthesis. Also, compared to studies on humans, many animal researches reveal more positive benefits on health. CLA represents a nutritional avenue to improve lifestyle diseases and metabolic syndrome. Most of these effects are attributed to the two major CLA isomers [conjugated linoleic acid cis-9,trans-11 isomer (c9,t11), and conjugated linoleic acid trans-10,cis-12 isomer (t10,c12)], and their mixture (CLA mix). In contrast, adverse effects of CLA have been also reported, such as glucose homeostasis, insulin resistance, hepatic steatosis and induction of colon carcinogenesis in humans, as well as milk fat inhibition in ruminants, lowering chicken productivity, influencing egg quality and altering growth performance in fish. This review article aims to discuss the health benefits of CLA as a nutraceutical supplement and highlight the possible mechanisms of action that may contribute to its outcome. It also outlines the feasible adverse effects of CLA besides summarizing the recent peer-reviewed publications on CLA to ensure its efficacy and safety for proper application in humans.
Collapse
Affiliation(s)
- Sara Badawy
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Pathology Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Yanan Liu
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mingyue Guo
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhenli Liu
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Changqing Xie
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Marawan A Marawan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Jorge-Enrique Maximiliano
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain.
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| |
Collapse
|
2
|
The Modulatory Effects of Fatty Acids on Cancer Progression. Biomedicines 2023; 11:biomedicines11020280. [PMID: 36830818 PMCID: PMC9953116 DOI: 10.3390/biomedicines11020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Cancer is the second leading cause of death worldwide and the global cancer burden rises rapidly. The risk factors for cancer development can often be attributed to lifestyle factors, of which an unhealthy diet is a major contributor. Dietary fat is an important macronutrient and therefore a crucial part of a well-balanced and healthy diet, but it is still unclear which specific fatty acids contribute to a healthy and well-balanced diet in the context of cancer risk and prognosis. In this review, we describe epidemiological evidence on the associations between the intake of different classes of fatty acids and the risk of developing cancer, and we provide preclinical evidence on how specific fatty acids can act on tumor cells, thereby modulating tumor progression and metastasis. Moreover, the pro- and anti-inflammatory effects of each of the different groups of fatty acids will be discussed specifically in the context of inflammation-induced cancer progression and we will highlight challenges as well as opportunities for successful application of fatty acid tailored nutritional interventions in the clinic.
Collapse
|
3
|
Guigni BA, van der Velden J, Kinsey CM, Carson JA, Toth MJ. Effects of conditioned media from murine lung cancer cells and human tumor cells on cultured myotubes. Am J Physiol Endocrinol Metab 2020; 318:E22-E32. [PMID: 31689144 PMCID: PMC6985792 DOI: 10.1152/ajpendo.00310.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Factors secreted from tumors/tumor cells are hypothesized to cause skeletal muscle wasting in cancer patients. We examined whether cancer cells secrete factors to promote atrophy by evaluating the effects of conditioned media (CM) from murine lung cancer cells and primary cultures of human lung tumor cells on cultured myotubes. We evaluated murine Lewis lung carcinoma (LLC) and KRASG12D cells, and primary cell lines derived from tumor biopsies from patients with lung cancer (hTCM; n = 6). In all experiments, serum content was matched across treatment groups. We hypothesized that CM from murine and human tumor cells would reduce myotube myosin content, decrease mitochondrial content, and increase mitochondrial reactive oxygen species (ROS) production. Treatment of myotubes differentiated for 7 days with CM from LLC and KRASG12D cells did not alter any of these variables. Effects of murine tumor cell CM were observed when myotubes differentiated for 4 days were treated with tumor cell CM and compared with undiluted differentiation media. However, these effects were not apparent if tumor cell CM treatments were compared with control cell CM or dilution controls. Finally, CM from human lung tumor primary cell lines did not modify myosin content or mitochondrial content or ROS production compared with either undiluted differentiated media, control cell CM, or dilution controls. Our results do not support the hypothesis that factors released from cultured lung cancer/tumor cells promote myotube wasting or mitochondrial abnormalities, but we cannot dismiss the possibility that these cells could secrete such factors in vivo within the native tumor microenvironment.
Collapse
MESH Headings
- Adenocarcinoma/metabolism
- Aged
- Aged, 80 and over
- Animals
- Cachexia/etiology
- Cachexia/metabolism
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Squamous Cell/metabolism
- Cell Line, Tumor
- Culture Media, Conditioned/pharmacology
- Female
- Humans
- Lung Neoplasms/metabolism
- Male
- Mice
- Middle Aged
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Myoblasts, Skeletal
- Myosins/metabolism
- Neoplasms/complications
- Neoplasms/metabolism
- Primary Cell Culture
- Reactive Oxygen Species/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Blas A Guigni
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, Vermont
| | - Jos van der Velden
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - C Matthew Kinsey
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - James A Carson
- Integrative Muscle Biology Laboratory, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Michael J Toth
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
4
|
Ricci M, Miola M, Multari C, Borroni E, Canuto RA, Congiusta N, Vernè E, Follenzi A, Muzio G. PPARs are mediators of anti-cancer properties of superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with conjugated linoleic acid. Chem Biol Interact 2018; 292:9-14. [PMID: 29986832 DOI: 10.1016/j.cbi.2018.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/21/2018] [Accepted: 07/02/2018] [Indexed: 12/26/2022]
Abstract
Breast cancer chemotherapy can cause side effects due to nonspecific drug delivery, low solubility and fast metabolism of drugs used in conventional therapy. Moreover, the therapeutic effect of the drugs is often reduced by the strengthening of chemoresistance, which occurs via a variety of mechanisms. Different strategies have been developed to reduce multidrug resistance (MDR)-associated gene expressions including the use of surfactants and polymers. In this study superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with conjugated linoleic acid (CLA) reduced the number and viability of cells in comparison with both untreated cells or cells treated with SPIONs alone. This cytostatic effect correlated with the increase of peroxisome proliferator-activated receptors γ (PPARγ). The necrotic cell death induced, as a consequence, an inflammatory process, as evidenced by the decrease of the anti-inflammatory PPARα and increase of pro-inflammatory TNFα and IL-1β. PPARs were examined because CLA is one of their natural ligands. The antitumor effect observed was accompanied by a down-regulation of p-glycoprotein (P-gp), which was the first important discovered efflux transporter belonging to MDR, and of ALDH3A1, an enzyme able to metabolize some drugs, reducing their effects. The down-regulation of P-gp correlated with the increase of cytokines. The ALDH3A1 decrease correlated with the increase of PPARγ. Based on these results, PPARs are molecular mediators of anti-cancer effect of SPIONs functionalized with CLA, being changes in these nuclear receptors correlated with induction of cytotoxicity and inflammation, and decreased ability of cancer cells in blocking anti-cancer drug effect.
Collapse
Affiliation(s)
- Marina Ricci
- Department of Clinical and Biological Sciences, University of Torino, Corso Raffaello 30, 10125, Turin, Italy.
| | - Marta Miola
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy.
| | - Cristina Multari
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy.
| | - Ester Borroni
- Department of Health Sciences, University "Amedeo Avogadro" of East Piedmont, Via Solaroli 17, 28100, Novara, Italy.
| | - Rosa Angela Canuto
- Department of Clinical and Biological Sciences, University of Torino, Corso Raffaello 30, 10125, Turin, Italy.
| | - Noemi Congiusta
- Department of Clinical and Biological Sciences, University of Torino, Corso Raffaello 30, 10125, Turin, Italy
| | - Enrica Vernè
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy.
| | - Antonia Follenzi
- Department of Health Sciences, University "Amedeo Avogadro" of East Piedmont, Via Solaroli 17, 28100, Novara, Italy.
| | - Giuliana Muzio
- Department of Clinical and Biological Sciences, University of Torino, Corso Raffaello 30, 10125, Turin, Italy.
| |
Collapse
|
5
|
Matin S, Nemati A, Ghobadi H, Alipanah-Moghadam R, Rezagholizadeh L. The effect of conjugated linoleic acid on oxidative stress and matrix metalloproteinases 2 and 9 in patients with COPD. Int J Chron Obstruct Pulmon Dis 2018; 13:1449-1454. [PMID: 29765212 PMCID: PMC5939916 DOI: 10.2147/copd.s155985] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background Natural antioxidants in foods may be used in prevention and treatment of oxidative stress and inflammation in COPD. Therefore, this study aimed to evaluate the effect of conjugated linoleic acid (CLA) supplement as natural antioxidants on oxidative stress levels, and MMP2 and MMP9 serum levels in COPD patients. Materials and methods This clinical trial study was conducted on 90 (supplement group=45 and control group=45) COPD patients in Ardabil city, Iran, in 2015. After obtaining written consent, general information was collected from each patient using a validated and reliable questionnaire. Supplement group received 3.2 g of CLA and those in the control group were given 3.2 g of placebo for 6 weeks on a daily basis. Fasting blood samples were taken from all of the patients for testing of malondialdehyde (MDA), MMP2, and MMP9 levels at the beginning and end of the study. Data were analyzed using Kolmogorov–Smirnov test, independent samples t-test, paired sample t-test, chi-square test, and ANOVA. Results There were no significant differences between the two groups with regard to mean age, smoking status, and serum level of MDA at the beginning of the study. In the supplement group, the serum level of MDA decreased significantly at the end of the 6th week compared to that in the beginning of the study (p=0.0004), while in the placebo group, the difference was found to be insignificant. The serum level of MMP9 decreased significantly in the supplement group, while in the placebo group its level increased significantly as compared to that at the beginning of the study (p<0.05). The serum levels of MMP2 indicated no significant differences between the two groups neither at the beginning nor at the end of the study. Conclusion These findings indicated that CLA supplementation may be helpful for COPD patients through inhibiting the production of oxidative stress and controlling MMP9 serum levels.
Collapse
Affiliation(s)
- Somaieh Matin
- Department of Internal Medicine, Emam Khomeini Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Nemati
- Biochemistry and Nutrition Department, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hassan Ghobadi
- Department of Internal Medicine (Pulmonary Division), Emam Khomeini Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza Alipanah-Moghadam
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Lotfollah Rezagholizadeh
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
6
|
Muzio G, Ricci M, Traverso N, Monacelli F, Oraldi M, Maggiora M, Canuto RA. 4-Hydroxyhexenal and 4-hydroxynonenal are mediators of the anti-cachectic effect of n-3 and n-6 polyunsaturated fatty acids on human lung cancer cells. Free Radic Biol Med 2016; 99:63-70. [PMID: 27480845 DOI: 10.1016/j.freeradbiomed.2016.07.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 01/09/2023]
Abstract
Cachexia, the most severe paraneoplastic syndrome, occurs in about 80% of patients with advanced cancer; it cannot be reverted by conventional, enteral, or parenteral nutrition. For this reason, nutritional interventions must be based on the use of substances possessing, alongside nutritional and energetic properties, the ability to modulate production of the pro-inflammatory factors responsible for the metabolic changes characterising cancer cachexia. In light of their nutritional and anti-inflammatory properties, polyunsaturated fatty acids (PUFAs), and in particular n-3, have been investigated for treating cachexia; however, the results have been contradictory. Since both n-3 and n-6 PUFAs can affect cell functions in several ways, this research investigated the possibility that the effects of both n-3 and n-6 PUFAs could be mediated by their major aldehydic products of lipid peroxidation, 4-hydroxyhexenal (HHE) and 4-hydroxynonenal (HNE), and by their anti-inflammatory properties. An "in vitro" cancer cachexia model, consisting of human lung cancer cells (A427) and murine myoblasts (C2C12), was used. The results showed that: 1) both n-3 and n-6 PUFAs reduced the growth of lung cancer cells without causing cell death, increased lipid peroxidation and Peroxisome Proliferator-Activated Receptor (PPAR)α, and decreased TNFα; 2) culture medium conditioned by A427 cells grown in the absence of PUFAs blocked myosin production and the differentiation of C2C12 muscle cells; conversely, muscle cells grown in culture medium conditioned by the same cells in the presence of PUFAs showed myosin expression and formed myotubes; 3) adding HHE or HNE directly to C2C12 cells maintained in culture medium conditioned by A427 cells in the absence of PUFAs stimulated myosin production and myotube formation; 4) putative consensus sequences for (PPARs) have been found in genes encoding fast isoforms of myosin heavy chain, by a bioinformatics approach. The overall results show, first, the ability of both n-3 and n-6 PUFAs and their lipid peroxidation products to prevent the blocking of myosin expression and myotube formation caused in C2C12 cells by medium conditioned by human lung tumour cells. The C2C12 cell differentiation can be due to direct effect of lipid peroxidation products, as evidenced by treating C2C12 cells with HHE and HNE, and to the decrease of pro-inflammatory TNFα in A427 cell culture medium. The presence of consensus sequences for PPARs in genes encoding the fast isoforms of myosin heavy chain suggests that the effects of PUFAs, HHE, and HNE are PPAR-mediated.
Collapse
Affiliation(s)
- G Muzio
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - M Ricci
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - N Traverso
- Department of Experimental Medicine, University of Genoa, Via Leon Battista Alberti 2, 16132 Genoa, Italy
| | - F Monacelli
- Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy
| | - M Oraldi
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - M Maggiora
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - R A Canuto
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy.
| |
Collapse
|
7
|
Kim Y, Kim J, Whang KY, Park Y. Impact of Conjugated Linoleic Acid (CLA) on Skeletal Muscle Metabolism. Lipids 2016; 51:159-78. [PMID: 26729488 DOI: 10.1007/s11745-015-4115-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/16/2015] [Indexed: 12/17/2022]
Abstract
Conjugated linoleic acid (CLA) has garnered special attention as a food bioactive compound that prevents and attenuates obesity. Although most studies on the effects of CLA on obesity have focused on the reduction of body fat, a number of studies have demonstrated that CLA also increases lean body mass and enhances physical performances. It has been suggested that these effects may be due in part to physiological changes in the skeletal muscle, such as changes in the muscle fiber type transformation, alteration of the intracellular signaling pathways in muscle metabolism, or energy metabolism. However, the mode of action for CLA in muscle metabolism is not completely understood. The purpose of this review is to summarize the current knowledge of the effects of CLA on skeletal muscle metabolism. Given that CLA not only reduces body fat, but also improves lean mass, there is great potential for the use of CLA to improve muscle metabolism, which would have a significant health impact.
Collapse
Affiliation(s)
- Yoo Kim
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA, 01003, USA
| | - Jonggun Kim
- Division of Biotechnology, Korea University, Seoul, 136-713, Republic of Korea
| | - Kwang-Youn Whang
- Division of Biotechnology, Korea University, Seoul, 136-713, Republic of Korea
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA, 01003, USA.
| |
Collapse
|
8
|
Conjugated Linoleic Acid (CLA) Stimulates Mitochondrial Biogenesis Signaling by the Upregulation of PPARγ Coactivator 1α (PGC‐1α) in C2C12 Cells. Lipids 2015; 50:329-38. [DOI: 10.1007/s11745-015-4000-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/10/2015] [Indexed: 01/11/2023]
|
9
|
Investigation of Micellization and Vesiculation of Conjugated Linoleic Acid by Means of Self-Assembling and Self-Crosslinking. J SURFACTANTS DETERG 2014. [DOI: 10.1007/s11743-014-1591-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Cao Y, Wang W, Xu Y, Yang B, Wang Y. Enzymatic synthesis of extremely pure triacylglycerols enriched in conjugated linoleic acids. Molecules 2013; 18:9704-16. [PMID: 23945644 PMCID: PMC6270589 DOI: 10.3390/molecules18089704] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/05/2013] [Accepted: 08/12/2013] [Indexed: 11/25/2022] Open
Abstract
This work was objectively targeted to synthesize extremely pure triacylglycerols (TAG) enriched in conjugated linoleic acids (CLAs) for medical and dietetic purposes. Extremely pure CLA-enriched TAG was successfully synthesized by using the multi-step process: TAG was primarily synthesized by lipase-catalyzed esterification of CLA and glycerol and then the lower glycerides [monoacylglycerol (MAG) and diacylglycerol (DAG)] in the esterification mixtures was hydrolyzed to free fatty acids (FFAs) by a mono- and di-acylglycerol lipase (lipase SMG1), finally, the FFAs were further separated from TAG by low temperature (150 °C) molecular distillation. The operation parameters for the lipase SMG1-catalyzed hydrolysis were optimized using response surface methodology based on the central composite rotatable design (CCRD). The operation parameters included water content, pH and reaction temperature and all of these three parameters showed significant effects on the hydrolysis of lower glycerides. The optimal conditions were obtained with a water content of 66.4% (w/w, with respect to oil mass), pH at 5.7 and 1 h of reaction time at 19.6 °C. Under these conditions, the content of lower glycerides in the reaction mixture decreased from 45.2% to 0.3% and the purity of CLA-enriched TAG reached 99.7%. Further purification of TAG was accomplished by molecular distillation and the final CLA-enriched TAG product yielded 99.8% of TAG. These extremely pure CLA-enriched TAG would be used for in vivo studies in animals and humans in order to get specific information concerning CLA metabolism.
Collapse
Affiliation(s)
- Yu Cao
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Weifei Wang
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China
| | - Yang Xu
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China
| | - Bo Yang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
- Author to whom correspondence should be addressed; E-Mails: (Y.W.), (B.Y.); Tel./Fax: +86-20-8711-3842 (Y.W.); Tel./Fax: +86-20-3938-0696 (B.Y.)
| | - Yonghua Wang
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China
- Author to whom correspondence should be addressed; E-Mails: (Y.W.), (B.Y.); Tel./Fax: +86-20-8711-3842 (Y.W.); Tel./Fax: +86-20-3938-0696 (B.Y.)
| |
Collapse
|