1
|
Breen AK, Thomas S, Beckett D, Agsalud M, Gingras G, Williams J, Wasko BM. An mTOR inhibitor discovery system using drug-sensitized yeast. GeroScience 2025:10.1007/s11357-025-01534-8. [PMID: 39885115 DOI: 10.1007/s11357-025-01534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025] Open
Abstract
Inhibition of the target of rapamycin (TOR/mTOR) protein kinase by the drug rapamycin extends lifespan and health span across diverse species. However, rapamycin has potential off-target and side effects that warrant the discovery of additional TOR inhibitors. TOR was initially discovered in Saccharomyces cerevisiae (yeast) which contains two TOR paralogs, TOR1 and TOR2. Yeast lacking functional Tor1 are viable but are hypersensitive to growth inhibition by TORC1 inhibitors, which is a property of yeast that can be exploited to identify TOR inhibitors. Additionally, yeast lacking FK506-sensitive proline rotamase (FPR1) or containing a tor1-1 allele (a mutation in the Fpr1-rapamycin binding domain of Tor1) are robustly and selectively resistant to rapamycin and analogs that allosterically inhibit TOR activity via an FPR1-dependent mechanism. To facilitate the identification of TOR inhibitors, we generated a panel of yeast strains with mutations in TOR pathway genes combined with the removal of 12 additional genes involved in drug efflux. This creates a drug-sensitive strain background that can sensitively and effectively identify TOR inhibitors. In a wild-type yeast strain background, 25 µM of Torin1 and 100 µM of GSK2126458 (omipalisib) are necessary to observe TOR1-dependent growth inhibition by these known TOR inhibitors. In contrast, 100 nM Torin1 and 500 nM GSK2126458 (omipalisib) are sufficient to identify TOR1-dependent growth inhibition in the drug-sensitized background. This represents a 200-fold and 250-fold increase in detection sensitivity for Torin1 and GSK2126458, respectively. Additionally, for the TOR inhibitor AZD8055, the drug-sensitive system resolves that the compound results in TOR1-dependent growth sensitivity at 100 µM, whereas no growth inhibition is observed in a wild-type yeast strain background. Our platform also identifies the caffeine analog aminophylline as a TOR1-dependent growth inhibitor via selective tor1 growth sensitivity. We also tested nebivolol, isoliquiritigenin, canagliflozin, withaferin A, ganoderic acid A, and taurine and found no evidence for TOR inhibition using our yeast growth-based model. Our results demonstrate that this system is highly effective at identifying compounds that inhibit the TOR pathway. It offers a rapid, cost-efficient, and sensitive tool for drug discovery, with the potential to expedite the identification of new TOR inhibitors that could serve as geroprotective and/or anti-cancer agents.
Collapse
Affiliation(s)
- Anna K Breen
- Department of Biomedical Sciences, Western University of Health Sciences, Lebanon, OR, 97355, USA
| | - Sarah Thomas
- Department of Biomedical Sciences, Western University of Health Sciences, Lebanon, OR, 97355, USA
| | - David Beckett
- Department of Biomedical Sciences, Western University of Health Sciences, Lebanon, OR, 97355, USA
| | - Matthew Agsalud
- Department of Biomedical Sciences, Western University of Health Sciences, Lebanon, OR, 97355, USA
| | - Graham Gingras
- Department of Biomedical Sciences, Western University of Health Sciences, Lebanon, OR, 97355, USA
| | - Judd Williams
- Department of Biomedical Sciences, Western University of Health Sciences, Lebanon, OR, 97355, USA
| | - Brian M Wasko
- Department of Biomedical Sciences, Western University of Health Sciences, Lebanon, OR, 97355, USA.
| |
Collapse
|
2
|
Andreani GA, Mahmood S, Kua KL, Patel MS, Rideout TC. Influence of maternal α-lipoic acid supplementation in Sprague Dawley rats on maternal and fetal metabolic health in pregnancies complicated by obesity. J Nutr Biochem 2024; 134:109731. [PMID: 39147245 DOI: 10.1016/j.jnutbio.2024.109731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/19/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024]
Abstract
The objective of this study was to investigate the influence of α-lipoic acid (LA; R enantiomer) supplementation on maternal and fetal metabolic health in pregnancies complicated by maternal obesity. Forty female Sprague-Dawley rats were randomized to one of 4 treatment groups (n=10/group) throughout prepregnancy (3 weeks) and gestation (20 days): (1) a low calorie control (CON); (2) a high calorie obesity-inducing diet (HC); (3) the HC diet with 0.25% LA (HC+LA) or; (4) the HC diet pair-fed to match the caloric intake of the HC+LA group (HC+PF). On gestation day 20, pregnant rats were placed under anesthesia for collection of maternal/fetal blood and tissues. Compared with the HC group, LA-supplemented mothers demonstrated lower maternal prepregnancy and gestational weight gain (GWG), improved glycemic control (lower homeostatic model assessment for insulin resistance), and higher cholesterol concentrations in serum [high-density lipoprotein cholesterol (HDL-C) and low-and very-low density lipoprotein cholesterol (LDL/VLDL) fractions] and liver. Male and female fetuses from LA-supplemented mothers exhibited lower body weight, improved insulin sensitivity, and evidence of altered lipid metabolism including lower serum HDL-C, lower serum triglyceride (TG), and increased hepatic TG accumulation. Although maternal LA supplementation showed some benefit for both mothers and fetuses with respect to obesity and glycemic control, concern about the potential longer-term implications of liver cholesterol (mothers) and TG accumulation (fetuses) needs further investigation.
Collapse
Affiliation(s)
- Gabriella A Andreani
- Departments of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Saleh Mahmood
- Departments of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Kok Lim Kua
- Department of Pediatrics, Center for Diabetes and Metabolic Disease, and Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mulchand S Patel
- Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Todd C Rideout
- Departments of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
3
|
Park J, Rah SY, An HS, Lee JY, Roh GS, Ryter SW, Park JW, Yang CH, Surh YJ, Kim UH, Chung HT, Joe Y. Metformin-induced TTP mediates communication between Kupffer cells and hepatocytes to alleviate hepatic steatosis by regulating lipophagy and necroptosis. Metabolism 2023; 141:155516. [PMID: 36773805 DOI: 10.1016/j.metabol.2023.155516] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/24/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
OBJECTIVE Emerging evidence suggests that crosstalk between Kupffer cells (KCs) and hepatocytes protects against non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms that lead to the reduction of steatosis in NAFLD remain obscure. METHODS Ttp+/+ and Ttp-/- mice were fed with a high-fat diet. Hepatic steatosis was analyzed by Nile Red staining and measurement of inflammatory cytokines. Lipid accumulation and cell death were evaluated in co-culture systems with primary hepatocytes and KCs derived from either Ttp+/+ or Ttp-/- mice. RESULTS Tristetraprolin (TTP), an mRNA binding protein, was essential for the protective effects of metformin in NAFLD. Metformin activated TTP via the AMPK-Sirt1 pathway in hepatocytes and KCs. TTP inhibited TNF-α production in KCs, which in turn decreased hepatocyte necroptosis. Downregulation of Rheb expression by TTP promoted hepatocyte lipophagy via mTORC1 inhibition and increased nuclear translocation of transcription factor-EB (TFEB). Consistently, TTP-deficient NAFLD mice failed to respond to metformin with respect to alleviation of hepatic steatosis, protection of hepatocyte necroptosis, or induction of lipophagy. CONCLUSIONS TTP, which is essential for the protective effects of metformin, may represent a novel primary therapeutic target in NAFLD.
Collapse
Affiliation(s)
- Jeongmin Park
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - So-Young Rah
- National Creative Research Laboratory for Ca(2+) signaling Network, Chonbuk National University Medical School, Jeonju 54907, Republic of Korea
| | - Hyeong Seok An
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | | | - Jeong Woo Park
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Chae Ha Yang
- College of Korean Medicine, Daegu Haany University, Daegu 42158, Republic of Korea
| | - Young-Joon Surh
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Uh-Hyun Kim
- Department of Biochemistry, School of Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Hun Taeg Chung
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea.
| | - Yeonsoo Joe
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea.
| |
Collapse
|
4
|
Yang J, Suo H, Song J. Protective role of mitoquinone against impaired mitochondrial homeostasis in metabolic syndrome. Crit Rev Food Sci Nutr 2020; 61:3857-3875. [PMID: 32815398 DOI: 10.1080/10408398.2020.1809344] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondria control various processes in cellular metabolic homeostasis, such as adenosine triphosphate production, generation and clearance of reactive oxygen species, control of intracellular Ca2+ and apoptosis, and are thus a critical therapeutic target for metabolic syndrome (MetS). The mitochondrial targeted antioxidant mitoquinone (MitoQ) reduces mitochondrial oxidative stress, prevents impaired mitochondrial dynamics, and increases mitochondrial turnover by promoting autophagy (mitophagy) and mitochondrial biogenesis, which ultimately contribute to the attenuation of MetS conditions, including obesity, insulin resistance, hypertension and cardiovascular disease. The regulatory effect of MitoQ on mitochondrial homeostasis is mediated through AMPK and its downstream signaling pathways, including MTOR, SIRT1, Nrf2 and NF-κB. However, there are few reviews focusing on the critical role of MitoQ as a therapeutic agent in the treatment of MetS. The purpose of this review is to summarize the mitochondrial role in the pathogenesis of MetS, especially in obesity and type 2 diabetes, and discuss the effect and underlying mechanism of MitoQ on mitochondrial homeostasis in MetS.
Collapse
Affiliation(s)
- Jing Yang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China.,Graduate School, Chongqing Technology and Business University, Chongqing, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Haghighatdoost F, Gholami A, Hariri M. Alpha-lipoic acid effect on leptin and adiponectin concentrations: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Pharmacol 2020; 76:649-657. [PMID: 32040596 DOI: 10.1007/s00228-020-02844-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND New evidence suggests that dysregulation of adipocytokines caused by excess adiposity plays an important role in the pathogenesis of various obesity comorbidities. Our aim in this meta-analysis was to determine the effect of alpha-lipoic acid (ALA) supplementation on serum levels of leptin and adiponectin. METHODS We searched Scopus, PubMed, Google Scholar, and ISI Web of Science from inception up to July 2019. Mean difference for leptin and adiponectin were calculated by subtracting the change from baseline in each study group. Summary estimates for the overall effect of ALA on serum leptin and adiponectin concentrations were calculated using random effects model. Results were presented as weighted mean difference (WMD) and their 95% confidence intervals (CI). Between-study heterogeneity was examined using the I2 statistics. RESULT Eight studies were included in systematic review and seven studies in meta-analysis. The overall effect suggested a significant decrement in serum leptin concentrations (WMD = - 3.63; 95% CI, - 5.63, - 1.64 μg/ml; I2 = 80.7%) and a significant increase in serum levels of adiponectin (WMD = 1.98 μg/ml; 95% CI, 0.92, 3.04; I2 = 95.7%). Subgroup analyses based on age showed a significant reduction in leptin levels only in younger adults, and subgroup analysis based on duration indicated in studies with a duration of more than 8 weeks adiponectin levels increased significantly and leptin levels decreased significantly. CONCLUSION Our results revealed ALA decreased leptin and increased adiponectin especially in studies lasted more than 8 weeks. We still need more studies with different ALA dose, intervention duration, and separately on male and female.
Collapse
Affiliation(s)
- Fahimeh Haghighatdoost
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Gholami
- Department of Epidemiology & Biostatistics, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mitra Hariri
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
6
|
Hong OK, Son JW, Kwon HS, Lee SS, Kim SR, Yoo SJ. Alpha-lipoic acid preserves skeletal muscle mass in type 2 diabetic OLETF rats. Nutr Metab (Lond) 2018; 15:66. [PMID: 30275871 PMCID: PMC6162899 DOI: 10.1186/s12986-018-0302-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/14/2018] [Indexed: 12/23/2022] Open
Abstract
Background Increased oxidative stress and impaired antioxidant defense are important mechanisms in the pathogenesis of diabetic myopathy. Alpha-lipoic acid (ALA) has been indicated as a weight-loss treatment in rodents and humans, but studies are limited. In the present study, we aimed to determine the influence of ALA, a potent biological antioxidant, on metabolic and growth processes in diabetic rat skeletal muscle. Methods Male 25-week-old type 2 diabetic rats (OLETF) were randomly divided into two groups, a control group (OLETF-C) and an ALA-treated group (OLETF-ALA) supplemented with 100 mg/kg ALA for 8 weeks. Age-matched, healthy, nondiabetic LETO (LETO-C) rats were used as controls. Results At 32 weeks of age, body weight was decreased by 6.8%, and the areas under the curve of IP-GTT, fasting glucose, and insulin were less in OLETF-ALA rats compared with OLETF-C rats. ALA significantly preserved muscle mass and enhanced muscle fiber cross-sectional area and fiber frequency percentage in the skeletal muscle of OLETF rats. Although the activation of myoD, myogenin, and myostatin in gastrocnemius muscle was significantly inhibited in OLETF-ALA rats relative to OLETF-C rats, there were no differences in the expression levels of muscle atrogin-1 and MuRF1 between the two groups. ALA treatment significantly increased the levels of phosphorylated 5'-AMPK, SIRT1, and PGC-1α, as well as the levels of phosphorylated AKT, mTOR, and p70S6 kinase in OLETF-ALA rats compared with OLETF-C rats. In contrast, the levels of phosphorylated p38 MAPK, IRS-1, and FOXO1 were decreased in OLETF-ALA rats compared with OLETF-C rats. Conclusions ALA treatment preserved mass in the gastrocnemius muscles of OLETF rats. ALA significantly upregulated the AMPK/SIRT1/PGC-1α and AKT/mTOR/p70S6K signaling pathways in OLETF rat skeletal muscle. Therefore, ALA may be a potential therapeutic intervention for skeletal muscle loss in animal models of insulin resistance.
Collapse
Affiliation(s)
- Oak-Kee Hong
- 1Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daro, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Jang-Won Son
- 2Division of Endocrinology and Metabolism, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327, Sosa-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14647 Republic of Korea
| | - Hyuk-Sang Kwon
- 3Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul, 07345 Republic of Korea
| | - Seong-Su Lee
- 2Division of Endocrinology and Metabolism, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327, Sosa-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14647 Republic of Korea
| | - Sung-Rae Kim
- 2Division of Endocrinology and Metabolism, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327, Sosa-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14647 Republic of Korea
| | - Soon Jib Yoo
- 2Division of Endocrinology and Metabolism, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327, Sosa-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14647 Republic of Korea
| |
Collapse
|
7
|
A system to identify inhibitors of mTOR signaling using high-resolution growth analysis in Saccharomyces cerevisiae. GeroScience 2017; 39:419-428. [PMID: 28707282 DOI: 10.1007/s11357-017-9988-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a central regulator of growth and proliferation and mTOR inhibition is a promising therapy for a variety of diseases and disorders. Inhibition of mTOR complex I (mTORC1) with rapamycin delays aging and increases healthy longevity in laboratory animals and is used clinically at high doses to prevent organ transplant rejection and to treat some forms of cancer. Clinical use of rapamycin is associated with several unwanted side effects, however, and several strategies are being taken to identify mTORC1 inhibitors with fewer side effects. We describe here a yeast-based growth assay that can be used to screen for novel inhibitors of mTORC1. By testing compounds using a wild-type strain and isogenic cells lacking either TOR1 or FPR1, we can resolve not only whether a compound is an inhibitor of mTORC1 but also whether the inhibitor acts through a mechanism similar to rapamycin by binding Fpr1. Using this assay, we show that rapamycin derivatives behave similarly to rapamycin, while caffeine and the ATP competitive inhibitors Torin 1 and GSK2126458 are mTORC1 inhibitors in yeast that act independently of Fpr1. Some mTOR inhibitors in mammalian cells do not inhibit mTORC1 in yeast, and several nutraceutical compounds were not found to specifically inhibit mTOR but resulted in a general inhibition of yeast growth. Our screening method holds promise as a means of effectively assaying drug libraries for mTOR-inhibitory molecules in vivo that may be adapted as novel treatments to fight diseases and extend healthy longevity.
Collapse
|
8
|
Le Bacquer O, Combe K, Montaurier C, Salles J, Giraudet C, Patrac V, Domingues-Faria C, Guillet C, Louche K, Boirie Y, Sonenberg N, Moro C, Walrand S. Muscle metabolic alterations induced by genetic ablation of 4E-BP1 and 4E-BP2 in response to diet-induced obesity. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201700128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/07/2017] [Accepted: 04/18/2017] [Indexed: 12/22/2022]
Affiliation(s)
| | - Kristell Combe
- Université Clermont Auvergne; INRA; Clermont-Ferrand France
| | | | - Jérôme Salles
- Université Clermont Auvergne; INRA; Clermont-Ferrand France
| | | | | | | | | | - Katie Louche
- INSERM UMR1048; Institut des Maladies Cardiovasculaires et Métaboliques; Université Paul Sabatier; Toulouse France
| | - Yves Boirie
- Université Clermont Auvergne; INRA; Clermont-Ferrand France
- CHU Clermont-Ferrand; Service Nutrition Clinique; Clermont Ferrand France
| | - Nahum Sonenberg
- Department of Biochemistry; McGill University; Montreal QC Canada
| | - Cédric Moro
- INSERM UMR1048; Institut des Maladies Cardiovasculaires et Métaboliques; Université Paul Sabatier; Toulouse France
| | | |
Collapse
|
9
|
Li N, Yan W, Hu X, Huang Y, Wang F, Zhang W, Wang Q, Wang X, Sun K. Effects of oral α-lipoic acid administration on body weight in overweight or obese subjects: a crossover randomized, double-blind, placebo-controlled trial. Clin Endocrinol (Oxf) 2017; 86:680-687. [PMID: 28239907 DOI: 10.1111/cen.13303] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/29/2016] [Accepted: 01/09/2017] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Alpha-lipoic acid (ALA) has shown beneficial properties on diabetes and obesity. The aim of this study was to examine the effects of oral ALA on body weight in subjects with overweight or obese. DESIGN Single-centre, randomized, double-blind, crossover controlled study. PARTICIPANTS A total of 166 subjects of Chinese Han ethnicity with a BMI ≥25 kg/m2 were screened and 103 subjects fulfilled the study requirements, in terms of informed consent and participation to the study. MEASUREMENTS The subjects were randomized (1:1) to receive either ALA (1200 mg/day) or placebo treatment in a crossover design for 8 weeks. The primary end-point was the change in body weight. The secondary end-points were the changes in waist circumference, BMI, lipid profile, plasma leptin levels and the adverse events that occurred following ALA treatment. RESULTS The changes in the body weight and waist circumference noted in the ALA group were significantly different compared to the placebo group as demonstrated by mixed model statistical analysis (both P < 0·05). No real weight reduction was seen in the ALA group, and no significant differences were noted as regards cholesterol levels, triglyceride levels, high-density lipoprotein cholesterol levels and adverse events between the two groups. The administration of ALA was well tolerated, and no serious adverse events were noted. CONCLUSIONS Oral administration of ALA (1200 mg/day) for 8 weeks induced mild weight loss accompanied by a reduction in waist circumference.
Collapse
Affiliation(s)
- Nong Li
- Department of Endocrine and Metabolic Diseases, People's Hospital of Kelamay, Kelamay, Xinjiang, China
| | - Weili Yan
- Department of Clinical Epidemiology, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaojuan Hu
- Department of Endocrine and Metabolic Diseases, People's Hospital of Kelamay, Kelamay, Xinjiang, China
| | - Yongdi Huang
- Department of Epidemiology and Statistics, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Fugang Wang
- Department of Endocrine and Metabolic Diseases, People's Hospital of Kelamay, Kelamay, Xinjiang, China
| | - Weiguo Zhang
- Department of Epidemiology and Statistics, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qian Wang
- Department of Epidemiology and Statistics, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaoling Wang
- Georgia Prevention Institute, Georgia Health Sciences University, Georgia, USA
| | - Kehong Sun
- Department of Pharmacal, People's Hospital of Kelamay, Kelamay, Xinjiang, China
| |
Collapse
|
10
|
Woo JH, Shin KO, Lee YH, Jang KS, Bae JY, Roh HT. Effects of treadmill exercise on skeletal muscle mTOR signaling pathway in high-fat diet-induced obese mice. J Phys Ther Sci 2016; 28:1260-5. [PMID: 27190464 PMCID: PMC4868224 DOI: 10.1589/jpts.28.1260] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/08/2016] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The aim of this study was to investigate the effects of regular treadmill
exercise on skeletal muscle Rictor-Akt and mTOR-Raptor-S6K1 signaling pathway in high-fat
diet-induced obese mice. [Subjects and Methods] Four- week-old C57BL/6 mice were adopted
and classified into normal diet group (ND, n = 10), normal diet and training group (NDT, n
= 10), high-fat diet group (HF, n = 10), and high-fat diet and training group (HFT, n =
10). The exercise program consisted of a treadmill exercise provided at low intensity for
1–4 weeks, and moderate intensity for 5–8 weeks. [Results] The Western blot method was
used to measure the expression of mTOR, Raptor, S6K1, Rictor, and Akt proteins in the
soleus muscle. mTOR levels were significantly higher in the HF group than in the ND and
NDT groups. Raptor/mTORC1 and S6K1 levels were significantly higher in the HF group than
in all the other groups. Akt levels were significantly lower in the HF group than in the
NDT group. The risk of obesity may be associated with the overactivation of
the mTOR-Raptor-S6K1 signaling pathway and a decrease in Akt levels. [Conclusion] This
study also indicates that performing aerobic exercise may be associated with the
downregulation of the mTOR-Raptor-S6K1 pathway.
Collapse
Affiliation(s)
- Jin Hee Woo
- Department of Physical Education, College of Arts and Physical Education, Dong-A University, Republic of Korea
| | - Ki Ok Shin
- Department of Physical Education, College of Arts and Physical Education, Dong-A University, Republic of Korea
| | - Yul Hyo Lee
- Department of Physical Education, College of Arts and Physical Education, Dong-A University, Republic of Korea
| | - Ki Soeng Jang
- Department of Physical Education, College of Arts and Physical Education, Dong-A University, Republic of Korea
| | - Ju Yong Bae
- Department of Physical Education, College of Arts and Physical Education, Dong-A University, Republic of Korea
| | - Hee Tae Roh
- Department of Physical Education, College of Arts and Physical Education, Dong-A University, Republic of Korea
| |
Collapse
|
11
|
Jing Y, Cai X, Xu Y, Zhu C, Wang L, Wang S, Zhu X, Gao P, Zhang Y, Jiang Q, Shu G. α-Lipoic Acids Promote the Protein Synthesis of C2C12 Myotubes by the TLR2/PI3K Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1720-1729. [PMID: 26855124 DOI: 10.1021/acs.jafc.5b05952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Skeletal muscle protein turnover is regulated by endocrine hormones, nutrients, and inflammation. α-Lipoic acid (ALA) plays an important role in energy homeostasis. Therefore, the aim of this study was to investigate the effects of ALA on protein synthesis in skeletal muscles and reveal the underlying mechanism. ALA (25 μM) significantly increased the protein synthesis and phosphorylation of Akt, mTOR, and S6 in C2C12 myotubes with attenuated phosphorylation of AMPK, Ikkα/β, and eIF2α. Intraperitoneal injection of 50 mg/kg ALA also produced the same results in mouse gastrocnemius. Both the PI3K (LY294002) and mTOR (rapamycin) inhibitors abolished the effects of ALA on protein synthesis in the C2C12 myotubes. However, AICAR (AMPK agonist) failed to block the activation of mTOR and S6 by ALA. ALA increased TLR2 and MyD88 mRNA expression in the C2C12 myotubes. TLR2 knockdown by siRNA almost eliminated the effects of ALA on protein synthesis and the Akt/mTOR pathway in the C2C12 myotubes. Immunoprecipitation data showed that ALA enhanced the p85 subunit of PI3K binding to MyD88. These findings indicate that ALA induces protein synthesis and the PI3K/Akt signaling pathway by TLR2.
Collapse
Affiliation(s)
- Yuanyuan Jing
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Xingcai Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Yaqiong Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Canjun Zhu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Lina Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Songbo Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Xiaotong Zhu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Ping Gao
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Yongliang Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Qingyan Jiang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Gang Shu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| |
Collapse
|
12
|
Roberts JL, He B, Erickson A, Moreau R. Improvement of mTORC1-driven overproduction of apoB-containing triacylglyceride-rich lipoproteins by short-chain fatty acids, 4-phenylbutyric acid and (R)-α-lipoic acid, in human hepatocellular carcinoma cells. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:166-76. [DOI: 10.1016/j.bbalip.2015.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/24/2015] [Accepted: 12/07/2015] [Indexed: 01/22/2023]
|