1
|
Lv Y, Peng X, Lee YY, Xie X, Tan CP, Wang Y, Wang Y, Zhang Z. Changes in stability, phytonutrients, 3-chloropropanol esters and glycidyl esters of peanut oil-based diacylglycerols during heat treatment. Food Res Int 2024; 194:114900. [PMID: 39232527 DOI: 10.1016/j.foodres.2024.114900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Diacylglycerol (DAG) is generally considered one of the precursors of 3-chloropropanol esters (3-MCPDE) and glycidyl esters (GEs). This study aimed to evaluate static heating and stir-frying properties of peanut oil (PO) and PO based 58% and 82% DAG oils (PDAG-58 and PDAG-82). Observations revealed that, phytonutrient levels notably diminished during static heating, with PDAG exhibiting reduced oxidative stability, but maintaining a stability profile similar to PO over a short period. During stir-frying, 3-MCPDE content initially increased and then decreased whereas the opposite was observed for GEs. Furthermore, as temperature, and NaCl concentration increased, there was a corresponding increase in the levels of 3-MCPDE and GEs, although remained within safe limits. When used in suitable concentrations, these findings underscore the potential of DAG, as a nutritionally rich and oxidatively stable alternative to conventional cooking oils, promoting the use of DAG edible oil in heat-cooked food systems.
Collapse
Affiliation(s)
- Yongsi Lv
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xianwu Peng
- Amway (China) R&D Center Co., Ltd., Guangzhou, Guangdong 510730, China
| | - Yee-Ying Lee
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Xiaodong Xie
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Ying Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China; Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou, Guangdong 510632, China
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China; Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou, Guangdong 510632, China
| | - Zhen Zhang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
2
|
Lee H, Kang EY, Lee J, Kim Y, Kang S, Kim H, Kim HK, Gang G, Lee SG, Lei C, Go GW. A combined extract containing Schisandra chinensis (SCE) reduced hepatic triglyceride accumulation in rats fed a high-sucrose diet. Food Sci Biotechnol 2024; 33:1449-1457. [PMID: 38585559 PMCID: PMC10992756 DOI: 10.1007/s10068-023-01464-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 04/09/2024] Open
Abstract
Excessive hepatic lipid accumulation is closely linked to inflammation, insulin resistance, and metabolic syndromes. We hypothesized that a combined extract containing Schisandra chinensis (SCE) could alleviate hepatic lipid accumulation. Male Sprague-Dawley rats fed a high-sucrose diet (HSD) were randomly assigned to three groups (n = 6): normal diet (ND), HSD (60% kcal from sucrose), and HSD + SCE (HSD with 2.44% SCE). Liquid chromatography-tandem mass spectrometry revealed that SCE contains chlorogenic acid (5.514 ± 0.009 mg/g) and schisandrin (0.179 ± 0.002 mg/g) as bioactive components. SCE did not alter the body weight, fat mass, lean mass, or glucose levels. Strikingly, SCE effectively reduced the plasma triglyceride (TG) and hepatic TG levels compared to the HSD group. Adiposity reduction is due to decreased activity of hepatic de novo lipogenic enzymes. These results indicated that SCE has nutraceutical potential for the prevention and treatment of hepatic steatosis. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01464-1.
Collapse
Affiliation(s)
- Haneul Lee
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Eun Young Kang
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Joowon Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, 48513 Republic of Korea
| | - Yejin Kim
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Sumin Kang
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Hayoon Kim
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Hyun Kyung Kim
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Gyoungok Gang
- Department of Food Science and Nutrition, Pukyong National University, Busan, 48513 Republic of Korea
| | - Sang-gil Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, 48513 Republic of Korea
| | - Cao Lei
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, Republic of Korea
| | - Gwang-woong Go
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| |
Collapse
|
3
|
Qu H, Zong L, Sang J, Wa Y, Chen D, Huang Y, Chen X, Gu R. Effect of Lactobacillus rhamnosus hsryfm 1301 Fermented Milk on Lipid Metabolism Disorders in High-Fat-Diet Rats. Nutrients 2022; 14:4850. [PMID: 36432537 PMCID: PMC9698387 DOI: 10.3390/nu14224850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
To further explore and improve the mechanism of probiotics to alleviate the disorder of lipid metabolism, transcriptomic and metabolomic with bioinformatic analysis were combined. In the present study, we successfully established a rat model of lipid metabolism disorder using a high-fat diet. Intervention with Lactobacillus rhamnosus hsryfm 1301 fermented milk resulted in a significant reduction in body weight, serum free fatty acid and blood lipid levels (p < 0.05), which predicted that the lipid metabolism disorder was alleviated in rats. Metabolomics and transcriptomics identified a total of 33 significantly different metabolites and 183 significantly different genes screened in the intervention group compared to the model group. Comparative analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations identified a total of 61 pathways in which differential metabolites and genes were jointly involved, with linoleic acid metabolism, glycine, serine and threonine metabolism and glutamatergic synapse in both transcriptome and metabolome being found to be significantly altered (p < 0.05). Lactobacillus rhamnosus hsryfm 1301 fermented milk was able to directly regulate lipid metabolism disorders by regulating the metabolic pathways of linoleic acid metabolism, glycerophospholipid metabolism, fatty acid biosynthesis, alpha-linolenic acid metabolism, fatty acid degradation, glycerolipid metabolism and arachidonic acid metabolism. In addition, we found that Lactobacillus rhamnosus hsryfm 1301 fermented milk indirectly regulates lipid metabolism through regulating amino acid metabolism, the nervous system, the endocrine system and other pathways. Lactobacillus rhamnosus hsryfm 1301 fermented milk could alleviate the disorders of lipid metabolism caused by high-fat diet through multi-target synergy.
Collapse
Affiliation(s)
- Hengxian Qu
- College of Food Science and Technology, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225000, China
| | - Lina Zong
- College of Food Science and Technology, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225000, China
| | - Jian Sang
- Realab Biotechnology Co., Ltd., Beijing 100000, China
| | - Yunchao Wa
- College of Food Science and Technology, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225000, China
| | - Dawei Chen
- College of Food Science and Technology, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225000, China
| | - Yujun Huang
- College of Food Science and Technology, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225000, China
| | - Xia Chen
- College of Food Science and Technology, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225000, China
| | - Ruixia Gu
- College of Food Science and Technology, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
4
|
de Vasconcelos MHA, Tavares RL, Torres Junior EU, Dorand VAM, Batista KS, Toscano LT, Silva AS, de Magalhães Cordeiro AMT, de Albuquerque Meireles BRL, da Silva Araujo R, Alves AF, de Souza Aquino J. Extra virgin coconut oil (Cocos nucifera L.) exerts anti-obesity effect by modulating adiposity and improves hepatic lipid metabolism, leptin and insulin resistance in diet-induced obese rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
5
|
Ji S, Xu F, Zhang N, Wu Y, Ju X, Wang L. Dietary a novel structured lipid synthesized by soybean oil and coconut oil alter fatty acid metabolism in C57BL/6J mice. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Qiu C, Lei M, Lee WJ, Zhang N, Wang Y. Fabrication and characterization of stable oleofoam based on medium-long chain diacylglycerol and β-sitosterol. Food Chem 2021; 350:129275. [PMID: 33601090 DOI: 10.1016/j.foodchem.2021.129275] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/08/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
Oleofoams have emerged as attractive low-calorie aeration systems, but saturated lipids or large amount of surfactants are commonly required. Herein, an innovative strategy was proposed to create oleofoams using medium-long chain diacylglycerol (MLCD) and β-sitosterol (St). The oleofoams prepared using MLCD and St in ratios of 15:5 and 12:8 exhibited smaller bubble size and much higher stability. MLCD crystals formed rigid Pickering shell, whereby air bubbles acted as "active fillers" leading to enhanced rigidity. Both Pickering and network stabilization for the MLCD-St oleofoam provided a steric hindrance against coalescence. The gelators interacted via hydrogen bonding, causing a condensing effect in improving the gel elasticity. The oleofoams and foam-based emulsions exhibited a favorable capacity in controlling volatile release where the maximum headspace concentrations and partition coefficients showed a significantly decrease. Overall, the oleofoams have shown great potential for development of low-calorie foods and delivery systems with enhanced textural and nutritional features.
Collapse
Affiliation(s)
- Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Mengting Lei
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Wan Jun Lee
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Ning Zhang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China.
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China.
| |
Collapse
|
7
|
Zhang F, Song M, Chen L, Yang X, Li F, Yang Q, Duan C, Ling M, Lai X, Zhu X, Wang L, Gao P, Shu G, Jiang Q, Wang S. Dietary Supplementation of Lauric Acid Alleviates the Irregular Estrous Cycle and the Impaired Metabolism and Thermogenesis in Female Mice Fed with High-Fat Diet (HFD). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12631-12640. [PMID: 33140642 DOI: 10.1021/acs.jafc.0c05235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lauric acid (LA) has been implicated in the prevention/treatment of obesity. However, the role of LA in modulating an obesity-related female reproductive disorder remains largely unknown. Here, female mice were fed a control diet, high-fat diet (HFD), or HFD supplemented with 1% LA. The results demonstrated that the HFD-induced estrous cycle irregularity and the reduction of serum follicle-stimulating hormone (FSH) were alleviated by LA supplementation. In possible mechanisms, LA supplementation led to significant increase in serum lipid metabolites such as sphingomyelin and lysophosphatidylcholine containing LA (C12:0) and the improvement of glucose metabolism in mice fed HFD. Moreover, impaired body energy metabolism and weakened brown adipose tissue (BAT) thermogenesis of HFD-fed mice were improved by LA supplementation. Together, these findings showed that LA supplementation alleviated HFD-induced estrous cycle irregularity, possibly associated with altered serum lipid metabolites, improved glucose metabolism, body energy metabolism, and BAT thermogenesis. These findings suggested the potential application of LA in alleviating obesity and its related reproductive disorders.
Collapse
Affiliation(s)
- Fenglin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Min Song
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xiaohua Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Fan Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Qiang Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Chen Duan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Mingfa Ling
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xumin Lai
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
8
|
Wang S, Lee WJ, Wang Y, Tan CP, Lai OM, Wang Y. Effect of Purification Methods on the Physicochemical and Thermodynamic Properties and Crystallization Kinetics of Medium-Chain, Medium-Long-Chain, and Long-Chain Diacylglycerols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8391-8403. [PMID: 32511921 DOI: 10.1021/acs.jafc.0c01346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Medium-chain diacylglycerol (MCD), medium-long-chain diacylglycerol (MLCD), and long-chain diacylglycerol (LCD) were prepared through enzymatic esterification using different conditions at temperatures of 55-70 °C and reaction times of 1.5-5 h and in the presence of 5-6% Novozym 435. Subsequently, purification was performed using three different techniques, namely, molecular distillation (MD), deodorization (DO), and silica gel column chromatography (SGCC). Variations in terms of the physicochemical and thermodynamic properties, crystallization properties, and kinetics of the diacylglycerols (DAGs) before and after purification were determined. Irrespective of the DAG chain lengths, SGCC was able to produce samples with high DAG purity (96-99 wt %), followed by MD (58-79 wt %) and DO (39-59 wt %). A higher 1,3-DAG/1,2-DAG ratio was recorded for all samples, with the highest ratio recorded for SGCC purified samples. Regardless of the purification techniques used, the solid fat content (SFC) profiles of crude samples with steep curves were altered post-purification, showing a gradual increment in SFC along with increasing temperature. Modification of the Avrami constant and coefficient suggested the modification of the crystal growth mechanism post-purification. Crystallization and melting temperatures of products with a higher DAG purity were shifted to a higher temperature region. Variations were also reflected in terms of the crystal polymorphism, whereby the α and β' crystals transitioned into the more stable β form in purified samples accompanied by modification in the microstructures and crystal sizes. However, there was insignificant change in the morphology of MLCD crystal after purification, except for the decrease in crystal sizes. In conclusion, synthesis of MCD, MLCD, and LCD comprising different DAG purities had distinctive SFC profiles, thermodynamic properties, crystallization kinetics, and crystal morphologies, which can be further incorporated into the preparation of a variety of fat products to obtain end products with desired characteristics.
Collapse
Affiliation(s)
- Shaolin Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou, Guangdong 510632, People's Republic of China
| | - Wan Jun Lee
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou, Guangdong 510632, People's Republic of China
| | - Ying Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou, Guangdong 510632, People's Republic of China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43300 Serdang, Selangor, Malaysia
| | - Oi Ming Lai
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43300 Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, 43300 Serdang, Selangor, Malaysia
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou, Guangdong 510632, People's Republic of China
| |
Collapse
|
9
|
Yang J, Peng T, Huang J, Zhang G, Xia J, Ma M, Deng D, Gong D, Zeng Z. Effects of medium- and long-chain fatty acids on acetaminophen- or rifampicin-induced hepatocellular injury. Food Sci Nutr 2020; 8:3590-3601. [PMID: 32724621 PMCID: PMC7382196 DOI: 10.1002/fsn3.1641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 11/11/2022] Open
Abstract
Drug-induced liver injury (DILI) is one of the common adverse effects of drug therapy, which is closely associated with oxidative stress, apoptosis, and inflammation response. Medium-chain fatty acids (MCFA) were reported to relieve inflammation and attenuate oxidative stress. However, little has been known about the hepatoprotective effects of MCFA in DILI. In the present study, acetaminophen (AP) and rifampicin (RFP) were used to establish DILI models in LO2 cells, and the cytoprotective effects of MCFA on hepatocellular injury were investigated. Results showed that the optimal condition for the DILI model was treatment with 10 mM AP or 600 µM RFP for 24 hr. LCFA treatment markedly reduced the cell viability and increased the activities of alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase. Meanwhile, LCFA treatment aggravated cell apoptosis, mitochondrial dysfunction, and oxidative stress. The mRNA and protein expression levels of inflammatory cytokines (IL-1β and TNF-α) were significantly elevated by LCFA. In contrast, MCFA treatment did not significantly affect cell viability, apoptosis, oxidative, stress and inflammation, and it did not produce the detrimental effects on DILI models. Therefore, we proposed that MCFA may be more safe and suitable than LCFA as nutrition support or the selection of daily dietary oil and fat for the patients with DILI.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
- Jiangxi Province Key Laboratory of Edible and Medicinal Plant ResourcesNanchang UniversityNanchangChina
- College of Food and TechnologyNanchang UniversityNanchangChina
| | - Ting Peng
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
- Jiangxi Province Key Laboratory of Edible and Medicinal Plant ResourcesNanchang UniversityNanchangChina
- College of Food and TechnologyNanchang UniversityNanchangChina
| | - Jiyong Huang
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
- Jiangxi Province Key Laboratory of Edible and Medicinal Plant ResourcesNanchang UniversityNanchangChina
- School of Environmental and Chemical EngineeringNanchang UniversityNanchangChina
| | - Guohua Zhang
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
- Jiangxi Province Key Laboratory of Edible and Medicinal Plant ResourcesNanchang UniversityNanchangChina
- College of Food and TechnologyNanchang UniversityNanchangChina
| | - Jiaheng Xia
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
- Jiangxi Province Key Laboratory of Edible and Medicinal Plant ResourcesNanchang UniversityNanchangChina
- School of Environmental and Chemical EngineeringNanchang UniversityNanchangChina
| | - Maomao Ma
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
- Jiangxi Province Key Laboratory of Edible and Medicinal Plant ResourcesNanchang UniversityNanchangChina
- College of Food and TechnologyNanchang UniversityNanchangChina
| | - Danwen Deng
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
- Jiangxi Province Key Laboratory of Edible and Medicinal Plant ResourcesNanchang UniversityNanchangChina
| | - Deming Gong
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
- Jiangxi Province Key Laboratory of Edible and Medicinal Plant ResourcesNanchang UniversityNanchangChina
- Department of BiomedicineNew Zealand Institute of Natural Medicine ResearchAucklandNew Zealand
| | - Zheling Zeng
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
- Jiangxi Province Key Laboratory of Edible and Medicinal Plant ResourcesNanchang UniversityNanchangChina
- School of Environmental and Chemical EngineeringNanchang UniversityNanchangChina
| |
Collapse
|
10
|
Chen J, Lee WJ, Qiu C, Wang S, Li G, Wang Y. Immobilized Lipase in the Synthesis of High Purity Medium Chain Diacylglycerols Using a Bubble Column Reactor: Characterization and Application. Front Bioeng Biotechnol 2020; 8:466. [PMID: 32509749 PMCID: PMC7248569 DOI: 10.3389/fbioe.2020.00466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/21/2020] [Indexed: 11/20/2022] Open
Abstract
Novozym® 435, an immobilized lipase from Candida antarctica B. (CALB), was used as a biocatalyst for the synthesis of high purity medium chain diacylglycerol (MCD) in a bubble column reactor. In this work, the properties of the MCD produced were characterized followed by determining its practical application as an emulsifier in water-in-oil (W/O) emulsion. Two types of MCDs, namely, dicaprylin (C8-DAG) and dicaprin (C10-DAG), were prepared through enzymatic esterification using the following conditions: 5% Novozym® 435, 2.5% deionized water, 60°C for 30 min followed by purification. A single-step molecular distillation (MD) (100–140°C, 0.1 Pa, 300 rpm) was performed and comparison was made to that of a double-step purification with MD followed by silica gel column chromatography technique (MD + SGCC). Crude C8-DAG and C10-DAG with DAG concentration of 41 and 44%, respectively, were obtained via the immobilized enzyme catalyzing reaction. Post-purification via MD, the concentrations of C8-DAG and C10-DAG were increased to 80 and 83%, respectively. Both MCDs had purity of 99% after the MD + SGCC purification step. Although Novozym® 435 is a non-specific lipase, higher ratios of 1,3-DAG to 1,2-DAG were acquired. Via MD, the ratios of 1,3-DAG to 1,2-DAG in C8-DAG and C10-DAG were 5.8:1 and 7.3:1, respectively. MCDs that were purified using MD + SGCC were found to contain 1,3-DAG to 1,2-DAG ratios of 8.8:1 and 9.8:1 in C8-DAG and C10-DAG, respectively. The crystallization and melting peaks were shifted to higher temperature regions as the purity of the MCD was increased. Dense needle-like crystals were observed in MCDs with high purities. Addition of 5% C8-DAG and C10-DAG as emulsifier together in the presence of 9% of hydrogenated soybean oil produced stable W/O emulsion with particle size of 18 and 10 μm, respectively.
Collapse
Affiliation(s)
- Jiazi Chen
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Wan Jun Lee
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Shaolin Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Guanghui Li
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
A high-fat diet enriched in medium chain triglycerides triggers hepatic thermogenesis and improves metabolic health in lean and obese mice. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158582. [DOI: 10.1016/j.bbalip.2019.158582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/22/2019] [Accepted: 12/01/2019] [Indexed: 02/07/2023]
|
12
|
Rice bran oil ameliorates inflammatory responses by enhancing mitochondrial respiration in murine macrophages. PLoS One 2019; 14:e0222857. [PMID: 31603952 PMCID: PMC6788716 DOI: 10.1371/journal.pone.0222857] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/23/2019] [Indexed: 01/06/2023] Open
Abstract
Previous studies have revealed the anti-inflammatory properties of rice bran oil (RBO), but the detailed mechanisms are poorly understood. Recent studies on the molecular/cellular anti-inflammatory mechanisms of dietary components have demonstrated that mitochondrial respiration plays a key role in macrophage functioning. Since dietary lipids are major substrates for mitochondrial respiration through β-oxidation, the current study examined whether RBO regulates inflammatory responses by modulating mitochondrial energy metabolism. Palm oil (PO), enriched with palmitic acid which are known to be effectively taken up by cells and used for oxidative phosphorylation, served as a positive control. In the in vitro model of LPS-stimulated RAW 264.7 murine cells, the levels of pro-inflammatory cytokines (IL-6 and TNF-α) in the culture supernatant were significantly reduced by RBO treatment. In contrast, secretion of the anti-inflammatory cytokine IL-10 was upregulated by RBO. Transcription of genes encoding inflammatory mediator molecules (COX-2 and iNOS) and expression of activation markers (CD80, CD86, and MHC-II) in LPS-stimulated RAW 264.7 cells were suppressed by RBO. Mitochondrial respiration (as assessed by an extracellular flux analyzer) increased upon RBO treatment, as the basal respiration, maximal respiration, ATP production, and spare respiratory capacity were upregulated. In an in vivo study, C57BL/6 mice were fed a negative control diet containing corn oil (CO), PO, or RBO for 4 weeks, and bone marrow-derived macrophages (BMDM) were isolated from their tibias and femurs. In pro-inflammatory M1-polarized BMDM (M1-BMDM), the RBO-induced suppression of IL-6 and TNF-α was recapitulated in vivo. Mitochondrial respiration in M1-BMDM also increased following the RBO intervention and the PO control treatment as compared to CO fed negative control. Overall, the current study for the first time demonstrates that RBO regulates inflammatory responses in murine macrophages by upregulating mitochondrial respiration. Further clinical studies are required to validate the animal study.
Collapse
|
13
|
Lee YY, Tang TK, Phuah ET, Tan CP, Wang Y, Li Y, Cheong LZ, Lai OM. Production, safety, health effects and applications of diacylglycerol functional oil in food systems: a review. Crit Rev Food Sci Nutr 2019; 60:2509-2525. [DOI: 10.1080/10408398.2019.1650001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yee-Ying Lee
- School of Science, Monash University, Bandar Sunway, Selangor, Malaysia
- Monash Industry Palm Oil Research and Education Platfrom, Monash University, Bandar Sunway, Selangor, Malaysia
| | - Teck-Kim Tang
- International Joint Laboratory on Plant Oils Processing and Safety (POPS), Jinan University- Univesiti Putra Malaysia, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Eng-Tong Phuah
- Department and Agricultural and Food Science, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
| | - Chin-Ping Tan
- International Joint Laboratory on Plant Oils Processing and Safety (POPS) Jinan University- Univesiti Putra Malaysia, Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yong Wang
- International Joint Laboratory on Plant Oils Processing and Safety (POPS) Jinan University- Universiti Putra Malaysia, Department of Food Science and Engineering, Jinan University, Guangzhou, P.R. China
| | - Ying Li
- International Joint Laboratory on Plant Oils Processing and Safety (POPS) Jinan University- Universiti Putra Malaysia, Department of Food Science and Engineering, Jinan University, Guangzhou, P.R. China
| | - Ling-Zhi Cheong
- Department of Food Science, School of Marine Science, Ningbo University, Fenghua Road 818, Ningbo, P.R. China
| | - Oi-Ming Lai
- International Joint Laboratory on Plant Oils Processing and Safety (POPS), Jinan University- Univesiti Putra Malaysia, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
14
|
Wang B, Zhang M, Ge W, He K, Cheng F. Microencapsulated duck oil diacylglycerol: Preparation and application as anti-obesity agent. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Effects of equivalent medium-chain diacylglycerol or long-chain triacylglycerol oil intake via muffins on postprandial triglycerides and plasma fatty acids levels. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
16
|
Srivastava S, Veech RL. Brown and Brite: The Fat Soldiers in the Anti-obesity Fight. Front Physiol 2019; 10:38. [PMID: 30761017 PMCID: PMC6363669 DOI: 10.3389/fphys.2019.00038] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Brown adipose tissue (BAT) is proposed to maintain thermal homeostasis through dissipation of chemical energy as heat by the uncoupling proteins (UCPs) present in their mitochondria. The recent demonstration of the presence of BAT in humans has invigorated research in this area. The research has provided many new insights into the biology and functioning of this tissue and the biological implications of its altered activities. Another finding of interest is browning of white adipose tissue (WAT) resulting in what is known as beige/brite cells, which have increased mitochondrial proteins and UCPs. In general, it has been observed that the activation of BAT is associated with various physiological improvements such as a reduction in blood glucose levels increased resting energy expenditure and reduced weight. Given the similar physiological functions of BAT and beige/ brite cells and the higher mass of WAT compared to BAT, it is likely that increasing the brite/beige cells in WATs may also lead to greater metabolic benefits. However, development of treatments targeting brown fat or WAT browning would require not only a substantial understanding of the biology of these tissues but also the effect of altering their activity levels on whole body metabolism and physiology. In this review, we present evidence from recent literature on the substrates utilized by BAT, regulation of BAT activity and browning by circulating molecules. We also present dietary and pharmacological activators of brown and beige/brite adipose tissue and the effect of physical exercise on BAT activity and browning.
Collapse
Affiliation(s)
- Shireesh Srivastava
- Systems Biology for Biofuels Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Richard L Veech
- Laboratory of Metabolic Control, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
17
|
Guimarães J, Bargut TCL, Mandarim-de-Lacerda CA, Aguila MB. Medium-chain triglyceride reinforce the hepatic damage caused by fructose intake in mice. Prostaglandins Leukot Essent Fatty Acids 2019; 140:64-71. [PMID: 30553406 DOI: 10.1016/j.plefa.2018.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 01/16/2023]
Abstract
We aimed to investigate the effects of medium-chain triglyceride oil on the high fructose diet-provoked hepatic abnormalities in mice. We used C57bl/6 mice of 3-months-old divided into four groups for 12 weeks: control (C), control with MCT (C-MCT), fructose (F), and fructose with MCT (F-MCT). We investigated food and water intake, body mass, blood pressure, glucose tolerance, plasma and liver biochemistry, hepatic protein and gene expression. There were no changes in body mass, food intake and glucose tolerance among the groups. The F group presented increased water intake and blood pressure associated with hepatic steatosis and elevated de novo lipogenesis, beta-oxidation, mitochondrial biogenesis and inflammation in the liver. Surprisingly, the C-MCT group also showed hepatic steatosis and inflammation in the liver, and the F-MCT group had no exacerbations of fructose-induced abnormalities, showing marked hepatic steatosis, lipogenesis de novo and hepatic inflammation. The MCT oil groups also presented increased beta-oxidation and mitochondrial biogenesis. In conclusion, MCT oil showed detrimental hepatic effects and should be used with caution, especially in the presence of hepatic alterations.
Collapse
Affiliation(s)
- Janaina Guimarães
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Braun K, Oeckl J, Westermeier J, Li Y, Klingenspor M. Non-adrenergic control of lipolysis and thermogenesis in adipose tissues. ACTA ACUST UNITED AC 2018. [PMID: 29514884 DOI: 10.1242/jeb.165381] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The enormous plasticity of adipose tissues, to rapidly adapt to altered physiological states of energy demand, is under neuronal and endocrine control. In energy balance, lipolysis of triacylglycerols and re-esterification of free fatty acids are opposing processes operating in parallel at identical rates, thus allowing a more dynamic transition from anabolism to catabolism, and vice versa. In response to alterations in the state of energy balance, one of the two processes predominates, enabling the efficient mobilization or storage of energy in a negative or positive energy balance, respectively. The release of noradrenaline from the sympathetic nervous system activates lipolysis in a depot-specific manner by initiating the canonical adrenergic receptor-Gs-protein-adenylyl cyclase-cyclic adenosine monophosphate-protein kinase A pathway, targeting proteins of the lipolytic machinery associated with the interface of the lipid droplets. In brown and brite adipocytes, lipolysis stimulated by this signaling pathway is a prerequisite for the activation of non-shivering thermogenesis. Free fatty acids released by lipolysis are direct activators of uncoupling protein 1-mediated leak respiration. Thus, pro- and anti-lipolytic mediators are bona fide modulators of thermogenesis in brown and brite adipocytes. In this Review, we discuss adrenergic and non-adrenergic mechanisms controlling lipolysis and thermogenesis and provide a comprehensive overview of pro- and anti-lipolytic mediators.
Collapse
Affiliation(s)
- Katharina Braun
- Chair of Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, D-85354 Freising, Germany.,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, D-85354 Freising, Germany.,ZIEL - Institute for Food & Health, Technical University of Munich, Gregor-Mendel-Str. 2, D-85354 Freising, Germany
| | - Josef Oeckl
- Chair of Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, D-85354 Freising, Germany.,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, D-85354 Freising, Germany.,ZIEL - Institute for Food & Health, Technical University of Munich, Gregor-Mendel-Str. 2, D-85354 Freising, Germany
| | - Julia Westermeier
- Chair of Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, D-85354 Freising, Germany.,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, D-85354 Freising, Germany
| | - Yongguo Li
- Chair of Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, D-85354 Freising, Germany.,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, D-85354 Freising, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, D-85354 Freising, Germany .,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, D-85354 Freising, Germany.,ZIEL - Institute for Food & Health, Technical University of Munich, Gregor-Mendel-Str. 2, D-85354 Freising, Germany
| |
Collapse
|