1
|
Yuan Y, Zeng W. An Overview of Multifaceted Applications and the Future Prospects of Glyceroglycolipids in Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39373652 DOI: 10.1021/acs.jafc.4c05923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Glyceroglycolipids (GGLs) are a class of lipid molecules that contain a glycerol backbone and one or more carbohydrate moieties, giving them amphipathic properties with both hydrophilic and hydrophobic regions. This amphipathic nature is fundamental for composing cell membrane lipid bilayers. These compounds are primarily distributed on the inner chloroplast membranes of plants and exhibit a unique structure with numerous biological activities. Moreover, GGLs play a pivotal role in photosynthesis and energy conversion in plants and effectively respond to environmental stressors. This Review discusses the distribution, synthesis pathways, and functions of GGLs in plants and describes the recent updates on various methods for extracting, isolating, and identifying GGLs. Finally, this Review discusses the biological activities of plant GGLs, including their anti-inflammatory, antiviral, and anticancer properties, and highlights their potential applications in the fields of pharmaceuticals, food, and cosmetics. This Review provides insights into GGLs, offering research support for the application of these natural molecules in the realm of holistic health.
Collapse
|
2
|
Dai H, Hariwitonang J, Fujiyama N, Moriguchi C, Hirano Y, Ebara F, Inaba S, Kondo F, Kitagaki H. A Decrease in the Hardness of Feces with Added Glucosylceramide Extracted from Koji In Vitro-A Working Hypothesis of Health Benefits of Dietary Glucosylceramide. Life (Basel) 2024; 14:739. [PMID: 38929722 PMCID: PMC11204706 DOI: 10.3390/life14060739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Skin barrier function, prevent colon cancer, head and neck cancer, and decrease liver cholesterol. However, the mechanism of action has not yet been elucidated. In this study, we propose a new working hypothesis regarding the health benefits and functions of glucosylceramide: decreased fecal hardness. This hypothesis was verified using an in vitro hardness test. The hardness of feces supplemented with glucosylceramide was significantly lower than that of the control. Based on these results, a new working hypothesis of dietary glucosylceramide was conceived: glucosylceramide passes through the small intestine, interacts with intestinal bacteria, increases the tolerance of these bacteria toward secondary bile acids, and decreases the hardness of feces, and these factors synergistically result in in vivo effects. This hypothesis forms the basis for further studies on the health benefits and functions of dietary glucosylceramides.
Collapse
Affiliation(s)
- Huanghuang Dai
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Kagoshima, Japan; (H.D.); (F.E.); (S.I.); (F.K.)
| | - Johan Hariwitonang
- Graduate School of Advanced Health Sciences, Saga University, 1, Honjo-cho, Saga City 840-8502, Saga, Japan; (J.H.); (C.M.)
| | - Nao Fujiyama
- Graduate School of Advanced Health Sciences, Saga University, 1, Honjo-cho, Saga City 840-8502, Saga, Japan; (J.H.); (C.M.)
| | - Chihiro Moriguchi
- Graduate School of Advanced Health Sciences, Saga University, 1, Honjo-cho, Saga City 840-8502, Saga, Japan; (J.H.); (C.M.)
| | - Yuto Hirano
- Graduate School of Advanced Health Sciences, Saga University, 1, Honjo-cho, Saga City 840-8502, Saga, Japan; (J.H.); (C.M.)
| | - Fumio Ebara
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Kagoshima, Japan; (H.D.); (F.E.); (S.I.); (F.K.)
- Faculty of Agriculture, Saga University, 1, Honjo-Cho, Saga City 840-8502, Saga, Japan
| | - Shigeki Inaba
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Kagoshima, Japan; (H.D.); (F.E.); (S.I.); (F.K.)
- Faculty of Agriculture, Saga University, 1, Honjo-Cho, Saga City 840-8502, Saga, Japan
| | - Fumiyoshi Kondo
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Kagoshima, Japan; (H.D.); (F.E.); (S.I.); (F.K.)
- Faculty of Agriculture, Saga University, 1, Honjo-Cho, Saga City 840-8502, Saga, Japan
| | - Hiroshi Kitagaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Kagoshima, Japan; (H.D.); (F.E.); (S.I.); (F.K.)
- Faculty of Agriculture, Saga University, 1, Honjo-Cho, Saga City 840-8502, Saga, Japan
| |
Collapse
|
3
|
Yamashita S, Tanaka S, Miyazawa T, Kinoshita M. Bioaccessibility of Glucosylceramide in Rice Based on the Cooking Condition and Cultivar. J Oleo Sci 2024; 73:905-909. [PMID: 38825542 DOI: 10.5650/jos.ess24057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024] Open
Abstract
Glucosylceramide (GlcCer), a major sphingolipid in plants, possesses various food functions, including improvement of intestinal impairments. This study evaluated rice cooking conditions and cultivars based on GlcCer levels transferred into the digestive juice using an in vitro digestion model to investigate the factors related to GlcCer availability. GlcCer levels transferred into the digestive juice were higher in rice gruel than in boiled rice. The GlcCer levels in the digestive juice of boiled rice varied based on the rice cultivar, whereas those in rice gruel had no difference. Thus, GlcCer in rice was not fully utilized via digestion. Further, bioaccessibility was related to the amylose ratio and added water content.
Collapse
Affiliation(s)
- Shinji Yamashita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine
| | - Shun Tanaka
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine
| | - Teruo Miyazawa
- Food and Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University
| | - Mikio Kinoshita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine
| |
Collapse
|
4
|
Jutanom M, Kato S, Yamashita S, Toda M, Kinoshita M, Nakagawa K. Analysis of oxidized glucosylceramide and its effects on altering gene expressions of inflammation induced by LPS in intestinal tract cell models. Sci Rep 2023; 13:22537. [PMID: 38110468 PMCID: PMC10728070 DOI: 10.1038/s41598-023-49521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
Glucosylceramide (GlcCer) belongs to sphingolipids and is found naturally in plant foods and other sources that humans consume daily. Our previous studies demonstrated that GlcCer prevents inflammatory bowel disease both in vitro and in vivo, whose patients are increasing alarmingly. Although some lipids are vulnerable to oxidation which changes their structure and activities, it is unknown whether oxidative modification of GlcCer affects its activity. In this research, we oxidized GlcCer in the presence of a photosensitizer, analyzed the oxide by mass spectrometric techniques, and examined its anti-inflammatory activity in lipopolysaccharide (LPS)-treated differentiated Caco-2 cells as in vitro model of intestinal inflammation. The results showed that GlcCer is indeed oxidized, producing GlcCer hydroperoxide (GlcCerOOH) as a primary oxidation product. We also found that oxidized GlcCer preserves beneficial functions of GlcCer, suppressing inflammatory-related gene expressions. These findings suggested that GlcCerOOH may perform as an LPS recognition antagonist to discourage inflammation rather than induce inflammation.
Collapse
Affiliation(s)
- Mirinthorn Jutanom
- Food Function Analysis Laboratory, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shunji Kato
- Food Function Analysis Laboratory, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Shinji Yamashita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Masako Toda
- Food and Biomolecular Science Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Mikio Kinoshita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Kiyotaka Nakagawa
- Food Function Analysis Laboratory, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan.
| |
Collapse
|
5
|
Liu D, Wang Y, Lu Z, Lv F, Bie X, Zhao H. Separation, characterization and anti-inflammatory activities of galactoglycerolipids from Perilla frutescens (L.) Britton. Nat Prod Res 2023; 37:3610-3615. [PMID: 35793437 DOI: 10.1080/14786419.2022.2095637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 06/13/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
The study was to optimize the separation procedures, characterize the galactoglycerolipids and explore their anti-inflammatory activities. Two monogalactosyldiacylglycerols (MGDGs) and three digalactosyldiacylglycerols (DGDGs) from Perilla frutescens (L.) Britton were obtained through one-step silica gel column chromatography and preparative high-performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD). The presence of additional MGDG (1-O-9Z,12Z,15Z-octadecatrienoyl-2-O-7Z,10Z,13Z-hexadecatrienoyl-3-O-(β-D-galactopyranosyl)-sn-glycerol) and DGDG (1-O-9Z,12Z-octadecadienoyl-2-O-9Z,12Z,15Z-octadecatrienoyl-3-O-(β-D-galactopyranosyl-(1'→6'')-α-D-galactopyranosyl)-sn-glycerol) was concluded for the first time in perilla, by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR). In lipopolysaccharide (LPS)-induced RAW264.7 cells, five galactoglycerolipids exhibited good inhibitory activities against nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) gene expression in a dose-dependent manner, suggesting that fatty acid chain length and unsaturation degree affected their anti-inflammatory activities.
Collapse
Affiliation(s)
- Dongqin Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ying Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fengxia Lv
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Schneider S, Hammann S, Hayen H. Determination of Polar Lipids in Wheat and Oat by a Complementary Approach of Hydrophilic Interaction Liquid Chromatography and Reversed-Phase High-Performance Liquid Chromatography Hyphenated with High-Resolution Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37433133 DOI: 10.1021/acs.jafc.3c02073] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Cereals contain lipids that fulfill important physiological roles and are associated with stress in the plant. However, many of the specific biological roles of lipids are yet unknown. Comprehensive analysis of these polar lipid categories in whole grain wheat and oat, cereals highly relevant also in nutrition, was performed. Hydrophilic interaction liquid chromatography (HILIC) and reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with high-resolution mass spectrometry using electrospray ionization in both positive and negative ionization mode was used. Exploiting the different separation mechanisms, HILIC was used as a screening method for straightforward lipid class assignment and enabled differentiation of isomeric lipid classes, like phosphatidylethanolamine and lyso-N-acylphosphatidylethanolamine, while RP-HPLC facilitated separation of constitutional isomers. In combination with data-dependent MS/MS experiments, 67 lipid species belonging to nine polar lipid classes could be identified. Furthermore, with both ionization modes, fatty acyl chains directly connected to the lipid headgroups could be assigned. This work focused on the four lipid classes N-acylphosphatidylethanolamines, acyl-monogalactosyldiacylglycerols, digalactosyldiacylglycerols, and monogalactosyldiacylglycerols as they were less studied in detail in the past. Applying the complementary approach, the relative lipid species compositions in these lipid classes was investigated in detail.
Collapse
Affiliation(s)
- Svenja Schneider
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Simon Hammann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| |
Collapse
|
7
|
Zhu F, Zhao B, Hu B, Zhang Y, Xue B, Wang H, Chen Q. Review of available "extraction + purification" methods of natural ceramides and their feasibility for sewage sludge analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68022-68053. [PMID: 37147548 DOI: 10.1007/s11356-023-26900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
Natural ceramide, a biologically active compound present in plants, has been used widely in food, cosmetics, and pharmaceutical industries. Abundant ceramide has been detected in sewage sludge, which has inspired the idea to recycle ceramide from it. Therefore, the methods of extracting, purifying, and detecting ceramides from plants were reviewed, with the aim to establish methods to get condensed ceramide from sludge. Ceramide extraction methods include traditional methods (maceration, reflux, and Soxhlet extraction) and green technologies (ultrasound-assisted, microwave-assisted, and supercritical fluid extraction). In the past two decades, more than 70% of the articles have used traditional methods. However, green extraction methods are gradually improved and showed high extraction efficiency with lower solvent consumed. The preferred technique for ceramide purification is chromatography. Common solvent systems include chloroform-methanol, n-hexane-ethyl acetate, petroleum ether-ethyl acetate, and petroleum ether-acetone. For structural determination of ceramide, infrared spectroscopy, nuclear magnetic resonance spectroscopy, and mass spectrometry are used in combination. Among quantitative analysis methods for ceramide, liquid chromatography-mass spectrometry was the most accurate. This review concludes that with our prilemenary experiment results it is feasible to apply the plant "extraction + purification" process of ceramide to sludge, but more optimization need to be performed to get better results.
Collapse
Affiliation(s)
- Fenfen Zhu
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Bing Zhao
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Bo Hu
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China.
| | - Yuhui Zhang
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Boyuan Xue
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Huan Wang
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Qian Chen
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
8
|
Yang F, Chen G. The nutritional functions of dietary sphingomyelin and its applications in food. Front Nutr 2022; 9:1002574. [PMID: 36337644 PMCID: PMC9626766 DOI: 10.3389/fnut.2022.1002574] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Sphingolipids are common structural components of cell membranes and are crucial for cell functions in physiological and pathophysiological conditions. Sphingomyelin and its metabolites, such as sphingoid bases, ceramide, ceramide-1-phosphate, and sphingosine-1-phosphate, play signaling roles in the regulation of human health. The diverse structures of sphingolipids elicit various functions in cellular membranes and signal transduction, which may affect cell growth, differentiation, apoptosis, and maintain biological activities. As nutrients, dietary sphingomyelin and its metabolites have wide applications in the food and pharmaceutical industry. In this review, we summarized the distribution, classifications, structures, digestion, absorption and metabolic pathways of sphingolipids, and discussed the nutritional functioning of sphingomyelin in chronic metabolic diseases. The possible implications of dietary sphingomyelin in the modern food preparations including dairy products and infant formula, skin improvement, delivery system and oil organogels are also evaluated. The production of endogenous sphingomyelin is linked to pathological changes in obesity, diabetes, and atherosclerosis. However, dietary supplementations of sphingomyelin and its metabolites have been shown to maintain cholesterol homeostasis and lipid metabolism, and to prevent or treat these diseases. This seemly paradoxical phenomenon shows that dietary sphingomyelin and its metabolites are candidates for food additives and functional food development for the prevention and treatment of chronic metabolic diseases in humans.
Collapse
Affiliation(s)
- Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Fang Yang,
| | - Guoxun Chen
- Department of Nutrition, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
9
|
Structural Analysis and Anti-Inflammatory Effect of a Digalactosyldiacylglycerol-Monoestolide, a Characteristic Glycolipid in Oats. Nutrients 2022; 14:nu14194153. [PMID: 36235807 PMCID: PMC9570764 DOI: 10.3390/nu14194153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/19/2022] Open
Abstract
Digalactosyldiacylglycerol- (DGDG-) monoestolide is a characteristic glycolipid in oats. DGDG-monoestolides possess a unique structure whereby a fatty acid of DGDG is replaced by a fatty acid ester of hydroxy fatty acid (FAHFA). While the physiological effects of DGDG and FAHFA have been reported previously, the effects of DGDG-monoestolides are unknown. Hence, we isolated a major DGDG-monoestolide molecular species from oats, analyzed its structure, and evaluated its anti-inflammatory effect. Based on GC-MS, MS/MS, and NMR analyses, the isolated compound was identified as a DGDG-monoestolide that contains the linoleic acid ester of 15-hydroxy linoleic acid (LAHLA) and linoleic acid (i.e., DGDG-LAHLA). The isolated DGDG-LAHLA was evaluated for its anti-inflammatory effect on LPS-stimulated RAW264 cells. The production of nitric oxide and cytokines (IL-6, TNF-α, and IL-10) were significantly decreased by DGDG-LAHLA, suggesting the anti-inflammatory effect of DGDG-LAHLA for the first time. In addition, our data showed a pronounced uptake of DGDG-LAHLA by cells. Some compounds corresponding to the predicted DGDG-LAHLA metabolites were also detected, suggesting that both intact DGDG-LAHLA and its metabolites may contribute to the above anti-inflammatory activities. These results are expected to expand the availability of oats as a functional food.
Collapse
|
10
|
Sugawara T. Sphingolipids as Functional Food Components: Benefits in Skin Improvement and Disease Prevention. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9597-9609. [PMID: 35905137 DOI: 10.1021/acs.jafc.2c01731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sphingolipids are ubiquitous components in eukaryotic organisms and have attracted attention as physiologically functional lipids. Sphingolipids with diverse structures are present in foodstuffs as these structures depend on the biological species they are derived from, such as mammals, plants, and fungi. The physiological functions of dietary sphingolipids, especially those that improve skin barrier function, have recently been noted. In addition, the roles of dietary sphingolipids in the prevention of diseases, including cancer and metabolic syndrome, have been studied. However, the mechanisms underlying the health-improving effects of dietary sphingolipids, especially their metabolic fates, have not been elucidated. Here, we review dietary sphingolipids, including their chemical structures and contents in foodstuff; digestion, intestinal absorption, and metabolism; and nutraceutical functions, based on the available evidence and hypotheses. Further research is warranted to clearly define how dietary sphingolipids can influence human health.
Collapse
Affiliation(s)
- Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake Cho, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan
| |
Collapse
|
11
|
Enzymatic structural modification of monogalactosyldiacylglycerols for potential modulation of hydrophile-lipophile balance. Food Chem 2022; 385:132705. [DOI: 10.1016/j.foodchem.2022.132705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 11/18/2022]
|
12
|
Xie M, Song Q, Zhao H. Investigation on the surface-active and antimicrobial properties of a natural glycolipid product. Food Funct 2021; 12:11537-11546. [PMID: 34708225 DOI: 10.1039/d1fo02359d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycolipids are a group of sugar-containing lipids with versatile functions. In this study, a natural glycolipid product was obtained from soy lecithin, and its emulsifying, oil-gelling, antibacterial and antiviral properties were investigated. A silica-based extraction method on a preparative scale was used to recover the glycolipid product (GLP) from soy lecithin. The GLP consisted of three different glycolipid classes: acylated sterol glucoside (64.16%), sterol glucoside (25.57%) and cerebroside (6.71%). As an emulsifier, the GLP was able to form a stable water-in-oil emulsion. The GLP exhibited a good oil-gelling property, capable of gelling rapeseed oil at a concentration of 6%. For the investigated microorganisms (Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus), the GLP did not show any antibacterial effects. The GLP exerted antiviral activity against lentivirus, but not adenovirus. The results of this study help in enriching the knowledge on the properties of naturally occurring glycolipids, which may find potential applications in the food, pharmaceutical and related industries.
Collapse
Affiliation(s)
- Meizhen Xie
- School of Food Equipment Engineering and Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qing Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Hong Zhao
- School of Food Equipment Engineering and Science, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
13
|
Abstract
Lecithin is a mixture of amphiphilic lipids with health benefits. In this study, four different fractions (ethanol soluble, ethanol insoluble, phospholipid and glycolipid fractions) from soy lecithin were obtained and evaluated as oleogelators. As with the parent lecithin, the ethanol insoluble fraction (EIF) was unable to function as an oleogelator. The ethanol soluble fraction (ESF) and phospholipid fraction (PLF) formed oleogels at 30% (wt%), while the glycolipid fraction (GLF) formed oleogels at 15%. ESF resulted in an oleogel with a similar appearance and microstructure, but a harder and less cohesive texture than the PLF-supported oleogel. The oleogels formed with GLF were different from those formed with ESF and PLF in appearance and microstructure. GLF at 20% formed an oleogel with better texture characteristics (in the light of hardness) and oil-holding capacity than those formed with 30% of ESF and PLF. This is the first study to investigate the oil-gelling properties of fractions from soy lecithin. Our results show that the naturally occurring glycolipids from soy lecithin exhibit great potential as oleogelators.
Collapse
Affiliation(s)
- Meizhen Xie
- School of Food Equipment Engineering and Science, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yan Yu
- School of Public Health, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Luwei Zhang
- School of Food Equipment Engineering and Science, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
14
|
Yingbo Z, Ximan K, Yajuan W, Huajun S, Shujuan J. Comprehensive analysis of phospholipids and glycerol glycolipids in green pepper by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9146. [PMID: 34131978 DOI: 10.1002/rcm.9146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/24/2021] [Accepted: 06/12/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE As important components of plant cells, lipids are involved in various biological functions. However, the composition and content of lipids in cell membranes changes at low temperature resulting in chilling injury and affecting the commercial value of green peppers. Detecting the changes in lipids helps to understand the mechanism of low-temperature stress in green peppers; however, a comprehensive study of lipid profiles in green pepper has not been well documented. METHODS Herein, we report an ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/QTOF MS) method to determine phospholipids and glycolipids in green peppers and compare five extraction methods among which the isopropanol/chloroform/water (ICW) method demonstrated the best extraction efficiency. The established method was used to determine the membrane lipids of fresh samples, chilled samples(4°C-20d), and control samples (10°C-20d). RESULTS A total of 98 lipids, including 77 phospholipids and 21 glycolipids, were extracted from green peppers using ICW extraction. The content and profile of phosphatidylcholine (PC) among phospholipids were found to be the highest, accounting for 58.58% of all the phospholipids. The monogalactosyldiacylglycerol (MGDG) content among the glycolipids was the highest, accounting for 1.43%. The samples stored at low temperature (4°C, 20d) had a significantly higher PC content and a higher content of lipids containing unsaturated fatty acid residues as compared with the control samples (10°C, 20d). The recovery ranged from 75.55% to 96.64% while the limit of quantification ranged from 10 to 1000 ng mL-1 . CONCLUSIONS The results indicated that the established method provided a reliable platform to study the changes in membrane lipids of a green pepper under low-temperature conditions.
Collapse
Affiliation(s)
- Zhao Yingbo
- Post-harvest Biology and Storage of Fruits and Vegetables Laboratory, Department of Food Science, Shenyang Agriculture University, Shenyang City, China
| | - Kong Ximan
- Post-harvest Biology and Storage of Fruits and Vegetables Laboratory, Department of Food Science, Shenyang Agriculture University, Shenyang City, China
| | - Wang Yajuan
- Post-harvest Biology and Storage of Fruits and Vegetables Laboratory, Department of Food Science, Shenyang Agriculture University, Shenyang City, China
| | - Sun Huajun
- Post-harvest Biology and Storage of Fruits and Vegetables Laboratory, Department of Food Science, Shenyang Agriculture University, Shenyang City, China
| | - Ji Shujuan
- Post-harvest Biology and Storage of Fruits and Vegetables Laboratory, Department of Food Science, Shenyang Agriculture University, Shenyang City, China
| |
Collapse
|
15
|
Yamashita S, Soga M, Nguma E, Kinoshita M, Miyazawa T. Protective Mechanism of Rice-Derived Lipids and Glucosylceramide in an In Vitro Intestinal Tract Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10206-10214. [PMID: 34455784 DOI: 10.1021/acs.jafc.1c04562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We previously reported that the ethanol extract from polished rice suppresses inflammation and the formation of aberrant crypt foci in the mouse colon and particularly focused on the plant sphingolipid glucosylceramide (GlcCer). Here, we investigated the effects of rice lipid fractions and GlcCer on differentiated Caco-2 cells treated with lipopolysaccharide (LPS), in particular, we evaluated the mechanism of action of GlcCer using related substances and metabolic enzyme inhibitors. Rice-derived polar lipids suppressed the LPS-induced reduction in the number of cells. The polar lipids with higher GlcCer content exerted a better effect than the other fractions. GlcCer-related substances reversed the LPS-induced reduction in the number of cells, and GlcCer-metabolic inhibitors, including a sphingosine kinase inhibitor, suppressed the beneficial effects of GlcCer-related substances. These results suggest that GlcCer is a rice component with intestinal protection. Secondly, GlcCer is metabolized during inflammation and protects intestinal cells by maintaining the sphingolipid levels in cells and producing sphingoid base-1-phosphate.
Collapse
Affiliation(s)
- Shinji Yamashita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Michiru Soga
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Ephantus Nguma
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Mikio Kinoshita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Teruo Miyazawa
- Food Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
16
|
Ohta K, Hiraki S, Miyanabe M, Ueki T, Aida K, Manabe Y, Sugawara T. Appearance of Intact Molecules of Dietary Ceramides Prepared from Soy Sauce Lees and Rice Glucosylceramides in Mouse Plasma. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9188-9198. [PMID: 33507082 DOI: 10.1021/acs.jafc.0c07259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although the beneficial effects of dietary sphingolipids have recently been reported, the mechanism of their intestinal absorption has yet to be fully elucidated. In this study, the absorption and metabolism of dietary ceramides and glucosylceramides were evaluated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis in the plasma of mice after a single oral administration. Ceramide molecules prepared from soy sauce lees (mainly composed of phytosphingosine and its derivatives) were undetectable or minor compounds in the plasma of control mice but appeared 1-6 h after administration. Rice glucosylceramide (mainly composed of sphingadienine) was endogenously detected in mouse plasma and showed a tendency to increase 1-6 h after administration by LC-MS/MS analysis. In addition, the ceramide molecules, which are hydrolysates of dietary glucosylceramide, were significantly increased in the plasma after administration. These findings strongly suggest that dietary ceramides and glucosylceramides are partly absorbed as intact molecules or hydrolysates.
Collapse
Affiliation(s)
- Kazushi Ohta
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan
| | - Shinobu Hiraki
- Genuine R&D Company, Limited, 729-1 Matono, Shingu-machi, Kasuya-gun, Fukuoka 811-0104, Japan
| | - Masakatsu Miyanabe
- Genuine R&D Company, Limited, 729-1 Matono, Shingu-machi, Kasuya-gun, Fukuoka 811-0104, Japan
| | - Tatsuro Ueki
- Fukukoka Soy Sauce Brewing Cooperation, Nagaoka, Chikushino, Fukuoka 818-0066, Japan
| | - Kazuhiko Aida
- Innovation Center, Nippon Flour Mills Company, Limited, 5-1-3 Midorigaoka, Atsugi, Kanagawa 243-0041, Japan
| | - Yuki Manabe
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan
| | - Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan
| |
Collapse
|
17
|
Yamashita S, Kinoshita M, Miyazawa T. Dietary Sphingolipids Contribute to Health via Intestinal Maintenance. Int J Mol Sci 2021; 22:7052. [PMID: 34208952 PMCID: PMC8268314 DOI: 10.3390/ijms22137052] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 12/26/2022] Open
Abstract
As sphingolipids are constituents of the cell and vacuole membranes of eukaryotic cells, they are a critical component acquired from our daily diets. In the present review, we highlight the knowledge regarding how dietary sphingolipids affect our health, particularly our intestinal health. Animal- and plant-derived foods contain, respectively, sphingomyelin (SM) and glucosylceramide (GlcCer) as their representative sphingolipids, and the sphingoid base as a specific structure of sphingolipids also differs depending upon the source and class. For example, sphingosine is predominant among animal sphingolipids, and tri-hydroxy bases are present in free ceramide (Cer) from plants and fungi. Dietary sphingolipids exhibit low absorption ratios; however, they possess various functions. GlcCer facilitates improvements in intestinal impairments, lipid metabolisms, and skin disorders, and SM can exert both similar and different effects compared to those elicited by GlcCer. We discuss the digestion, absorption, metabolism, and function of sphingolipids while focused on the structure. Additionally, we also review old and new classes in the context of current advancements in analytical instruments.
Collapse
Affiliation(s)
- Shinji Yamashita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan;
| | - Mikio Kinoshita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan;
| | - Teruo Miyazawa
- Food and Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan;
| |
Collapse
|
18
|
Phytosterols and Novel Triterpenes Recovered from Industrial Fermentation Coproducts Exert In Vitro Anti-Inflammatory Activity in Macrophages. Pharmaceuticals (Basel) 2021; 14:ph14060583. [PMID: 34207156 PMCID: PMC8235040 DOI: 10.3390/ph14060583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/24/2022] Open
Abstract
The unstoppable growth of human population that occurs in parallel with all manufacturing activities leads to a relentless increase in the demand for resources, cultivation land, and energy. In response, currently, there is significant interest in developing strategies to optimize any available resources and their biowaste. While solutions initially focused on recovering biomolecules with applications in food, energy, or materials, the feasibility of synthetic biology in this field has been demonstrated in recent years. For instance, it is possible to genetically modify Saccharomyces cerevisiae to produce terpenes for commercial applications (i.e., against malaria or as biodiesel). But the production process, similar to any industrial activity, generates biowastes containing promising biomolecules (from fermentation) that if recovered may have applications in different areas. To test this hypothesis, in the present study, the lipid composition of by-products from the industrial production of β-farnesene by genetically modified Saccharomyces cerevisiae are studied to identify potentially bioactive compounds, their recovery, and finally, their stability and in vitro bioactivity. The assayed biowaste showed the presence of triterpenes, phytosterols, and 1-octacosanol which were recovered through molecular distillation into a single fraction. During the assayed stability test, compositional modifications were observed, mainly for the phytosterols and 1-octacosanol, probably due to oxidative reactions. However, such changes did not affect the in vitro bioactivity in macrophages, where it was found that the obtained fraction decreased the production of TNF-α and IL-6 in lipopolysaccharide (LPS)-induced inflammation.
Collapse
|
19
|
Rohrhofer J, Zwirzitz B, Selberherr E, Untersmayr E. The Impact of Dietary Sphingolipids on Intestinal Microbiota and Gastrointestinal Immune Homeostasis. Front Immunol 2021; 12:635704. [PMID: 34054805 PMCID: PMC8160510 DOI: 10.3389/fimmu.2021.635704] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
The large surfaces of gastrointestinal (GI) organs are well adapted to their diverse tasks of selective nutritional uptake and defense against the external environment. To maintain a functional balance, a vast number of immune cells is located within the mucosa. A strictly regulated immune response is required to impede constant inflammation and to maintain barrier function. An increasing prevalence of GI diseases has been reported in Western societies over the past decades. This surge in GI disorders has been linked to dietary changes followed by an imbalance of the gut microbiome, leading to a chronic, low grade inflammation of the gut epithelium. To counteract the increasing health care costs associated with diseases, it is paramount to understand the mechanisms driving immuno-nutrition, the associations between nutritional compounds, the commensal gut microbiota, and the host immune response. Dietary compounds such as lipids, play a central role in GI barrier function. Bioactive sphingolipids (SLs), e.g. sphingomyelin (SM), sphingosine (Sph), ceramide (Cer), sphingosine-1- phosphate (S1P) and ceramide-1-phosphate (C1P) may derive from dietary SLs ingested through the diet. They are not only integral components of cell membranes, they additionally modulate cell trafficking and are precursors for mediators and second messenger molecules. By regulating intracellular calcium levels, cell motility, cell proliferation and apoptosis, SL metabolites have been described to influence GI immune homeostasis positively and detrimentally. Furthermore, dietary SLs are suggested to induce a shift in the gut microbiota. Modes of action range from competing with the commensal bacteria for intestinal cell attachment to prevention from pathogen invasion by regulating innate and immediate defense mechanisms. SL metabolites can also be produced by gut microorganisms, directly impacting host metabolic pathways. This review aims to summarize recent findings on SL signaling and functional variations of dietary SLs. We highlight novel insights in SL homeostasis and SL impact on GI barrier function, which is directly linked to changes of the intestinal microbiota. Knowledge gaps in current literature will be discussed to address questions relevant for understanding the pivotal role of dietary SLs on chronic, low grade inflammation and to define a balanced and healthy diet for disease prevention and treatment.
Collapse
Affiliation(s)
- Johanna Rohrhofer
- Gastrointestinal Immunology Group, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Benjamin Zwirzitz
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Evelyne Selberherr
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Eva Untersmayr
- Gastrointestinal Immunology Group, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Zi Y, Yao M, Lu Z, Lu F, Bie X, Zhang C, Zhao H. Glycoglycerolipids from the leaves of Perilla frutescens (L.) Britton (Labiatae) and their anti-inflammatory activities in lipopolysaccharide-stimulated RAW264.7 cells. PHYTOCHEMISTRY 2021; 184:112679. [PMID: 33550195 DOI: 10.1016/j.phytochem.2021.112679] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
A described monogalactosyldiacylglycerol (MGDG) and two undescribed digalactosyldiacylglycerols (DGDGs) were isolated from the leaves of Perilla frutescens (L.) Britton (Labiatae) by using silica gel column chromatography and semi-preparative high performance liquid chromatography. The elucidation of complete structure of these compounds were conducted by using MS and NMR techniques. The MGDG (7.5% of total lipids) was identified as 1,2-2-O-(9Z,12Z,15E-octadecatrienoyl)-3-O-(β-D-galactopyranosyl)-sn-glycerol. The two DGDGs (2.8% and 1.0% of total lipids, respectively) were identified as 1-O-(9Z,12Z,15Z-octadecatrienoyl)-2-O-(6Z,9Z,12Z-octadecatrienoyl)-3-O-[β-D-galactopyranosyl-(1″→6')-α-D-galactopyranosyl]-sn-glycerol and 1-O- hexadecanoyl -2-O-(9Z,12Z,15Z-octadecatrienoy -l)-3-O-[β-D-galactopyranosyl-(1″→6')-α-D-galactopyranosyl]-sn-glycerol, respectively. All the isolated MGDG and DGDGs were evaluated for their anti-inflammatory activities in lipopolysaccharide (LPS)-stimulated murine macrophages RAW264.7 cells. All of them showed good inhibitory activities and significantly blocked the production of LPS-induced TNF-α, (IL)-1β and IL-6. The above results shed some light on a better understanding of the traditional anti-inflammatory effect of Perilla frutescens and reveal the potential anti-inflammatory constituents.
Collapse
Affiliation(s)
- Yuxiang Zi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengjia Yao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chong Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
21
|
NMR Characterization of Ten Apple Cultivars from the Piedmont Region. Foods 2021; 10:foods10020289. [PMID: 33535442 PMCID: PMC7912530 DOI: 10.3390/foods10020289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 12/28/2022] Open
Abstract
The metabolite profile of ten traditional apple cultivars grown in the Piedmont region (Italy) was studied by means of nuclear magnetic resonance spectroscopy, identifying an overall number of 36 compounds. A more complete assignment of the proton nuclear magnetic resonance (1H NMR) resonances from hydroalcoholic and organic apple extracts with respect to literature data was reported, identifying fructose tautomeric forms, galacturonic acid, γ-aminobutyric acid (GABA), p-coumaroyl moiety, phosphatidylcholine, and digalactosyldiacylglycerol. The chemical profile of each apple cultivar was defined by thorough quantitative NMR analysis of four sugars (fructose, glucose, sucrose, and xylose), nine organic acids (acetic, citric, formic, citramalic, lactic, malic, quinic, and galacturonic acids), six amino acids (alanine, asparagine, aspartate, GABA, isoleucine, and valine), rhamnitol, p-coumaroyl derivative, phloretin/phloridzin and choline, as well as β-sitosterol, fatty acid chains, phosphatidylcholine, and digalactosyldiacylglycerol. Finally, the application of PCA analysis allowed us to highlight possible differences/similarities. The Magnana cultivar showed the highest content of sugars, GABA, valine, isoleucine, and alanine. The Runsé cultivar was characterized by high amounts of organic acids, whereas the Gamba Fina cultivar showed a high content of chlorogenic acid. A significant amount of quinic acid was detected in the Carla cultivar. The knowledge of apple chemical profiles can be useful for industries interested in specific compounds for obtaining ingredients of food supplements and functional foods and for promoting apple valorization and preservation.
Collapse
|
22
|
Abedin MR, Barua S. Isolation and purification of glycoglycerolipids to induce apoptosis in breast cancer cells. Sci Rep 2021; 11:1298. [PMID: 33446783 PMCID: PMC7809038 DOI: 10.1038/s41598-020-80484-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/17/2020] [Indexed: 01/03/2023] Open
Abstract
Monogalactosyldiacylglycerol (MGDG) is the most abundant type of glycoglycerolipid found in the plant cell membrane and mostly in the chloroplast thylakoid membrane. The amphiphilic nature of MGDG is attractive in pharmaceutical fields for interaction with other biological molecules and hence exerting therapeutic anti-cancer, anti-viral, and anti-inflammatory activities. In this study, we investigated the therapeutic efficacy of cyanobacteria derived MGDG to inhibit breast cancer cell growth. MGDG was extracted from a cyanobacteria Synechocystis sp. PCC 6803 followed by a subsequent fractionation by column chromatographic technique. The purity and molecular structure of MGDG were analyzed by nuclear magnetic resonance (NMR) spectroscopy analysis. The presence of MGDG in the extracted fraction was further confirmed and quantified by high-performance liquid chromatography (HPLC). The anti-proliferation activity of the extracted MGDG molecule was tested against BT-474 and MDA-MB-231 breast cancer cell lines. The in vitro study showed that MGDG extracted from Synechocystis sp. PCC 6803 induced apoptosis in (70 ± 8) % of BT-474 (p < 0.001) and (58 ± 5) % of MDA-MB-231 cells (p < 0.001) using ~ 60 and 200 ng/ml of concentrations, respectively. The half-maximal inhibitory concentration, IC50 of MGDG extracted from Synechocystis sp. PCC 6803 were (27.2 ± 7.6) and (150 ± 70) ng/ml in BT-474 and MDA-MB-231 cell lines, respectively. Quantification of caspase-3/7 activity using flow cytometry showed (3.0 ± 0.4) and (2.1 ± 0.04)-fold (p < 0.001) higher protein expressions in the MGDG treated BT-474 and MDA-MB-231 cells, respectively than untreated controls conferring to the caspase-dependent apoptosis. The MGDG did not show any significant cytotoxic side effects in human dermal fibroblasts cells. A commercially available MGDG control did not induce any apoptotic cell death in cancer cells substantiating the potential of the MGDG extracted from Synechocystis sp. PCC 6803 for the treatment of breast cancer cells through the apoptosis-mediated pathway.
Collapse
Affiliation(s)
- Muhammad Raisul Abedin
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla, MO, 65409-1230, USA
| | - Sutapa Barua
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla, MO, 65409-1230, USA.
| |
Collapse
|
23
|
Aguirre A, Peiru S, Rasia R, Castelli ME, Menzella HG. Cloning and Production of Thermostable Enzymes for the Hydrolysis of Steryl Glucosides in Biodiesel. Methods Mol Biol 2021; 2290:203-214. [PMID: 34009592 DOI: 10.1007/978-1-0716-1323-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Vegetable oil-derived biodiesels have a major quality problem due to the presence of precipitates formed by steryl glucosides, which clog filters and injectors of diesel engines. An efficient, scalable, and cost-effective method to hydrolyze steryl glucosides using thermostable enzymes has been developed. Here, methods to discover, express in recombinant microorganisms and manufacture enzymes with SGase activity, as well as methods to treat biodiesel with such enzymes, and to measure the content of steryl glucosides in biodiesel samples are presented.
Collapse
Affiliation(s)
- Andrés Aguirre
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Rosario, Argentina
| | - Salvador Peiru
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Rosario, Argentina
| | - Rodolfo Rasia
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | | | - Hugo G Menzella
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Rosario, Argentina.
| |
Collapse
|
24
|
Lee SJ, Song Y, Chung MY, Kim IH, Kim BH. Isolation and compositional analysis of galactoglycerolipids from perilla [Perilla frutescens (L.) Britton] leaves and comparison to the galactoglycerolipids from spinach and parsley. J Food Sci 2020; 85:4271-4280. [PMID: 33174278 DOI: 10.1111/1750-3841.15521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
The aim of this study was to isolate monogalactosyldiacylglycerols (MGDGs) and digalactosyldiacylglycerols (DGDGs) from perilla [Perilla frutescens (L.) Britton] and to investigate their fatty acid profiles. Perilla displayed the greatest total MGDG and DGDG content among the three types of leaf vegetables tested, that is, spinach, parsley, and perilla, containing 0.16 g/100 g MGDG and 0.04 g/100 g DGDG (on wet weight basis). High purity MGDG (approximately 97 g/100 g) and DGDG (approximately 86 g/100 g) were isolated from perilla chloroform/methanol (2:1, v/v) extracts by two-step silica gel column chromatography. MGDGs were primarily composed of 18:3n-3 and 16:3n-3, predominantly located at the sn-1 and sn-2 positions, respectively. In DGDG, 18:3n-3 and 16:0 were the most abundant fatty acids and were primarily found at the sn-1 and sn-2 positions, respectively. PRACTICAL APPLICATION: MGDGs and DGDGs are the most prevalent forms of galactoglycerolipids found in leaf vegetables including perilla and have been shown to exert health-beneficial effects, such as antitumor, anti-inflammatory, anticancer, and appetite-suppressing activities. Both MGDGs and DGDGs possess emulsifying properties. The present study may help better understand the health-beneficial effects of MGDG and DGDG from perilla, by providing total composition and positional distribution of the fatty acids. The present study also successfully established a protocol to isolate high purity MGDG and DGDG from perilla, thereby increasing their possible use as an ingredient in foods and nutraceuticals.
Collapse
Affiliation(s)
- Soo Jeong Lee
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, 04310, Korea
| | - Yejin Song
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, 04310, Korea
| | - Min-Yu Chung
- Korea Food Research Institute, Jeonbuk, 55365, Korea
| | - In-Hwan Kim
- Department of Food and Nutrition, Korea University, Seoul, 02841, Korea
| | - Byung Hee Kim
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, 04310, Korea
| |
Collapse
|
25
|
Sahaka M, Amara S, Wattanakul J, Gedi MA, Aldai N, Parsiegla G, Lecomte J, Christeller JT, Gray D, Gontero B, Villeneuve P, Carrière F. The digestion of galactolipids and its ubiquitous function in Nature for the uptake of the essential α-linolenic acid. Food Funct 2020; 11:6710-6744. [PMID: 32687132 DOI: 10.1039/d0fo01040e] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Galactolipids, mainly monogalactosyl diglycerides and digalactosyl diglycerides are the main lipids found in the membranes of plants, algae and photosynthetic microorganisms like microalgae and cyanobacteria. As such, they are the main lipids present at the surface of earth. They may represent up to 80% of the fatty acid stocks, including a large proportion of polyunsaturated fatty acids mainly α-linolenic acid (ALA). Nevertheless, the interest in these lipids for nutrition and other applications remains overlooked, probably because they are dispersed in the biomass and are not as easy to extract as vegetable oils from oleaginous fruit and oil seeds. Another reason is that galactolipids only represent a small fraction of the acylglycerolipids present in modern human diet. In herbivores such as horses, fish and folivorous insects, galactolipids may however represent the main source of dietary fatty acids due to their dietary habits and digestion physiology. The development of galactolipase assays has led to the identification and characterization of the enzymes involved in the digestion of galactolipids in the gastrointestinal tract, as well as by microorganisms. Pancreatic lipase-related protein 2 (PLRP2) has been identified as an important factor of galactolipid digestion in humans, together with pancreatic carboxyl ester hydrolase (CEH). The levels of PLRP2 are particularly high in monogastric herbivores thus highlighting the peculiar role of PLRP2 in the digestion of plant lipids. Similarly, pancreatic lipase homologs are found to be expressed in the midgut of folivorous insects, in which a high galactolipase activity can be measured. In fish, however, CEH is the main galactolipase involved. This review discusses the origins and fatty acid composition of galactolipids and the physiological contribution of galactolipid digestion in various species. This overlooked aspect of lipid digestion ensures not only the intake of ALA from its main natural source, but also the main lipid source of energy for growth of some herbivorous species.
Collapse
Affiliation(s)
- Moulay Sahaka
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| | - Sawsan Amara
- Lipolytech, Zone Luminy Biotech, 163 avenue de Luminy, 13288 Marseille Cedex 09, France
| | - Jutarat Wattanakul
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Mohamed A Gedi
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Noelia Aldai
- Lactiker Research Group, Department of Pharmacy & Food Sciences, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Goetz Parsiegla
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| | | | - John T Christeller
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Palmerston North Research Centre, Palmerston North, New Zealand
| | - David Gray
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| | | | - Frédéric Carrière
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| |
Collapse
|
26
|
Dietary ceramide 2-aminoethylphosphonate, a marine sphingophosphonolipid, improves skin barrier function in hairless mice. Sci Rep 2020; 10:13891. [PMID: 32807849 PMCID: PMC7431532 DOI: 10.1038/s41598-020-70888-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/03/2020] [Indexed: 12/02/2022] Open
Abstract
Sphingolipids are one of the major components of cell membranes and are ubiquitous in eukaryotic organisms. Ceramide 2-aminoethylphosphonate (CAEP) of marine origin is a unique and abundant sphingophosphonolipid with a C-P bond. Although molluscs such as squids and bivalves, containing CAEP, are consumed globally, the dietary efficacy of CAEP is not understood. We investigated the efficacy of marine sphingophosphonolipids by studying the effect of dietary CAEP on the improvement of the skin barrier function in hairless mice fed a diet that induces severely dry-skin condition. The disrupted skin barrier functions such as an increase in the transepidermal water loss (TEWL), a decrease in the skin hydration index, and epidermal hyperplasia were restored by CEAP dietary supplementation. Correspondingly, dietary CAEP significantly increased the content of covalently bound ω-hydroxyceramide, and the expression of its biosynthesis-related genes in the skin. These effects of dietary CAEP mimic those of dietary plant glucosylceramide. The novel observations from this study show an enhancement in the skin barrier function by dietary CAEP and the effects could be contributed by the upregulation of covalently bound ω-hydroxyceramide synthesis in the skin.
Collapse
|
27
|
Poole LB, Parsonage D, Sergeant S, Miller LR, Lee J, Furdui CM, Chilton FH. Acyl-lipid desaturases and Vipp1 cooperate in cyanobacteria to produce novel omega-3 PUFA-containing glycolipids. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:83. [PMID: 32399061 PMCID: PMC7203895 DOI: 10.1186/s13068-020-01719-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/16/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Dietary omega-3 (n-3), long chain (LC-, ≥ 20 carbons), polyunsaturated fatty acids (PUFAs) derived largely from marine animal sources protect against inflammatory processes and enhance brain development and function. With the depletion of natural stocks of marine animal sources and an increasing demand for n-3 LC-PUFAs, alternative, sustainable supplies are urgently needed. As a result, n-3 18-carbon and LC-PUFAs are being generated from plant or algal sources, either by engineering new biosynthetic pathways or by augmenting existing systems. RESULTS We utilized an engineered plasmid encoding two cyanobacterial acyl-lipid desaturases (DesB and DesD, encoding Δ15 and Δ6 desaturases, respectively) and "vesicle-inducing protein in plastids" (Vipp1) to induce production of stearidonic acid (SDA, 18:4 n-3) at high levels in three strains of cyanobacteria (10, 17 and 27% of total lipids in Anabaena sp. PCC7120, Synechococcus sp. PCC7002, and Leptolyngbya sp. strain BL0902, respectively). Lipidomic analysis revealed that in addition to SDA, the rare anti-inflammatory n-3 LC-PUFA eicosatetraenoic acid (ETA, 20:4 n-3) was synthesized in these engineered strains, and ~ 99% of SDA and ETA was complexed to bioavailable monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) species. Importantly, novel molecular species containing alpha-linolenic acid (ALA), SDA and/or ETA in both acyl positions of MGDG and DGDG were observed in the engineered Leptolyngbya and Synechococcus strains, suggesting that these could provide a rich source of anti-inflammatory molecules. CONCLUSIONS Overall, this technology utilizes solar energy, consumes carbon dioxide, and produces large amounts of nutritionally important n-3 PUFAs and LC-PUFAs. Importantly, it can generate previously undescribed, highly bioavailable, anti-inflammatory galactosyl lipids. This technology could therefore be transformative in protecting ocean fisheries and augmenting the nutritional quality of human and animal food products.
Collapse
Affiliation(s)
- Leslie B. Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Derek Parsonage
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Susan Sergeant
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Leslie R. Miller
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Present Address: 139 N St. Patrick St., New Orleans, LA 70119 USA
| | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Cristina M. Furdui
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Floyd H. Chilton
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Department of Nutritional Sciences and the BIO5 Institute, University of Arizona, Tucson, AZ USA
| |
Collapse
|
28
|
Brouwer-Brolsma EM, Brandl B, Buso MEC, Skurk T, Manach C. Food intake biomarkers for green leafy vegetables, bulb vegetables, and stem vegetables: a review. GENES AND NUTRITION 2020; 15:7. [PMID: 32272877 PMCID: PMC7144047 DOI: 10.1186/s12263-020-00667-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Numerous studies acknowledged the importance of an adequate vegetable consumption for human health. However, current methods to estimate vegetable intake are often prone to measurement errors due to self-reporting and/or insufficient detail. More objective intake biomarkers for vegetables, using biological specimens, are preferred. The only concentration biomarkers currently available are blood carotenoids and vitamin C, covering total fruit and vegetable intake. Identification of biomarkers for specific vegetables is needed for a better understanding of their relative importance for human health. Within the FoodBAll Project under the Joint Programming Initiative "A Healthy Diet for a Healthy Life", an ambitious action was undertaken to identify candidate intake biomarkers for all major food groups consumed in Europe by systematically reviewing the existent literature. This study describes the review on candidate biomarkers of food intake (BFIs) for leafy, bulb, and stem vegetables, which was conducted within PubMed, Scopus and Web of Science for studies published through March 2019. RESULTS In total, 65 full-text articles were assessed for eligibility for leafy vegetables, and 6 full-text articles were screened for bulb and stem vegetables. Putative BFIs were identified for spinach, lettuce, endive, asparagus, artichoke, and celery, but not for rocket salad. However, after critical evaluation through a validation scheme developed by the FoodBAll consortium, none of the putative biomarkers appeared to be a promising BFI. The food chemistry data indicate that some candidate BFIs may be revealed by further studies. CONCLUSION Future randomized controlled feeding studies combined with observational studies, applying a non-targeted metabolomics approach, are needed in order to identify valuable BFIs for the intake of leafy, bulb, and stem vegetables.
Collapse
Affiliation(s)
- Elske M Brouwer-Brolsma
- Division of Human Nutrition and Health, Wageningen University, PO Box 17, 6700 AA, Wageningen, The Netherlands.
| | - Beate Brandl
- ZIEL Institute for Food and Health, Core Facility Human Studies, Technical University of Munich, Freising, Germany
| | - Marion E C Buso
- Division of Human Nutrition and Health, Wageningen University, PO Box 17, 6700 AA, Wageningen, The Netherlands
| | - Thomas Skurk
- ZIEL Institute for Food and Health, Core Facility Human Studies, Technical University of Munich, Freising, Germany.,Else Kroener-Fresenius Center of Nutritional Medicine, Technical University of Munich, Freising, Germany
| | - Claudine Manach
- Université Clermont Auvergne, INRA, UMR1019, Human Nutrition Unit, F63000, Clermont-Ferrand, France
| |
Collapse
|
29
|
Wang X, Wang Y, Xu J, Xue C. Sphingolipids in food and their critical roles in human health. Crit Rev Food Sci Nutr 2020; 61:462-491. [PMID: 32208869 DOI: 10.1080/10408398.2020.1736510] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sphingolipids (SLs) are ubiquitous structural components of cell membranes and are essential for cell functions under physiological conditions or during disease progression. Abundant evidence supports that SLs and their metabolites, including ceramide (Cer), ceramide-1-phosphate (C1P), sphingosine (So), sphingosine-1-phosphate (S1P), are signaling molecules that regulate a diverse range of cellular processes and human health. However, there are limited reviews on the emerging roles of exogenous dietary SLs in human health. In this review, we discuss the ubiquitous presence of dietary SLs, highlighting their structures and contents in foodstuffs, particularly in sea foods. The digestion and metabolism of dietary SLs is also discussed. Focus is given to the roles of SLs in both the etiology and prevention of diseases, including bacterial infection, cancers, neurogenesis and neurodegenerative diseases, skin integrity, and metabolic syndrome (MetS). We propose that dietary SLs represent a "functional" constituent as emerging strategies for improving human health. Gaps in research that could be of future interest are also discussed.
Collapse
Affiliation(s)
- Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| |
Collapse
|
30
|
Yamashita S, Kikuchi N, Kinoshita M, Miyazawa T. Chemical Properties and Nutritional Value of Plant-Origin Glucosylceramide. J Nutr Sci Vitaminol (Tokyo) 2020; 65:S153-S157. [PMID: 31619618 DOI: 10.3177/jnsv.65.s153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glucosylceramide (GlcCer), a representative sphingolipid in cell membranes of plants and fungi, is known to have certain benefits, such as prevention of intestinal impairment and improved skin moisturizing, when consumed. Recently, incidence rates of intestinal impairments have increased in East Asian countries due to changes of people's diet and life style. Therefore, the occurrence of these impairments needs to be prevented through dietary improvement and supplements containing GlcCer. The in vitro and in vivo effects of GlcCer on colon impairment were explored in our previous studies, with focus on sphingolipid structure. Conversely, plant cell membrane contents such as GlcCer are known to be difficult to extract due to the thick cell wall. Therefore, human and other mammals may not be able to utilize GlcCer when digesting food of plant origin. To confirm this hypothesis, we investigated the effects of polished rice and the extract on intestinal impairment. In addition, we discuss the intestinal function of GlcCer contained in polished rice and the relationship between GlcCer and other lipophilic functional components.
Collapse
Affiliation(s)
- Shinji Yamashita
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine
| | - Nobuhiro Kikuchi
- Fukushima Technology Centre, Aizuwakamatsu Techinical Support Centre
| | - Mikio Kinoshita
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine
| | - Teruo Miyazawa
- Food and Biotechnology Innovation Project, NICHe, Tohoku University
| |
Collapse
|
31
|
Hasi RY, Miyagi M, Kida T, Fukuta T, Kogure K, Hayashi J, Kawakami R, Kanemaru K, Tanaka T. Quantitative Analysis of Glycosylinositol Phosphoceramide and Phytoceramide 1-Phosphate in Vegetables. J Nutr Sci Vitaminol (Tokyo) 2020; 65:S175-S179. [PMID: 31619623 DOI: 10.3177/jnsv.65.s175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previously, we found an unidentified sphingolipid in cabbage, and determined it as phytoceramide 1-phosphate (PC1P). PC1P is found to be produced from glycosylinositol phosphoceramide (GIPC) by the action of phospholipase D (PLD) activity. Although GIPC is abundant sphingolipid, especially in cruciferous vegetables, amount of daily intake, digestibility and nutritional activity of GIPC are not well understood. Here, we investigated amounts of GIPC and PC1P in vegetables. GIPC was found in all vegetables examined (13 kinds) at levels 3-20 mg/100 g (wet weight). On the other hand, PC1P was present in limited vegetables which show higher GIPC-PLD activity, such as inner cabbage leaves (5.2 mg/100 g). Because PC1P is formed during homogenization by activated GIPC-PLD, level of PC1P in boiled cabbage leaves was very low. Although digestibility of GIPC is unknown at present, a portion of dietary GIPC is considered to be converted to PC1P during mastication by plant-derived GIPC-PLD activity in some vegetables.
Collapse
Affiliation(s)
| | - Makoto Miyagi
- Graduate School of Biomedical Sciences, Tokushima University
| | - Takashi Kida
- Graduate School of Biomedical Sciences, Tokushima University
| | - Tatsuya Fukuta
- Graduate School of Biomedical Sciences, Tokushima University
| | - Kentaro Kogure
- Graduate School of Biomedical Sciences, Tokushima University
| | - Junji Hayashi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University
| | - Ryushi Kawakami
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University
| | - Kaori Kanemaru
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University
| | - Tamotsu Tanaka
- Graduate School of Biomedical Sciences, Tokushima University.,Graduate School of Technology, Industrial and Social Sciences, Tokushima University
| |
Collapse
|
32
|
Dietary Control of Ganglioside Expression in Mammalian Tissues. Int J Mol Sci 2019; 21:ijms21010177. [PMID: 31887977 PMCID: PMC6981639 DOI: 10.3390/ijms21010177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 12/16/2022] Open
Abstract
Gangliosides are series of glycosphingolipids containing sialic acids in the oligosaccharide portion in mammalian cells. Gangliosides are a component of cellular membranes and play roles in modulating membrane function and the activity of membrane proteins. Abnormal expression and metabolism of gangliosides lead to the onset of several conditions in humans, such as neurologic diseases, diabetes, and cancer. A number of studies have been carried out to date to investigate the role of gangliosides in these diseases, and the effect of diet on tissue expression of gangliosides has recently become a topic of interest in this field. As gangliosides are degraded in the intestinal tract, ingested food-derived gangliosides are not directly absorbed into tissues in vivo, but the degradation products can be absorbed and affect ganglioside expression in the tissues. Recent studies have also shown that the expression of gangliosides in tissue cells can be indirectly induced by controlling the expression of ganglioside metabolism-related genes via the diet. These results indicate that dietary control can regulate the expression levels of gangliosides in tissues, which is expected to play a role in preventing and treating ganglioside-related diseases. This review introduces recent studies on the effect of diet on the expression of gangliosides in tissues, with a focus on our findings.
Collapse
|
33
|
Xie M, Dunford NT. Fractionating of canola lecithin from acid degumming and its effect. Food Chem 2019; 300:125217. [PMID: 31351255 DOI: 10.1016/j.foodchem.2019.125217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/15/2019] [Accepted: 07/20/2019] [Indexed: 10/26/2022]
Abstract
In this study, lecithin obtained from acid degumming of canola oil was fractionated with absolute ethanol. The lipid composition and emulsifying properties of the resulting fractions were investigated. The results showed that phosphatidylcholine and lyso-phosphatidylcholine were greatly enriched in the ethanol soluble fraction (ESF), accounting for 43.79% and 13.21% of ESF, respectively. Phosphatidylinositol, lyso-phosphatidylinositol and phosphatidic acid, as a group, were enriched in the ethanol insoluble fraction (EIF), accounting for 37.4% of EIF. ESF and EIF promoted oil/water (o/w) emulsions as stable as the parent canola lecithin. EIF was not better than the parent lecithin as w/o emulsifier. This information is critical for evaluating the potential utilization of these canola lecithin fractions as emulsifiers or sources of specific phospholipid.
Collapse
Affiliation(s)
- Meizhen Xie
- School of Food Equipment Engineering and Science, Xi'an Jiaotong University, Xi'an 710049, China; Robert M. Kerr Food and Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078, USA
| | - Nurhan Turgut Dunford
- Robert M. Kerr Food and Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078, USA; Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
34
|
Yuyama K, Takahashi K, Usuki S, Mikami D, Sun H, Hanamatsu H, Furukawa J, Mukai K, Igarashi Y. Plant sphingolipids promote extracellular vesicle release and alleviate amyloid-β pathologies in a mouse model of Alzheimer's disease. Sci Rep 2019; 9:16827. [PMID: 31727994 PMCID: PMC6856149 DOI: 10.1038/s41598-019-53394-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022] Open
Abstract
The accumulation of amyloid-β protein (Aβ) in brain is linked to the early pathogenesis of Alzheimer’s disease (AD). We previously reported that neuron-derived exosomes promote Aβ clearance in the brains of amyloid precursor protein transgenic mice and that exosome production is modulated by ceramide metabolism. Here, we demonstrate that plant ceramides derived from Amorphophallus konjac, as well as animal-derived ceramides, enhanced production of extracellular vesicles (EVs) in neuronal cultures. Oral administration of plant glucosylceramide (GlcCer) to APP overexpressing mice markedly reduced Aβ levels and plaque burdens and improved cognition in a Y-maze learning task. Moreover, there were substantial increases in the neuronal marker NCAM-1, L1CAM, and Aβ in EVs isolated from serum and brain tissues of the GlcCer-treated AD model mice. Our data showing that plant ceramides prevent Aβ accumulation by promoting EVs-dependent Aβ clearance in vitro and in vivo provide evidence for a protective role of plant ceramides in AD. Plant ceramides might thus be used as functional food materials to ameliorate AD pathology.
Collapse
Affiliation(s)
- Kohei Yuyama
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, 001-0021, Japan.
| | - Kaori Takahashi
- R & D Headquarters, Daicel Corporation, 2-18-1, Konan, Minato-ku, Tokyo, 108-8230, Japan
| | - Seigo Usuki
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| | - Daisuke Mikami
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| | - Hui Sun
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| | - Hisatoshi Hanamatsu
- Department of Advanced Clinical Glycobiology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| | - Junichi Furukawa
- Department of Advanced Clinical Glycobiology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| | - Katsuyuki Mukai
- R & D Headquarters, Daicel Corporation, 2-18-1, Konan, Minato-ku, Tokyo, 108-8230, Japan
| | - Yasuyuki Igarashi
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| |
Collapse
|
35
|
SUGAWARA T, AIDA K, DUAN J, TOMONAGA N, MANABE Y, HIRATA T. Analysis of Chemical Structures of Glucosylceramides from Rice and Other Foodstuffs. J Nutr Sci Vitaminol (Tokyo) 2019; 65:S228-S230. [DOI: 10.3177/jnsv.65.s228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | | | | | - Yuki MANABE
- Graduate School of Agriculture, Kyoto University
| | - Takashi HIRATA
- Graduate School of Agriculture, Kyoto University
- Department of Rehabilitation, Shijonawate Gakuen University
| |
Collapse
|
36
|
Yamashita S, Yamamoto M, Hirakawa K, Kikuchi N, Kinoshita M, Miyazawa T. Extraction of Lipophilic Fraction from Polished Rice Improves Its Ameliorative Effect on Intestinal Impairment. J Oleo Sci 2019; 68:463-470. [PMID: 31061265 DOI: 10.5650/jos.ess19013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glucosylceramide (GlcCer), a major sphingolipid in plants and fungi, is known to have food functions such as preventing intestinal impairment and enhancing the moisture content of skin. However, there is little information about functions of GlcCer in food sources as most of the studies on GlcCer functions are done using purified GlcCer. This study was performed to investigate the effects of GlcCer contained in food on intestinal impairment; polished rice flour (RF) and this ethanol extract (RE) were used as sources of GlcCer, and these were evaluated by studying the formation of aberrant crypt foci (ACF) in 1,2-dimethylhydrazine (DMH)-treated mice, which is a model of colon cancer. Mice were fed with either a control diet, a RF diet where RF replaces cornstarch (150 g/kg), or a plus RE diet (0.5 g/kg; RE was extracted from the same amount of RF present in the RF diet). The amount of GlcCer was similar in both the RF and RE diets (3.0 and 2.7 mg/kg, respectively). DMH treatment induced the formation of ACF and the production of inflammation-related cytokines. Both dietary RF and RE suppressed ACF formation and RE, in particular, showed a significant suppressive effect. Dietary RE inhibited the production of almost all of the inflammation-related cytokines studied, while RF suppressed only a few of these cytokines. The present study suggests that the lipophilic fraction including GlcCer, present in polished rice has protective effects against intestinal impairment, but it requires extraction since digestion alone is not enough to elicit its complete protective action.
Collapse
Affiliation(s)
- Shinji Yamashita
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine
| | - Masahiro Yamamoto
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine
| | - Kenta Hirakawa
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine
| | - Nobuhiro Kikuchi
- Fukushima Technology Centre, Aizuwakamatsu Techinical Support Centre
| | - Mikio Kinoshita
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine
| | - Teruo Miyazawa
- Food and Biotechnology Innovation Project, New Industry Creation Hatchery Center (NICHe), Tohoku University
| |
Collapse
|
37
|
Fukunaga S, Wada S, Yamashita M, Morita M, Aoi W, Naito Y, Higashi A. Torula yeast (Candida utilis)-derived glucosylceramide contributes to dermal elasticity in vitro. J Food Biochem 2019; 43:e12847. [PMID: 31353719 DOI: 10.1111/jfbc.12847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022]
Abstract
Glucosylceramide (GlcCer) is derived from several plants, such as rice, maize, and wheat, and has been reported to retain moisture by functioning as a barrier between the epidermis and the environment. However, there is insufficient research on the effect of GlcCer on dermal elasticity and wrinkles. In this study, we investigated the effects of torula yeast extract and torula yeast-derived GlcCer on dermal elasticity. We measured cell proliferation, collagen production, and collagen gel contraction using human dermal fibroblasts. Torula yeast extract and torula yeast-derived GlcCer increased dermal fibroblast proliferation and collagen production. Collagen gel contraction was promoted by torula yeast extract and torula yeast-derived GlcCer. These results indicate that GlcCer may affect dermal elasticity. Torula yeast extract and torula yeast-derived GlcCer may contribute to the maintenance of dermal elasticity. PRACTICAL APPLICATIONS: In this study, we found that torula yeast-derived glucosylceramide (GlcCer) has an additional function of improving dermal elasticity. With improved elasticity, skin becomes more resilient, thus preventing wrinkles. GlcCer has already been used in cosmetic products to retain skin moisture. Therefore, torula yeast-derived GlcCer can be expected to have several cosmetic applications.
Collapse
Affiliation(s)
- Shoko Fukunaga
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Sayori Wada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Mika Yamashita
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Mayuko Morita
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Wataru Aoi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akane Higashi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
38
|
Honda M, Ishimaru T, Itabashi Y, Vyssotski M. Glycerolipid Composition of the Red Macroalga Agarophyton Chilensis and Comparison to the Closely Related Agarophyton Vermiculophyllum Producing Different Types of Eicosanoids. Mar Drugs 2019; 17:md17020096. [PMID: 30717350 PMCID: PMC6410328 DOI: 10.3390/md17020096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/22/2022] Open
Abstract
The red macroalga Agarophyton chilensis is a well-known producer of eicosanoids such as hydroxyeicosatetraenoic acids, but the alga produces almost no prostaglandins, unlike the closely related A. vermiculophyllum. This indicates that the related two algae would have different enzyme systems or substrate composition. To carry out more in-depth discussions on the metabolic pathway of eicosanoids between the two algae, we investigated the characteristics of glycerolipids, which are the substrates of eicosanoids production, of A. chilensis and compared them to the reported values of A. vermiculophyllum. In A. chilensis, monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG), and phosphatidylcholine (PC) were the major lipid classes and accounted for 44.4% of the total lipid extract. The predominant fatty acids were arachidonic acid (20:4n-6), an eicosanoids precursor, and palmitic acid (16:0). The 20:4n-6 content was extremely high in MGDG and PC (>70%), and the 16:0 content was extremely high in DGDG and SQDG (>40%). A chiral-phase HPLC analysis showed that fatty acids were esterified at the sn-1 and sn-2 positions of those lipids. The glycerolipid molecular species were determined by reversed-phase HPLC–ESI–MS analysis. The main glycerolipid molecular species were 20:4n-6/20:4n-6 (sn-1/sn-2) for MGDG (63.8%) and PC (48.2%), 20:4n-6/16:0 for DGDG (71.1%) and SQDG (29.4%). These lipid characteristics of A. chilensis were almost the same as those of A. vermiculophyllum. Hence, the differences of the eicosanoids producing ability between the two algae would not be due to the difference of substrate composition but the difference of enzyme system.
Collapse
Affiliation(s)
- Masaki Honda
- Faculty of Science & Technology, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan.
| | - Takashi Ishimaru
- Faculty of Fisheries Sciences, Hokkaido University, Minato-cho, Hakodate 041-0811, Japan.
| | - Yutaka Itabashi
- Faculty of Fisheries Sciences, Hokkaido University, Minato-cho, Hakodate 041-0811, Japan.
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama 236-8648, Japan.
| | - Mikhail Vyssotski
- Callaghan Innovation, 69 Gracefield Road, P.O. Box 31310, Lower Hutt 5040, New Zealand.
| |
Collapse
|
39
|
A unique structural distribution pattern discovered for the cerebrosides from starfish Asterias amurensis. Carbohydr Res 2018; 473:115-122. [PMID: 30682532 DOI: 10.1016/j.carres.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 01/13/2023]
Abstract
Cerebroside is an important family of the mono-glycosylated ceramides involved in the larger family of glycosphingolipid and sulfatide. Cerebroside is synthesized from ceramide by the transfer of glucose from UDP-glucose, and degraded back to ceramide, which plays an important role at the epidermis protecting interior of the body as a barrier. Because cerebroside is regarded as the source molecule of ceramide and is amphiphilic in nature, cerebroside is considered valuable as the ingredient of cosmetic lotion. Various sources can be considered as raw material of cerebrosides. Starfish is considered as one of such potent source. However, the structure of the ceramide part of cerebroside is not fully investigated. Therefore, the individual structures of cerebroside molecules need to be identified including sphingosine and fatty acyl group composition to assess the potential of the molecule. We investigated and determined the structures of cerebrosides in starfish Asterias amurensis using LC-MS, GC-MS, tandem mass spectrometry (MS/MS), and 1H NMR. We also discovered a characteristic structure distribution that was divided into three major groups: 1) a group composed of a relatively long sphingosine (C22) and a short length of fatty acyl group (less than C16), 2) a group composed of a typical C18 sphingosine and long fatty acyl groups (greater than C23), and 3) a group composed of C18 sphingosine and fatty acyl groups with their length less than C18. The calculated Log P values of cerebrosides ranging from 9 to 11 covered about 80% of the molecules that were in the range of those used in cosmetics, thus showing the potential usefulness of starfish Asterias amurensis as a source of raw material for cerebrosides.
Collapse
|
40
|
Tomonaga N, Tsuduki T, Manabe Y, Sugawara T. Sphingoid bases of dietary ceramide 2-aminoethylphosphonate, a marine sphingolipid, absorb into lymph in rats. J Lipid Res 2018; 60:333-340. [PMID: 30552287 DOI: 10.1194/jlr.m085654] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 12/05/2018] [Indexed: 11/20/2022] Open
Abstract
Various functions of dietary sphingolipids have been reported; however, little is known about marine sphingolipids. Ceramide 2-aminoethylphosphonate (CAEP), an abundant sphingolipid in marine mollusks, frequently has a unique triene type of sphingoid base [2-amino-9-methyl-4,8,10-octadecatriene-1,3-diol (d19:3)]. We previously reported that dietary CAEP prepared from the skin of squid was digested in the intestinal mucosa of mice via ceramides to yield free sphingoid bases. How dietary CAEP is then used in the body remains unclear. Here, we investigated the absorption of dietary CAEP using a lipid absorption assay on the lymph collected from rats with thoracic duct cannulation. Our results reveal that sphingoid bases derived from CAEP, including d16:1, d18:1, and d19:3, were detected in the lymph after administration of CAEP. Lymphatic recovery of d19:3 was lower than that of other sphingoid bases. A large fraction of the absorbed sphingoid bases was present as complex sphingolipids, whereas a smaller portion was present in the free form. Fatty acids in ceramide moieties found in the lymph were partially different from dietary CAEP, which indicates that sphingoid bases derived from CAEP could be, at least in part, resynthesized into complex sphingolipids. Future studies should elucidate the metabolism of sphingoid bases derived from CAEP.
Collapse
Affiliation(s)
- Nami Tomonaga
- Laboratory of Technology of Marine Bioproducts, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tsuyoshi Tsuduki
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Yuki Manabe
- Laboratory of Technology of Marine Bioproducts, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tatsuya Sugawara
- Laboratory of Technology of Marine Bioproducts, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
41
|
Heinz P, Glomb MA. Characterization and Quantitation of Steryl Glycosides in Solanum melongena. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11398-11406. [PMID: 30336036 DOI: 10.1021/acs.jafc.8b04045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Glycosylated plant sterols or steryl glycosides (SGs) are a small group of glycolipids occurring ubiquitously in plants. In contrast to free sterols, they are insufficiently characterized concerning structural variety, quantity, and biological function. In particular, the type of sugar usually attached to the C-3 hydroxy function of the respective sterol is poorly studied. Eggplants ( Solanum melongena) are rich in phytochemicals including SGs. In the present work, the unique glycosylation pattern was investigated by a highly selective LC-MS/MS method that allowed quantitation of the glucosides and galactosides of the most common sterols: cholesterol, β-sitosterol, campesterol, and stigmasterol. The quantitatively most important structure was β-sitosteryl β-d-glucopyranoside, with 54.5 mg/kg fresh weight of total fruit (365.3 mg/kg dry weight) followed by stigmasteryl β-d-glucopyranoside and campesteryl β-d-glucopyranoside. Analyses were performed in different tissues of eggplants (i.e., exocarp and outer mesocarp vs the remaining inner part). Steryl galactosides were determined in eggplants for the first time at significantly lower concentrations by a factor of 100. Furthermore, the rare SG β-sitosteryl β-d-cellobioside (3-β-sitosteryl β-d-glucopyranosyl-(1→4)-β-d-glucopyranoside) was detected in eggplants for the first time. Finally, UV irradiation induced the formation of the vitamin D glucosides 7-dehydrocholesteryl β-d-glucopyranoside and cholecalciferyl β-d-glucopyranoside at very low levels.
Collapse
Affiliation(s)
- Philipp Heinz
- Institute of Chemistry, Food Chemistry , Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Strasse 2 , 06120 Halle/Saale , Germany
| | - Marcus A Glomb
- Institute of Chemistry, Food Chemistry , Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Strasse 2 , 06120 Halle/Saale , Germany
| |
Collapse
|
42
|
Ravi H, Kurrey N, Manabe Y, Sugawara T, Baskaran V. Polymeric chitosan-glycolipid nanocarriers for an effective delivery of marine carotenoid fucoxanthin for induction of apoptosis in human colon cancer cells (Caco-2 cells). MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:785-795. [PMID: 30033314 DOI: 10.1016/j.msec.2018.06.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 05/25/2018] [Accepted: 06/09/2018] [Indexed: 01/25/2023]
Abstract
Fucoxanthin (FUCO), a marine carotenoid is photo-, and thermo-labile and poorly bioavailable due to its lipophilicity. Hence, we developed a chitosan (CS) + glycolipid (GL) nanogels (NGs) to increase cellular uptake and anticancer efficacy of FUCO (10 μM) in human colon cells (Caco-2). Effect of FUCO loaded in NGs with/with no GL was studied in comparison with micellar FUCO. Results showed that the cell viability was lower (p < 0.05) in NGs + GL (50.5%) compared to NGs (-GL) (66.5%) and the mixed micelles (72.5%) groups over 48 h exposure. An enhanced reactive oxygen species (ROS) generation was evident in NGs + GL (379.2%) group compared to NGs (-GL) and mixed micelles groups. Further, induction of apoptosis with an increased chromatin condensation and DNA fragmentation as evidenced in DAPI staining and DNA ladder assay were higher in NGs + GL group than other groups. Down-regulation of Bcl-2 (6.6 folds) was higher in NGs + GL group compared to NGs (-GL) (1.94 fold) and mixed micelles (1.19 fold) groups. Higher Bax up-regulation in NGs + GL compared to other groups supports the Bcl-2 down regulation. Mitochondrial membrane polarisation (ΔΨm) was higher in NGs + GL group (2.46 fold) compared to NGs (-GL) (1.91 fold) and mixed micelles (1.26 fold) groups. The cellular FUCO uptake illustrated a positive correlation between its level (pmol/106 cells) in NGs + GL (758.3) and enhanced caspase-3 activity (25.8 folds). This could be the reason for an increased apoptotic activity in NGs + GL group than other groups. Results demonstrate that delivery of FUCO in NGs + GL carrier aids cellular uptake and chemotherapeutic potential of FUCO. Results further demonstrate, for the first time, higher anti-cancer activity of FUCO loaded in NGs + GL and the effect was through ROS generation via a caspase dependent mechanism in Caco-2 cells.
Collapse
Affiliation(s)
- Hindupur Ravi
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru-570020, Karnataka, India
| | - Nawneet Kurrey
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru-570020, Karnataka, India
| | - Yuki Manabe
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Tatsuya Sugawara
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Vallikannan Baskaran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru-570020, Karnataka, India.
| |
Collapse
|
43
|
Belayneh HD, Wehling RL, Cahoon E, Ciftci ON. Lipid composition and emulsifying properties of Camelina sativa seed lecithin. Food Chem 2018; 242:139-146. [DOI: 10.1016/j.foodchem.2017.08.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/17/2017] [Accepted: 08/23/2017] [Indexed: 11/28/2022]
|
44
|
Aguirre A, Eberhardt F, Hails G, Cerminati S, Castelli ME, Rasia RM, Paoletti L, Menzella HG, Peiru S. The production, properties, and applications of thermostable steryl glucosidases. World J Microbiol Biotechnol 2018; 34:40. [PMID: 29468428 DOI: 10.1007/s11274-018-2423-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/19/2018] [Indexed: 11/29/2022]
Abstract
Extremophilic microorganisms are a rich source of enzymes, the enzymes which can serve as industrial catalysts that can withstand harsh processing conditions. An example is thermostable β-glucosidases that are addressing a challenging problem in the biodiesel industry: removing steryl glucosides (SGs) from biodiesel. Steryl glucosidases (SGases) must be tolerant to heat and solvents in order to function efficiently in biodiesel. The amphipathic nature of SGs also requires enzymes with an affinity for water/solvent interfaces in order to achieve efficient hydrolysis. Additionally, the development of an enzymatic process involving a commodity such as soybean biodiesel must be cost-effective, necessitating an efficient manufacturing process for SGases. This review summarizes the identification of microbial SGases and their applications, discusses biodiesel refining processes and the development of analytical methods for identifying and quantifying SGs in foods and biodiesel, and considers technologies for strain engineering and process optimization for the heterologous production of a SGase from Thermococcus litoralis. All of these technologies might be used for the production of other thermostable enzymes. Structural features of SGases and the feasibility of protein engineering for novel applications are explored.
Collapse
Affiliation(s)
- Andres Aguirre
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), CONICET, Suipacha 531, 2000, Rosario, Argentina
- Keclon S.A., Tucuman 7180, 2000, Rosario, Argentina
| | - Florencia Eberhardt
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - Guillermo Hails
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - Sebastian Cerminati
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - María Eugenia Castelli
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - Rodolfo M Rasia
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, predio CONICET, Rosario, 2000, Argentina
| | - Luciana Paoletti
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - Hugo G Menzella
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), CONICET, Suipacha 531, 2000, Rosario, Argentina
- Keclon S.A., Tucuman 7180, 2000, Rosario, Argentina
| | - Salvador Peiru
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), CONICET, Suipacha 531, 2000, Rosario, Argentina.
- Keclon S.A., Tucuman 7180, 2000, Rosario, Argentina.
| |
Collapse
|
45
|
Fukunaga S, Wada S, Aoi W, Osada‐Oka M, Minamiyama Y, Ichikawa H, Higashi A. Effect of melanogenesis inhibition by a yeast extract in comparison to that by other food extracts, and its mechanism of action. J Food Biochem 2018. [DOI: 10.1111/jfbc.12520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shoko Fukunaga
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityShimogamo Kyoto606 8522 Japan
| | - Sayori Wada
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityShimogamo Kyoto606 8522 Japan
| | - Wataru Aoi
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityShimogamo Kyoto606 8522 Japan
| | - Mayuko Osada‐Oka
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityShimogamo Kyoto606 8522 Japan
| | - Yukiko Minamiyama
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityShimogamo Kyoto606 8522 Japan
| | - Hiroshi Ichikawa
- Graduate School of Life and Medical SciencesDoshisha University, Tatara MiyakodaniKyotanabe Kyoto610 0394 Japan
| | - Akane Higashi
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityShimogamo Kyoto606 8522 Japan
| |
Collapse
|
46
|
FUKUNAGA S, WADA S, SATO T, HAMAGUCHI M, AOI W, HIGASHI A. Effect of Torula Yeast ( Candida utilis)-Derived Glucosylceramide on Skin Dryness and Other Skin Conditions in Winter. J Nutr Sci Vitaminol (Tokyo) 2018; 64:265-270. [DOI: 10.3177/jnsv.64.265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Shoko FUKUNAGA
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University
| | - Sayori WADA
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University
| | | | - Masahide HAMAGUCHI
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Wataru AOI
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University
| | - Akane HIGASHI
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University
| |
Collapse
|
47
|
Inuki S, Kishi J, Kashiwabara E, Aiba T, Fujimoto Y. Convergent Synthesis of Digalactosyl Diacylglycerols. Org Lett 2017; 19:6482-6485. [PMID: 29182339 DOI: 10.1021/acs.orglett.7b03043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Efficient convergent chemical syntheses of digalactosyl diacylglycerols (DGDGs), which have both a galactose-galactose α(1→6)-linkage and a galactose-glycerol β-linkage along with a diacylglycerol containing various kinds of fatty acids, have been accomplished. In order to achieve a concise synthesis, we chose to use allylic protective groups as permanent protective groups. We have also achieved α- and β-selective glycosylations for the respective linkages with high yields as the key steps.
Collapse
Affiliation(s)
- Shinsuke Inuki
- Graduate School of Science and Technology, Keio University, Hiyoshi , Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.,Graduate School of Pharmaceutical Sciences, Kyoto University , Sakyo-ku, Kyoto 606-8501, Japan
| | - Junichiro Kishi
- Graduate School of Science and Technology, Keio University, Hiyoshi , Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Emi Kashiwabara
- Graduate School of Science and Technology, Keio University, Hiyoshi , Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Toshihiko Aiba
- Graduate School of Science and Technology, Keio University, Hiyoshi , Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.,Graduate School of Science, Osaka University , Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yukari Fujimoto
- Graduate School of Science and Technology, Keio University, Hiyoshi , Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
48
|
Honda M, Watanabe Y, Murakami K, Takemura R, Fukaya T, Wahyudiono, Kanda H, Goto M. Thermal isomerization pre-treatment to improve lycopene extraction from tomato pulp. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.07.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Dietary and Endogenous Sphingolipid Metabolism in Chronic Inflammation. Nutrients 2017; 9:nu9111180. [PMID: 29143791 PMCID: PMC5707652 DOI: 10.3390/nu9111180] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation is a common underlying factor in many major metabolic diseases afflicting Western societies. Sphingolipid metabolism is pivotal in the regulation of inflammatory signaling pathways. The regulation of sphingolipid metabolism is in turn influenced by inflammatory pathways. In this review, we provide an overview of sphingolipid metabolism in mammalian cells, including a description of sphingolipid structure, biosynthesis, turnover, and role in inflammatory signaling. Sphingolipid metabolites play distinct and complex roles in inflammatory signaling and will be discussed. We also review studies examining dietary sphingolipids and inflammation, derived from in vitro and rodent models, as well as human clinical trials. Dietary sphingolipids appear to influence inflammation-related chronic diseases through inhibiting intestinal lipid absorption, altering gut microbiota, activation of anti-inflammatory nuclear receptors, and neutralizing responses to inflammatory stimuli. The anti-inflammatory effects observed with consuming dietary sphingolipids are in contrast to the observation that most cellular sphingolipids play roles in augmenting inflammatory signaling. The relationship between dietary sphingolipids and low-grade chronic inflammation in metabolic disorders is complex and appears to depend on sphingolipid structure, digestion, and metabolic state of the organism. Further research is necessary to confirm the reported anti-inflammatory effects of dietary sphingolipids and delineate their impacts on endogenous sphingolipid metabolism.
Collapse
|
50
|
Xie M, Zhao H. A Novel Method for Extracting Steryl Glucosides From Soy Lecithin. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Meizhen Xie
- School of Food Equipment Engineering and Science; Xi'an Jiaotong University; Xi'an 710049 China
| | - Hong Zhao
- School of Food Equipment Engineering and Science; Xi'an Jiaotong University; Xi'an 710049 China
| |
Collapse
|