1
|
Hsieh YC, Ouyang H, Zhang Y, Chiang D, Yang F, Chen HL, Lee S. Analysis of the Thermal Aging Kinetics of Tallow, Chicken Oil, Lard, and Sheep Oil. Molecules 2024; 29:4191. [PMID: 39275039 PMCID: PMC11396900 DOI: 10.3390/molecules29174191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Understanding the thermal aging kinetics of animal oils is of vital importance in the storage and applications of animal oils. In this work, we use four different techniques, including UV-Vis spectrometry, viscometry, impedance spectroscopy, and acid-base titration, to study the thermal aging kinetics of tallow, chicken oil, lard, and sheep oil in the temperature range from 120 °C to 180 °C. The evolutions of the UV-Vis absorbance, dynamic viscosity, electric impedance, and acid titration are discussed with the defect kinetics. The evolutions of the color centers, defects for dynamic viscosity, and electric dipoles follow second-order, first-order, and zero-order kinetics, respectively. The temperature dependence of rate constants for the evolutions of the UV-Vis absorbance, dynamic viscosity, electric impedance, and acid titration satisfies the Arrhenius equation with the same activation energy for individual animal oils. The activation energies are ~43.1, ~23.8, ~39.1, and ~37.5 kJ/mol for tallow, chicken oil, lard, and sheep oil, respectively. The thermal aging kinetics of the animal oils are attributed to the oxidation of triglycerides.
Collapse
Affiliation(s)
- Yun-Chuan Hsieh
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hao Ouyang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yulin Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Donyau Chiang
- National Applied Research Laboratories, Taiwan Instrument Research Institute, Hsinchu 300, Taiwan
| | - Fuqian Yang
- Materials Program, Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Hsin-Lung Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Sanboh Lee
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
2
|
Muijlwijk K, Feitsma AL, Kloek W. Using FT-IR as a fast method to measure fatty acid soaps in in vivo and in vitro digests. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4636-4643. [PMID: 38940534 DOI: 10.1039/d4ay00177j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The objective of the current study was to develop a simple method to measure fatty acid soaps, making use of FT-IR, representative for the soap formation observed in clinical trials. Calcium soaps have a unique coordination which leads to a typical double-splitting of the antisymmetric and symmetric carboxylate peaks. Absorbance values of these carboxylate peaks were used together with the absorbance of the hydrocarbon -CH2 antisymmetric and symmetric peaks to calculate the calcium soap absorbance. Based on the linear correlation between the calcium soap absorbance and the calcium soap concentration measured with GC-FID, a model was set-up and subsequently successfully validated to quantify calcium soap concentrations in faecal samples from clinical trials with this FT-IR method. With in vivo as well as in vitro digestion an inverse correlation between the long chain saturated fatty acid part of milk fat containing fat blends used for the infant formulas, and the formation of fatty acid soaps after digestion and defaecation could be observed. There is a clear link between the amount of long chain saturated fatty acids at the sn-1/3 position and their release as free fatty acid after lipolysis with the appearance of fatty acid soaps. These insights enable future development of fat blends for infant nutrition to optimize fatty acid soap formation and thereby gut discomfort in infants. These insights can be used to predict the soap formation capacity of a newly designed fat blend and thereby the improvement of infant nutrition products.
Collapse
Affiliation(s)
- Kelly Muijlwijk
- FrieslandCampina, Stationsplein 1, 3818 LE Amersfoort, the Netherlands.
| | - Anouk L Feitsma
- FrieslandCampina, Stationsplein 1, 3818 LE Amersfoort, the Netherlands.
| | - William Kloek
- FrieslandCampina, Stationsplein 1, 3818 LE Amersfoort, the Netherlands.
| |
Collapse
|
3
|
Syafri S, Gari Lindo GN, Alen Y, Syofyan S, Hamidi D. GC-MS and ATR-FTIR Spectroscopy Coupled with Chemometric Analysis for Detection and Quantification of White Turmeric ( Curcuma zedoaria) Essential Oils Adulteration. Pak J Biol Sci 2024; 27:160-167. [PMID: 38686738 DOI: 10.3923/pjbs.2024.160.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
<b>Background and Objective:</b> White turmeric essential oil (WTEO) is known to have high commercial value since it has been used to improve immunological function, increase blood circulation, ease toxin clearance and stimulate digestion. However, there is no standard to regulate the specific characteristics of white turmeric essential oil. Therefore, the objective of this research was to develop an analytical technique for WTEO authentication from vegetable oils, namely palm oil (PO), coconut oil (VCO) and soybean oil (SO), using FTIR spectroscopy and chemometrics, as well as GC-MS spectroscopy. <b>Materials and Methods:</b> The WTEO was obtained by hydrodistillation method. Pure WTEO and vegetable oils were scanned in the MIR region (4000-650 cm<sup>1</sup>) of FTIR spectroscopy and the spectra were further analyzed using chemometrics. <b>Results:</b> The extraction yielded 0.103% v/w WTEO, a dark purple color with a specific pungent odor. Discriminant analysis separated pure WTEO and adulterated WTEO with 100% accuracy at wave numbers 4000-650 cm<sup>1</sup>. The best PLS regressions to quantify SO, VCO, PO and concentration in WTEO were at wave numbers 4000-1100, 1400-1050 and 2100-650 cm<sup>1</sup>, respectively. <b>Conclusion:</b> The FTIR and chemometrics combination effectively authenticates white turmeric essential oil from any possible adulterants, such as vegetable oil.
Collapse
|
4
|
Karamanlioglu M, Yesilkir-Baydar S. Characterization of gelatin-based wound dressing biomaterials containing increasing coconut oil concentrations. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:16-44. [PMID: 37773094 DOI: 10.1080/09205063.2023.2265624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023]
Abstract
This study determined the influence and ideal ratios of various coconut oil (CO) amounts in gelatin (G) based-films as wound dressings since there are limited comparative studies to evaluate the sole effect of increasing CO on protein-based biomaterials. Homogenous films at G:CO ratio of 4:0,4:2,4:3,4:4 (w:w) corresponding to CO-0, CO-2, CO-3, CO-4, respectively, were obtained using solution casting. SEM showed CO caused rougher surfaces decreasing mechanical strength. However, no pores were observed in CO-4 due to bigger clusters of oil improving stretchability compared to CO-3; and durability since aging of CO-4 was >10% lower than CO-0 in aqueous media. FTIR showed triglycerides' band only in CO films with increasing amplitude. Moreover, amide-I of CO-2 was involved in more hydrogen bonding, therefore, CO-2 had the highest melt-like transition temperatures (Tmax) at ∼163 °C while others' were at ∼133 °C; and had more ideal mechanical properties among CO films. XTT showed that increased CO improved 3T3 cell viability as CO-0 significantly decreased viability at 10,50,75,100 μg/mL (p < 0.05), whereas CO-2 and CO-3 within 5-75 μg/mL and CO-4 within 5-100 μg/mL range increased viability ≥100% suggesting proliferation. All CO samples at 25 μg/mL stimulated 3T3 cell migration in Scratch Assay indicating wound healing. CO amounts mainly improved thermal and healing properties of gelatin-based biomaterial. CO-2 was more thermally stable and CO-4 had better influence on cell viability and wound healing than CO-0. Therefore, increased CO ratios, specifically 4:2 and 4:4, G:CO (w:w), in gelatin-based films can be ideal candidates for wound dressing materials.
Collapse
Affiliation(s)
| | - Serap Yesilkir-Baydar
- Department of Biomedical Engineering, Istanbul Gelisim University, Istanbul, Turkey
- Life Sciences and Biomedical Engineering Application and Research Center, Istanbul Gelisim University, Istanbul, Turkey
| |
Collapse
|
5
|
Kachel M, Krawczuk A, Krajewska M, Parafiniuk S, Guz T, Rząd K, Matwijczuk A. Comparative Analysis of Vegetable and Mineral Oil-Based Antiadhesive/Hydrophobic Liquids and Their Impact on Wood Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4975. [PMID: 37512249 PMCID: PMC10381716 DOI: 10.3390/ma16144975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
The unavailability of biodegradable preservatives is one of the major setbacks in the construction industry. With this in mind, our study focused on the analysis and comparison of two hydrophobic liquids, one vegetable oil-based (VOA) and the other mineral oil-based (MOA), and subsequently applying the same on three types of wood. The comparison of the vegetable oil-based (VOA) and mineral oil-based (MOA) hydrophobic liquids revealed that VOA was characterized by an 83.4% susceptibility to aerobic biodegradation, while MOA was considerably more resistant (47.80%). Based on the conducted contact angle measurements, it was observed that the wettability of pine and oak wood decreased after the application of both VOA (for pine-twice; for oak-by 38%) and MOA (for pine-more than two times; for oak-by 49%), while in the case of aspen, the same was increased (after the application of VOA-by 20%; after the application of MOA-by 2%). The observed depth of penetration into the structure of the impregnated wood was lower for the VOA impregnant as compared to the MOA impregnant. This result persisted in all types of wood used in the experiment. Observations of the process of water absorption during soaking revealed that VOA was more beneficial in terms of lowering water absorption into the material, regardless of wood type. The overall results were better for VOA, which lowered the mass of soaked wood by between 19.73 and 66.90%.
Collapse
Affiliation(s)
- Magdalena Kachel
- Department of Machinery Exploitation and Management of Production Processes, Faculty of Production Engineering, University of Life Sciences in Lublin, 28 Głęboka St., 20-612 Lublin, Poland
| | - Anna Krawczuk
- Department of Machinery Exploitation and Management of Production Processes, Faculty of Production Engineering, University of Life Sciences in Lublin, 28 Głęboka St., 20-612 Lublin, Poland
| | - Marta Krajewska
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Stanisław Parafiniuk
- Department of Machinery Exploitation and Management of Production Processes, Faculty of Production Engineering, University of Life Sciences in Lublin, 28 Głęboka St., 20-612 Lublin, Poland
| | - Tomasz Guz
- Department of Food Engineering and Machinery, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Klaudia Rząd
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
- ECOTECH-COMPLEX-Analytical and Programme Centre for Advanced Environmentally-Friendly Technologies, Maria Curie-Sklodowska University, Głęboka 39, 20-033 Lublin, Poland
| |
Collapse
|
6
|
Xiao S, Ahn DU. Co-encapsulation of fish oil with essential oils and lutein/curcumin to increase the oxidative stability of fish oil powder. Food Chem 2023; 410:135465. [PMID: 36641907 DOI: 10.1016/j.foodchem.2023.135465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
The oxidation-resistant and multi-functional fish oil powders were produced by co-encapsulating fish oil with essential oils, lutein, and curcumin. The ovalbumin/alginate complex was used as the wall, and the wall-to-oil ratio was fixed at 1:1 based on yield, oil recovery, and internalization efficiency (IE). Surface oil was removed to better understand the characteristics of the fish oil powders. Scanning electron microscopy (SEM) results indicated that the freeze-dried fish oil powders had irregular shapes with visible pores on the surface. Covalent bonds and electrostatic interactions within the ovalbumin/alginate complex were detected through FTIR. The garlic essential oil-added sample showed the strongest oxidative stability throughout the storage period (30 days). This work showed that fish oil had been encapsulated successfully and multi-functional fish oil powders could be produced by dissolving lipophilic bioactive compounds in fish oil before encapsulation.
Collapse
Affiliation(s)
- Shulan Xiao
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States; Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, United States.
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
7
|
Ahmmed F, Gordon KC, Killeen DP, Fraser-Miller SJ. Detection and Quantification of Adulteration in Krill Oil with Raman and Infrared Spectroscopic Methods. Molecules 2023; 28:molecules28093695. [PMID: 37175105 PMCID: PMC10180486 DOI: 10.3390/molecules28093695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Raman and infrared spectroscopy, used as individual and low-level fused datasets, were evaluated to identify and quantify the presence of adulterants (palm oil, PO; ω-3 concentrates in ethyl ester, O3C and fish oil, FO) in krill oil. These datasets were qualitatively analysed with principal component analysis (PCA) and classified as adulterated or unadulterated using support vector machines (SVM). Using partial least squares regression (PLSR), it was possible to identify and quantify the adulterant present in the KO mixture. Raman spectroscopy performed better (r2 = 0.98; RMSEP = 2.3%) than IR spectroscopy (r2 = 0.91; RMSEP = 4.2%) for quantification of O3C in KO. A data fusion approach further improved the analysis with model performance for quantification of PO (r2 = 0.98; RMSEP = 2.7%) and FO (r2 = 0.76; RMSEP = 9.1%). This study demonstrates the potential use of Raman and IR spectroscopy to quantify adulterants present in KO.
Collapse
Affiliation(s)
- Fatema Ahmmed
- Te Whai Ao-Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9016, New Zealand
| | - Keith C Gordon
- Te Whai Ao-Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9016, New Zealand
| | - Daniel P Killeen
- The New Zealand Institute for Plant and Food Research Limited, P.O. Box 5114, Port Nelson, Nelson 7043, New Zealand
| | - Sara J Fraser-Miller
- Te Whai Ao-Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9016, New Zealand
| |
Collapse
|
8
|
Meira ACFDO, Morais LCD, Figueiredo JDA, Veríssimo LAA, Botrel DA, Resende JVD. Microencapsulation of β-carotene using barley residue proteins from beer waste as coating material. J Microencapsul 2023; 40:171-185. [PMID: 36803148 DOI: 10.1080/02652048.2023.2183277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
This study aimed to produce and characterise microparticles produced from barley residue proteins (BRP) enriched with β-carotene. The microparticles were obtained by freeze-drying five emulsion formulations with 0.5% w/w whey protein concentrate and different concentrations of maltodextrin and BRP (0, 1.5, 3.0, 4.5 and 6.0% w/w), with the dispersed phase consisting of corn oil enriched with β-carotene. The mixtures were mechanically mixed and sonicated, the formed emulsions were freeze-drying. The microparticles obtained were tested for encapsulation efficiency, humidity, hygroscopicity, apparent density, scanning electron microscopy (SEM), accelerated stability and bioaccessibility. Microparticles produced with the emulsion containing 6% w/w BRP had lower moisture content (3.47 ± 0.05%), higher encapsulation efficiency (69.11 ± 3.36%), bioaccessibility value of 84.1% and greater β-carotene protection against thermal degradation. SEM analysis showed that microparticles had sizes ranging from 74.4 to 244.8 µm. These results show that BRP are viable for the microencapsulation of bioactive compounds by freeze-drying.
Collapse
|
9
|
Oil-in Water Vegetable Emulsions with Oat Bran as Meat Raw Material Replacers: Compositional, Technological and Structural Approach. Foods 2022; 12:foods12010040. [PMID: 36613256 PMCID: PMC9818671 DOI: 10.3390/foods12010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The unique composition and technological properties of some oat bran components (mainly protein and soluble fiber) and olive oil make them a good choice to form oil-in-water vegetable emulsions. The different concentrations of oat bran were studied to form olive oil-in water (O/W) emulsions to apply as a replacement for fat and meat. As a result, four O/W emulsions (OBE) were formulated with 10% (OBE10), 15% (OBE15), 20% (OEB20), and 30% (OBE30) oat bran concentrations and 40% olive oil, with the corresponding amount of water added for each O/W emulsion. Composition, technological properties (thermal stability, pH, texture), and lipid structural characteristics were evaluated. The results showed that low oat bran content (OEB10)-with a lower concentration of oat protein and β-glucans-resulted in an O/W emulsion with an aggregated droplet structure and lower thermal stability and hardness. These connections between composition, technology, and structural properties of olive O/W emulsions elaborated with oat bran could help in making the optimal choice for their potential application in the production of foods such as healthier meat products.
Collapse
|
10
|
New Bio-Based Polymer Sorbents out of Terpene Compounds or Vegetable Oils: Synthesis, Properties, Analysis of Sorption Processes. Polymers (Basel) 2022; 14:polym14245389. [PMID: 36559756 PMCID: PMC9784089 DOI: 10.3390/polym14245389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
This research presents a synthesis and characterization of new bio-based polymer sorbents. Natural origin substances such as terpenes (citral, limonene, and pinene) or vegetable oils (argan, linseed, and rapeseed oils) were used as monomers, and divinylbenzene was applied as the cross-linker. The newly prepared polymers were characterized by means of ATR-FTIR, TG/DTG and titration methods (acid and iodine values), and N2 physisorption experiments. Tests of sorption ability were carried out by a dynamic solid phase extraction method using a mixture of four phenols or single-component pharmaceutical solutions (salicylic acid, aspirin, ibuprofen, paracetamol, and ampicillin). The performed studies revealed that the terpene-based polymers possessed better-developed porous structures (420-500 m2/g) with more uniform pores than oil-based ones. However, the surface of the oil-based sorbents was more acidic in nature. The sorption tests showed that both the porosity and acidity of the surface significantly influenced the sorption. Recoveries of up to 90% were obtained for 2,4 dichlorophenol from C-DVB, L-DVB, and Ro-DVB. The lowest affinity to the polymers exhibited phenol (5-45%), aspirin (1-7%), and ampicillin (1-7%). A 70% recovery was achieved for ibuprofen from C-DVB. In-depth data analysis allowed the influence of various factors on the sorption process of test compounds of the studied polymers to be elucidated.
Collapse
|
11
|
Asare MA, de Souza FM, Gupta RK. Waste to Resource: Synthesis of Polyurethanes from Waste Cooking Oil. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Magdalene A. Asare
- Department of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, Kansas 66762, United States
- National Institute for Materials Advancement, Pittsburg State University, 1701 South Broadway Street, Pittsburg, Kansas 66762, United States
| | - Felipe M. de Souza
- National Institute for Materials Advancement, Pittsburg State University, 1701 South Broadway Street, Pittsburg, Kansas 66762, United States
| | - Ram K. Gupta
- Department of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, Kansas 66762, United States
- National Institute for Materials Advancement, Pittsburg State University, 1701 South Broadway Street, Pittsburg, Kansas 66762, United States
| |
Collapse
|
12
|
Ordoudi SA, Özdikicierler O, Tsimidou MZ. Detection of ternary mixtures of virgin olive oil with canola, hazelnut or safflower oils via non-targeted ATR-FTIR fingerprinting and chemometrics. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Hanif S, Alsaiari M, Ahmad M, Sultana S, Zafar M, Harraz FA, Alharbi AF, Abahussain AAM, Ahmad Z. Membrane reactor based synthesis of biodiesel from Toona ciliata seed oil using barium oxide nano catalyst. CHEMOSPHERE 2022; 308:136458. [PMID: 36122747 DOI: 10.1016/j.chemosphere.2022.136458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/26/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Membrane technology has been embraced as a feasible and promising substitute to the traditional technologies employed for biodiesel synthesis which are energy and time consuming. It needs less energy, has high stability, is environmentally friendly, and is simple to operate and control. Therefore, in our current study membrane technology was employed to synthesize biodiesel from Toona ciliate novel and non-edible seed oil. Since Toona ciliata has affluent oil content (33.8%) and is effortlessly and extensively available. In fact, we intended to scrutinize the effects of green synthesized barium oxide nanoparticles for one step transesterification of biodiesel production using membrane technology followed by characterization of prepared catalyst via innovative techniques. Optimal yield of biodiesel attained was 94% at 90 °C for 150 min with methanol to oil molar ratio of 9:1 and amount of about 0.39 wt %. Quantitative analysis of synthesized Toona ciliata oil biodiesel was carried out by advance techniques of Gas chromatography mass spectrometry (GC-MS), Fourier-transform infrared (FTIR) spectroscopy and Nuclear magnetic resonance (NMR) which authorize the synthesis of fatty acid methyl ester compounds using oil from Toona ciliata seeds. Values of Toona ciliata fuel properties for instance flash point (70°C), density (0.89 kg/m3), viscosity (5.25 mm2/s), cloud point (-8°C) and pour point (-11°C) met the specifications of international standards i. e American (ASTM D-6751), European (EN-14214) and China (GB/T 20,828). Subsequently, it is concluded that membrane technology is environmentally friendly and efficient technique for mass-production of sustainable biodiesel using green nano catalyst of barium oxide.
Collapse
Affiliation(s)
- Saman Hanif
- Department of Plant Sciences, Quaid- i- Azam University, Islamabad, 45320, Pakistan
| | - Mabkhoot Alsaiari
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano Research Centre, Najran University, Najran, 11001, Saudi Arabia; Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Sharurah, Saudi Arabia.
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid- i- Azam University, Islamabad, 45320, Pakistan.
| | - Shazia Sultana
- Department of Plant Sciences, Quaid- i- Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Zafar
- Department of Plant Sciences, Quaid- i- Azam University, Islamabad, 45320, Pakistan
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano Research Centre, Najran University, Najran, 11001, Saudi Arabia; Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box: 87 Helwan, Cairo, 11421, Egypt
| | | | | | - Zubair Ahmad
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea.
| |
Collapse
|
14
|
Redda ZT, Laß-Seyoum A, Yimam A, Barz M, Jabasingh SA. Solvent extraction and characterization of Brassica carinata oils as promising alternative feedstock for bio-jet fuel production. BIOMASS CONVERSION AND BIOREFINERY 2022:1-20. [PMID: 36406949 PMCID: PMC9648429 DOI: 10.1007/s13399-022-03343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
As a fossil fuel substitute, bio-jet fuel derived from inedible oilseed crops has the potential to improve energy security, decrease carbon footprint, and promote agricultural economy and social development. The efficient production of bio-jet fuels depends on the identification and characterization of eco-friendly and sustainable feedstocks. Brassica carinata (Arun Braun) cultivars are among the most significant industrial oilseeds that can be utilized as alternative feedstocks in the aviation industry. The study thoroughly evaluated four non-food Brassica carinata cultivars that are indigenous to Ethiopia to determine their suitability as substitute feedstocks for the production of bio-jet fuel. The effects of solvent extraction parameters were studied using response surface methodology with Box-Behnken design in an isothermal batch reactor. Physicochemical characterization, fatty acids profiling, ultimate analysis, analysis of metals and phosphorus concentration, Fourier-transform infrared spectroscopy characterization, and calorific value analyses were performed to characterize the properties of oils. Accordingly, oil yields ranged from 35.93 to 45.25%. Erucic acid (EA) was the most predominant fatty acid in all oils, accounting for 42-50%, of Derash and Yellow Dodolla oils, respectively, making Yellow Dodolla oil a super-high erucic acid oil. In comparison to the other oils, Yellow Dodolla was observed to be the least oxygenated oil, with a 7.80% oxygen content and oxygen to carbon ratio of 0.07, which may enable it to consume a very limited amount of hydrogen gas during hydrodeoxygenation in bio-jet fuel production. It was determined that, except for calcium and phosphorous levels in Tesfa, the concentrations of the metals and phosphorous were very small. Alkanes, alkenes, carboxylic acids, esters, alcohols, aromatics, and olefins were among the most significant and main functional groups identified. Our extraction and characterization results revealed that the Brassica carinata cultivars have very high oil contents, better physicochemical properties, excellent fatty acid profiles, and very low concentrations of heteroatoms (nitrogen, sulfur), metals and phosphorous concentrations, and very low level of oxygen to carbon ratios, making the oils, notably Yellow Dodolla oil, very high quality and promising alternative feedstocks for upgrading of the oils into bio-jet fuels through hydroprocessing pathway.
Collapse
Affiliation(s)
- Zinnabu Tassew Redda
- School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University, King George VI St., P.O. Box 385, Addis Ababa, Ethiopia
- Faculty I, University of Applied Sciences (HTW) Berlin, Wilhelminenhofstraße 75A, 12459 Berlin, Germany
| | - Asnakech Laß-Seyoum
- Faculty I, University of Applied Sciences (HTW) Berlin, Wilhelminenhofstraße 75A, 12459 Berlin, Germany
| | - Abubeker Yimam
- School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University, King George VI St., P.O. Box 385, Addis Ababa, Ethiopia
| | - Mirko Barz
- Faculty I, University of Applied Sciences (HTW) Berlin, Wilhelminenhofstraße 75A, 12459 Berlin, Germany
| | - S. Anuradha Jabasingh
- School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University, King George VI St., P.O. Box 385, Addis Ababa, Ethiopia
| |
Collapse
|
15
|
Bunaciu AA, Fleschin S, Aboul-Enein HY. Determination of some edible oils adulteration with paraffin oil using infrared spectroscopy. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e76175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The spectroscopy of molecular vibrations using mid-infrared or near-infrared techniques was used more and more to characterize different compounds, including edible oil, in order to monitor any changes and to detect fraudulent modifications. This article presents a new method for quantitative adulteration of extra virgin olive oil (EVOO) or corn germ oil (CGO) with a mineral oil, such as paraffin oil (PO). A Fourier transform infrared (FT-IR) spectrometric method, using ATR spectra, was developed for the rapid, direct measurement of edible oils adulteration. The results indicate the efficiency of the proposed method for the detection of paraffin oil in adulteration of EVOO and CGO with RSD (< 3.0%).
Graphical abstract:
Collapse
|
16
|
Prieto C, Talón E, Noreña CZ, Lagaron JM. Effect of Whey Protein Purity on the Characteristics of Algae Oil-Loaded Encapsulates Obtained by Electrospraying Assisted by Pressurized Gas. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3096. [PMID: 36144884 PMCID: PMC9504575 DOI: 10.3390/nano12183096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
In this paper, the effect of protein purity in three different whey protein grades on the characteristics of algae oil encapsulates obtained via room-temperature electrospraying assisted by pressurized gas (EAPG) encapsulation process was studied. Three different commercial grades of whey protein purity were evaluated, namely 35, 80, and 90 wt.%. Oil nanodroplets with an average size of 600 nm were homogeneously entrapped into whey protein microparticles 3 µm in size. However, the sphericity and the surface smoothness of the microparticles increased by increasing the protein purity in the grades of whey protein studied. The porosity of the microparticles was also dependent on protein purity as determined by nitrogen adsorption-desorption isotherms, being smaller for larger contents of protein. Interestingly, the lowest extractable oil was obtained with WP35, probably due to the high content of lactose. The peroxide values confirmed the superior protective effect of the protein, obtaining the smallest peroxide value for WP90, a result that is consistent with its reduced porosity and with its lower permeability to oxygen, as confirmed by the fluorescence decay-oxygen consumption method. The accelerated stability assay against oxidation confirmed the higher protection of the WP80 and WP90. In addition, the increased content in protein implied a higher thermal stability according to the thermogravimetric analysis. These results further confirm the importance of the adequate selection of the composition of wall materials together with the encapsulation method.
Collapse
Affiliation(s)
- Cristina Prieto
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Emma Talón
- Bioinicia R & D Department, Bioinicia S.L., Calle Algepser No. 65, Nave 3, Polígono Industrial Táctica, 46980 Paterna, Spain
| | - Caciano Zapata Noreña
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Golçalves, No. 9500, Porto Alegre CEP 91501-970, Brazil
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| |
Collapse
|
17
|
Alkhatib H, Doolaanea AA, Assadpour E, Mohmad Sabere AS, Mohamed F, Jafari SM. Optimizing the encapsulation of black seed oil into alginate beads by ionic gelation. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Wongjaikham W, Kongprawes G, Wongsawaeng D, Ngaosuwan K, Kiatkittipong W, Hosemann P, Assabumrungrat S. Production of low trans-fat margarine by partial hydrogenation of palm oil using nature-friendly and catalyst-free microwave plasma technique. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Ahmmed F, Killeen DP, Gordon KC, Fraser-Miller SJ. Rapid Quantitation of Adulterants in Premium Marine Oils by Raman and IR Spectroscopy: A Data Fusion Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144534. [PMID: 35889406 PMCID: PMC9319805 DOI: 10.3390/molecules27144534] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
This study uses Raman and IR spectroscopic methods for the detection of adulterants in marine oils. These techniques are used individually and as low-level fused spectroscopic data sets. We used cod liver oil (CLO) and salmon oil (SO) as the valuable marine oils mixed with common adulterants, such as palm oil (PO), omega-3 concentrates in ethyl ester form (O3C), and generic fish oil (FO). We showed that support vector machines (SVM) can classify the adulterant present in both CLO and SO samples. Furthermore, partial least squares regression (PLSR) may be used to quantify the adulterants present. For example, PO and O3C adulterated samples could be detected with a RMSEP value less than 4%. However, the FO adulterant was more difficult to quantify because of its compositional similarity to CLO and SO. In general, data fusion improved the RMSEP for PO and O3C detection. This shows that Raman and IR spectroscopy can be used in concert to provide a useful analytical test for common adulterants in CLO and SO.
Collapse
Affiliation(s)
- Fatema Ahmmed
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand; (F.A.); (K.C.G.)
| | - Daniel P. Killeen
- Seafood Technologies, The New Zealand Institute for Plant and Food Research Limited, Nelson 7010, New Zealand;
| | - Keith C. Gordon
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand; (F.A.); (K.C.G.)
| | - Sara J. Fraser-Miller
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand; (F.A.); (K.C.G.)
- Correspondence:
| |
Collapse
|
20
|
Taous F, El Ghali T, Marah H, Laraki K, Islam M, Cannavan A, Kelly S. Geographical Classification of Authentic Moroccan Argan Oils and the Rapid Detection of Soya and Sunflower Oil Adulteration with ATR-FTIR Spectroscopy and Chemometrics. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Lestari D, Rohman A, Syofyan S, Yuliana ND, Abu Bakar NKB, Hamidi D. Analysis of beef meatballs with rat meat adulteration using Fourier Transform Infrared (FTIR) spectroscopy in combination with chemometrics. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2083637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Dwi Lestari
- Faculty of Pharmacy, Universitas Andalas, Padang, Indonesia
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, Indonesia
| | - Abdul Rohman
- Center of Excellence, Institute for Halal Industry and Systems, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Nancy Dewi Yuliana
- Department of Food Science and Technology, IPB University, Bogor, Indonesia
| | | | | |
Collapse
|
22
|
Raju N, Sae-leaw T, Osako K, Benjakul S. Improved cholesterol depletion with enhanced astaxanthin and polyunsaturated fatty acids of lipid from Pacific white shrimp cephalothorax using prior ethanolic separation of polar lipid and β-Cyclodextrin. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2255-2262. [PMID: 35602424 PMCID: PMC9114188 DOI: 10.1007/s13197-021-05238-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 06/03/2023]
Abstract
Shrimp lipid (SL) from Pacific white shrimp (Litopenaeus vannamei) cephalothorax was subjected to ethanol separation with subsequent cholesterol removal. Around 98.4% of cholesterol was removed from cholesterol rich polar lipid fraction (PLF), in which PLF/β cyclodextrin (β-CD)/mixed solvents (ethyl acetate/water,1:1) at the ratio of 1:10:20 (w/w/v) were used. Thereafter, PLF with lowered cholesterol was combined with non-polar fraction rich in triglycerides to obtain lowered cholesterol shrimp lipid (LC-SL). Astaxanthin content in LC-SL was augmented by three-fold, compared to that found in SL. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) contents of LC-SL were also significantly increased, contrasted with SL. Peroxide value and phospholipids were decreased in LC-SL (4.56 ± 0.15 meq/kg and 9.94 ± 1.9%) compared to those of SL (4.80 ± 0.25 meq/kg and 49.11 ± 2.1%), while TBARS and p-Anisidine values remained unchanged. However, conjugated dienes and free fatty acids were augmented, plausibly due to hydrolysis. FTIR spectra confirmed the increased degree of unsaturation of lipids. Thus, the lowered cholesterol shrimp lipid could be used as functional foods or nutraceutical for health promotion.
Collapse
Affiliation(s)
- Navaneethan Raju
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110 Thailand
| | - Thanasak Sae-leaw
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110 Thailand
| | - Kazufumi Osako
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477 Japan
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110 Thailand
| |
Collapse
|
23
|
Ghitman J, Pircalabioru GG, Zainea A, Marutescu L, Iovu H, Vasile E, Stavarache C, Vasile BS, Stan R. Macrophage-targeted mannose-decorated PLGA-vegetable oil hybrid nanoparticles loaded with anti-inflammatory agents. Colloids Surf B Biointerfaces 2022; 213:112423. [PMID: 35231685 DOI: 10.1016/j.colsurfb.2022.112423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/08/2022] [Accepted: 02/20/2022] [Indexed: 01/06/2023]
Abstract
This work pledge to extend the therapeutic windows of hybrid nanoparticulate systems by engineering mannose-decorated hybrid nanoparticles based on poly lactic-co-glycolic acid (PLGA) and vegetable oil for efficient delivery of two lipophilic anti-inflammatory therapeutics (Celecoxib-CL and Indomethacin-IMC) to macrophages. The mannose surface modification of nanoparticles is achieved via O-palmitoyl-mannose spacer during the emulsification and nanoparticles assembly process. The impact of targeting motif on the hydrodynamic features (RH, PdI), stability (ζ-potential), drug encapsulation efficiency (DEE) is thoroughly investigated. Besides, the in vitro biocompatibility (MTT, LDH) and susceptibility of mannose-decorated formulations to macrophage as well their immunomodulatory activity (ELISA) are also evaluated. The monomodal distributed mannose-decorated nanoparticles are in the range of nanometric size (RH < 115 nm) with PdI < 0.20 and good encapsulation efficiency (DEE = 46.15% for CL and 76.20% for IMC). The quantitative investigation of macrophage uptake shows a 2-fold increase in fluorescence (RFU) of cells treated with mannose-decorated formulations as compared to non-decorated ones (p < 0.001) suggesting an enhanced cell uptake respectively improved macrophage targeting while the results of ELISA experiments suggest the potential immunomodulatory properties of the designed mannose-decorated hybrid formulations.
Collapse
Affiliation(s)
- Jana Ghitman
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Adriana Zainea
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
| | - Luminita Marutescu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; Academy of Romanian Scientists, 54 Splaiul Independentei Street, 050094 Bucharest, Romania
| | - Eugeniu Vasile
- Department of Oxide Materials Science and Engineering, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Cristina Stavarache
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
| | - Bogdan Stefan Vasile
- National Research Center for Micro and Nanomaterials, National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Raluca Stan
- Department of Organic Chemistry "C. Nenitzescu", University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania.
| |
Collapse
|
24
|
Hinsch E, Vega Gutierrez SM, Van Court RC, Chen HL, Robinson SC. Stability of the Fungal Pigment from Scytalidium cuboideum Carried in Food-Grade Natural Oils. J Fungi (Basel) 2022; 8:jof8030276. [PMID: 35330278 PMCID: PMC8949540 DOI: 10.3390/jof8030276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022] Open
Abstract
Wood-staining fungal pigments have shown potential use as colorants for wood and textiles, with organic solvents as the pigment carrier. Natural oils have been suggested as an environmentally friendly and more available carrier; however, oils promoted color degradation. The current study examined the mechanism of said degradation and tested therapeutic and food-grade oils (instead of finishing oils) for their potential to carry draconin red, the pigment from Scytalidium cuboideum, without color loss over time. FTIR analysis from finishing oils indicated that oxidation was not likely the cause of color loss as the pigment could not be distinguished from the oils in the IR spectra. SEM was employed to determine if crystal degradation was contributing to color loss and indicated, surprisingly, that the crystals of draconin red formed rather than degraded over time. This suggested crystal breakdown was also not likely the cause of color loss. The pigment did not show degradation in hemp oil, flaxseed oil, and cold-pressed linseed oil when treated with β-carotene. Further in-depth chemical studies are needed to determine the mechanism of color loss in pigmented natural oils; however, food-grade oils appear to be a promising alternative to carry draconin red, without degradation of the color.
Collapse
Affiliation(s)
- Eric Hinsch
- Department of Wood Science & Engineering, Oregon State University, Corvallis, OR 97331, USA; (E.H.); (S.M.V.G.); (R.C.V.C.)
| | - Sarath M. Vega Gutierrez
- Department of Wood Science & Engineering, Oregon State University, Corvallis, OR 97331, USA; (E.H.); (S.M.V.G.); (R.C.V.C.)
| | - R. C. Van Court
- Department of Wood Science & Engineering, Oregon State University, Corvallis, OR 97331, USA; (E.H.); (S.M.V.G.); (R.C.V.C.)
| | - Hsiou-Lien Chen
- College of Business, Oregon State University, Corvallis, OR 97331, USA;
| | - Seri C. Robinson
- Department of Wood Science & Engineering, Oregon State University, Corvallis, OR 97331, USA; (E.H.); (S.M.V.G.); (R.C.V.C.)
- Correspondence:
| |
Collapse
|
25
|
Singh J, White RL. Mid-infrared spectroscopy of liquids by using a modified button sample holder. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120526. [PMID: 34740003 DOI: 10.1016/j.saa.2021.120526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
A new approach for mid-infrared spectroscopy measurements of liquids is described. Thin layers of liquid samples are analyzed by using a modified button sample holder that incorporates a reservoir. To obtain spectra, buttons containing liquid samples are placed at the infrared beam focus of a praying mantis diffuse reflection optical system. Infrared radiation absorption path lengths can be adjusted by changing the quantity of liquid added to the reservoir. Thin film transflection spectra are similar to those obtained by transmission measurements. Transflection spectra of thicker layer liquids also resemble transmission measurements, but with increased relative intensities for low absorptivity peaks. Unlike transmission measurements, transflection spectra retain overlapping peak profiles for highly absorbing vibration bands due to multiple path length dynamic range effects. For a fixed effective path length (i.e. constant liquid volume), linear calibration plots of absorbance or integrated absorbance versus concentration are obtained. The button sample holder provides a methodology that is complementary to the transmission cell and attenuated total reflection (ATR) techniques for infrared analyses of neat solids and liquids, and is especially useful for characterizing thick samples and high absorptivity bands.
Collapse
Affiliation(s)
- Jaspreet Singh
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, OK 73019, United States
| | - Robert L White
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, OK 73019, United States.
| |
Collapse
|
26
|
Evaluation of Thermochemical Characteristics and Pyrolysis of Fish Processing Waste for Renewable Energy Feedstock. SUSTAINABILITY 2022. [DOI: 10.3390/su14031203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The necessity of energy is continuously increasing, whereas fossil fuel sources are gradually depleting. To mitigate this problem, fish processing waste of the bluespotted stingray (Neotrygon kuhlii), available in the Borneo region, was investigated for an alternative feedstock of bioenergy production. The fish wastes are hazardous for the environment, whereas the biodiesel from fish waste is pollution-free and produces less contaminant gas and carbon dioxide than fossil fuel. From the proximate analysis, the moisture content, volatile matter, fixed carbon, and ash content of the fish waste were achieved as 4.88%, 63.80%, 15.03%, and 16.29%, respectively. The proportion of carbon, hydrogen, nitrogen, sulfur, and oxygen was found as 42.06%, 5.99%, 10.77%, 0.91%, and 40.27%, respectively, from the ultimate analysis. The calorific value was 21.53 MJ/kg, which would be highly effective in biofuel production. The morphology analysis results of the biomass are favorable for renewable energy sources. The major bondage between carbon and hydrogen and oxygen was found using Fourier transform infrared spectroscopy. The thermogravimetric analysis and derivative thermogravimetry revealed that the highest weight loss occurred at 352 °C temperature with a decomposition rate of 4.57 wt.%/min in pyrolysis circumstances, and at 606 °C temperature with a decomposition rate of 3.77 wt.%/min in combustion conditions. In the pyrolysis process for 25 °C/min heating rate, the yield of biochar, bio-oil, and bio-syngas was found as 33.96, 29.34, 23.46% at 400 °C, 47.72, 49.32, 33.87% at 500 °C, and 18.32, 21.34, 42.37% at 600 °C, respectively. The characteristics and pyrolysis yields of fish waste are suitable for being an effective renewable energy source.
Collapse
|
27
|
Didrihsone E, Dubencovs K, Grube M, Shvirksts K, Suleiko A, Suleiko A, Vanags J. Crypthecodinium cohnii Growth and Omega Fatty Acid Production in Mediums Supplemented with Extract from Recycled Biomass. Mar Drugs 2022; 20:68. [PMID: 35049923 PMCID: PMC8779103 DOI: 10.3390/md20010068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Crypthecodinium cohnii is a marine heterotrophic dinoflagellate that can accumulate high amounts of omega-3 polyunsaturated fatty acids (PUFAs), and thus has the potential to replace conventional PUFAs production with eco-friendlier technology. So far, C. cohnii cultivation has been mainly carried out with the use of yeast extract (YE) as a nitrogen source. In the present study, alternative carbon and nitrogen sources were studied: the extraction ethanol (EE), remaining after lipid extraction, as a carbon source, and dinoflagellate extract (DE) from recycled algae biomass C. cohnii as a source of carbon, nitrogen, and vitamins. In mediums with glucose and DE, the highest specific biomass growth rate reached a maximum of 1.012 h-1, while the biomass yield from substrate reached 0.601 g·g-1. EE as the carbon source, in comparison to pure ethanol, showed good results in terms of stimulating the biomass growth rate (an 18.5% increase in specific biomass growth rate was observed). DE supplement to the EE-based mediums promoted both the biomass growth (the specific growth rate reached 0.701 h-1) and yield from the substrate (0.234 g·g-1). The FTIR spectroscopy data showed that mediums supplemented with EE or DE promoted the accumulation of PUFAs/docosahexaenoic acid (DHA), when compared to mediums containing glucose and commercial YE.
Collapse
Affiliation(s)
- Elina Didrihsone
- Latvian State Institute of Wood Chemistry, LV1006 Riga, Latvia; (K.D.); (A.S.); (A.S.); (J.V.)
| | - Konstantins Dubencovs
- Latvian State Institute of Wood Chemistry, LV1006 Riga, Latvia; (K.D.); (A.S.); (A.S.); (J.V.)
- A/S Biotehniskais Centrs, LV1006 Riga, Latvia
- Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV1048 Riga, Latvia
| | - Mara Grube
- Institute of Microbiology and Biotechnology, University of Latvia, LV1004 Riga, Latvia; (M.G.); (K.S.)
| | - Karlis Shvirksts
- Institute of Microbiology and Biotechnology, University of Latvia, LV1004 Riga, Latvia; (M.G.); (K.S.)
| | - Anastasija Suleiko
- Latvian State Institute of Wood Chemistry, LV1006 Riga, Latvia; (K.D.); (A.S.); (A.S.); (J.V.)
| | - Arturs Suleiko
- Latvian State Institute of Wood Chemistry, LV1006 Riga, Latvia; (K.D.); (A.S.); (A.S.); (J.V.)
- A/S Biotehniskais Centrs, LV1006 Riga, Latvia
| | - Juris Vanags
- Latvian State Institute of Wood Chemistry, LV1006 Riga, Latvia; (K.D.); (A.S.); (A.S.); (J.V.)
- A/S Biotehniskais Centrs, LV1006 Riga, Latvia
- Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV1048 Riga, Latvia
| |
Collapse
|
28
|
Gulzar S, Nilsuwan K, Raju N, Benjakul S. Whole Wheat Crackers Fortified with Mixed Shrimp Oil and Tea Seed Oil Microcapsules Prepared from Mung Bean Protein Isolate and Sodium Alginate. Foods 2022; 11:foods11020202. [PMID: 35053933 PMCID: PMC8774931 DOI: 10.3390/foods11020202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Shrimp oil (SO) rich in n-3 fatty acids and astaxanthin, mixed with antioxidant-rich tea seed oil (TSO), was microencapsulated using mung bean protein isolate and sodium alginate and fortified into whole wheat crackers. SO and TSO mixed in equal proportions were emulsified in a solution containing mung bean protein isolate (MBPI) and sodium alginate (SA) at varied ratios. The emulsions were spray-dried to entrap SO-TSO in MBPI-SA microcapsules. MBPI-SA microcapsules loaded with SO-TSO showed low to moderately high encapsulation efficiencies (EE) of 32.26–72.09% and had a fair flowability index. Two selected microcapsules with high EE possessed the particle sizes of 1.592 and 1.796 µm with moderate PDI of 0.372 and 0.403, respectively. Zeta potential values were −54.81 mV and −53.41 mV. Scanning electron microscopic (SEM) images indicated that microcapsules were spherical in shape with some shrinkage on the surface and aggregation took place to some extent. Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) analyses of samples empirically validated the presence of SO-TSO in the microcapsules. Encapsulated SO-TSO showed superior oxidative stability and retention of polyunsaturated fatty acids (PUFAs) to unencapsulated counterparts during storage of 6 weeks. When SO-TSO microcapsules were fortified in whole wheat crackers at varying levels (0–10%), the crackers showed sensorial acceptability with no perceivable fishy odor. Thus, microencapsulation of SO-TSO using MBPI-SA as wall materials could be used as an alternative carrier system, in which microcapsules loaded with PUFAs could be fortified in a wide range of foods.
Collapse
|
29
|
Jiang X, Yang D, Xiang G, Hu L. Determination of cis/trans fatty acid contents in edible oils by 1H NMR spectroscopy in association with multivariate calibration. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Nengroo ZR, Ganie AS, Azeem M. Aconitum heterophylum from Kashmir: Evaluation of fatty acid profile, antibacterial, antioxidant activities and functional group analysis. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
31
|
Gutiérrez Galán DK, Pacheco-Moisés FP, Silva Bezerra F, Alves de Matos N, González Rojas NA, Arratia-Quijada J, Carbajal Arízaga GG. Hydrophilic lycopene-coated layered double hydroxide nanoparticles to enhance the antioxidant activity and the oxidative stress evaluation. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Gulzar S, Raju N, Prodpran T, Benjakul S. Chitosan‐Tripolyphosphate Nanoparticles Improves Oxidative Stability of Encapsulated Shrimp Oil throughout the Extended Storage. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Saqib Gulzar
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Navaneethan Raju
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Thummanoon Prodpran
- Center of Excellence in Bio‐based Materials and Packaging Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| |
Collapse
|
33
|
Chemometric approach to characterization of the selected grape seed oils based on their fatty acids composition and FTIR spectroscopy. Sci Rep 2021; 11:19256. [PMID: 34584176 PMCID: PMC8479097 DOI: 10.1038/s41598-021-98763-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/03/2021] [Indexed: 11/12/2022] Open
Abstract
Addressing the issues arising from the production and trade of low-quality foods necessitates developing new quality control methods. Cooking oils, especially those produced from the grape seeds, are an example of food products that often suffer from questionable quality due to various adulterations and low-quality fruits used for their production. Among many methods allowing for fast and efficient food quality control, the combination of experimental and advanced mathematical approaches seems most reliable. In this work a method for grape seed oils compositional characterization based on the infrared (FTIR) spectroscopy and fatty acids profile is reported. Also, the relevant parameters of oils are characterized using a combination of standard techniques such as the Principal Component Analysis, k-Means, and Gaussian Mixture Model (GMM) fitting parameters. Two different approaches to perform unsupervised clustering using GMM were investigated. The first approach relies on the profile of fatty acids, while the second is FT-IR spectroscopy-based. The GMM fitting parameters in both approaches were compared. The results obtained from both approaches are consistent and complementary and provide the tools to address the characterization and clustering issues in grape seed oils.
Collapse
|
34
|
Nigella Sativa-Coated Hydroxyapatite Scaffolds: Synergetic Cues to Stimulate Myoblasts Differentiation and Offset Infections. Tissue Eng Regen Med 2021; 18:787-795. [PMID: 34132986 DOI: 10.1007/s13770-021-00341-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND At present osteoporosis has come into view as a major health concern. Skeletal diseases typified by weak and fragile bones have imposed threats of fissure. Hydroxyapatite (HAP) is known to induce osteoblast like differentiation and provide mechanical strength, hence, used in bone tissue engineering; whereas, Nigella sativa has also demonstrated potential to treat bone and muscle diseases. This study was aimed to develop potential orthopedic scaffold exploiting natural resources of Saudi Arabia which can be used as prospective tissue engineering implant. METHODS The bone scaffold was developed by grafting biogenic HAP with N. sativa essential oil. N. sativa was applied for boosting osteogenesis and to stimulate antimicrobial potential. Antimicrobial potential was investigated utilizing S. aureus bacteria. Spectroscopic and surface characters of N. sativa grafted HAP scaffolds were analyzed using Fourier-transform infrared spectroscopy, X-ray crystallography and Scanning electron microscopy. To ensure biocompatibility of scaffolds; we selected C2C12 cell-lines; best model to study mechanistic pathways related to osteoblasts and myoblasts differentiation. RESULTS Grafting of HAP with N. sativa did not affect typical spherical silhouette of nanoparticles. Characteristically; protein loaded polynucleated myotubes are result of in vitro myogenesis of C2C12 myoblasts in squat serum environment. CONCLUSION It is first study of unique combination of N. sativa and HAP scaffold as a possible candidate of implantation for skeletal muscles regeneration. Outcome of this finding revealed N. sativa grafted HAP enhance differentiation significantly over that of HAP. The proposed scaffold will be an economical natural material for hard and soft tissue engineering and will aid in curing skeletal muscle diseases. Our findings have implications for treatment of muscular/bone diseases.
Collapse
|
35
|
Barreto MSC, Reis JVD, Muraoka T, Jemo M, Vergutz L, Alleoni LRF. Diffuse reflectance infrared Fourier transform spectroscopy for a qualitative evaluation of plant leaf pigment extraction. Analyst 2021; 146:3440-3448. [PMID: 33955444 DOI: 10.1039/d1an00059d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The extraction and quantification of leaf pigments are easy, fast, and cheap procedures; on the other hand, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy associated with chemometrics tools could offer new insights into leaf biochemical composition. We aimed to boost the classic leaf pigment quantification, adding leaf biochemical information derived from DRIFT spectroscopy + principal component analysis, using the same leaf pigment extract produced by the classical quantification method. We performed a dose-response experiment using P as the limiting nutrient, and maize (Zea mays L.) as a plant-test. After 45 d of growth, we evaluated the effects of P fertilization in total maize shoot biomass, P shoot accumulation, leaf pigment quantification by UV-Vis, and the evaluation of biochemical variations by DRIFT spectroscopy analysis associated with a chemometric approach in the same leaf extract used for pigment quantification. P fertilization raised biomass accumulation (∼7.4×), P uptake (∼2.3×), and total chlorophyll a and b contents (∼2.1×). DRIFT spectroscopy analysis of extracted pigments revealed an elevated content of proteins and polysaccharides at high P availability. At low P availability, we found a low efficiency of N metabolism suggested by the accumulation of inorganic N forms. DRIFT spectroscopy applied together with the classic leaf pigment extraction and quantification method is a novel and promising tool for plant nutrition studies as a DRIFT spectroscopy metabolic profile protocol.
Collapse
Affiliation(s)
- Matheus Sampaio Carneiro Barreto
- AgroBiosciences program, Mohammed VI Polytechnic University (UM6P), Morocco. and University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | | | - Takashi Muraoka
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture (CENA), Piracicaba, São Paulo, Brazil
| | - Martin Jemo
- AgroBiosciences program, Mohammed VI Polytechnic University (UM6P), Morocco.
| | - Leonardus Vergutz
- AgroBiosciences program, Mohammed VI Polytechnic University (UM6P), Morocco.
| | - Luís Reynaldo F Alleoni
- University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| |
Collapse
|
36
|
Ng SP, Khor YP, Lim HK, Lai OM, Wang Y, Wang Y, Nehdi IA, Tan CP. In-depth characterization of palm-based diacylglycerol-virgin coconut oil blends with enhanced techno-functional properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
The employment of analytical techniques and chemometrics for authentication of fish oils: A review. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107864] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
38
|
Escobar-García JD, Prieto C, Pardo-Figuerez M, Lagaron JM. Room Temperature Nanoencapsulation of Bioactive Eicosapentaenoic Acid Rich Oil within Whey Protein Microparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:575. [PMID: 33668857 PMCID: PMC7996356 DOI: 10.3390/nano11030575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/10/2023]
Abstract
In this study, emulsion electrospraying assisted by pressurized gas (EAPG) has been performed for the first time to entrap ca. 760 nm droplets of the bioactive eicosapentaenoic acid (EPA)-rich oil into whey protein concentrate (WPC) at room temperature. The submicron droplets of EPA oil were encapsulated within WPC spherical microparticles, with sizes around 5 µm. The EPA oil did not oxidize in the course of the encapsulation performed at 25 °C and in the presence of air, as corroborated by the peroxide value measurements. Attenuated Total Reflection-Fourier Transform Infrared spectroscopy and oxygen consumption tests confirmed that the encapsulated EPA-rich oil showed increased oxidative stability in comparison with the free oil during an accelerated oxidation test under ultraviolet light. Moreover, the encapsulated EPA-rich oil showed increased thermal stability in comparison with the free oil, as measured by oxidative thermogravimetric analysis. The encapsulated EPA-rich oil showed a somewhat reduced organoleptic impact in contrast with the neat EPA oil using rehydrated powdered milk as a reference. Finally, the oxidative stability by thermogravimetric analysis and organoleptic impact of mixtures of EPA and docosahexaenoic acid (DHA)-loaded microparticles was also studied, suggesting an overall reduced organoleptic impact compared to pure EPA. The results here suggest that it is possible to encapsulate 80% polyunsaturated fatty acids (PUFAs)-enriched oils by emulsion EAPG technology at room temperature, which could be used to produce personalized nutraceuticals or pharmaceuticals alone or in combination with other microparticles encapsulating different PUFAs to obtain different targeted health and organoleptic benefits.
Collapse
Affiliation(s)
- Juan David Escobar-García
- Research & Development Department, Bioinicia S.L., Calle Algepser 65, 46980 Paterna, Spain; (J.D.E.-G.); (M.P.-F.)
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Maria Pardo-Figuerez
- Research & Development Department, Bioinicia S.L., Calle Algepser 65, 46980 Paterna, Spain; (J.D.E.-G.); (M.P.-F.)
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| |
Collapse
|
39
|
da Silva Soares B, de Carvalho CWP, Garcia-Rojas EE. Microencapsulation of Sacha Inchi Oil by Complex Coacervates using Ovalbumin-Tannic Acid and Pectin as Wall Materials. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02594-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Ruiz-Capillas C, Herrero AM. Development of Meat Products with Healthier Lipid Content: Vibrational Spectroscopy. Foods 2021; 10:foods10020341. [PMID: 33562823 PMCID: PMC7914705 DOI: 10.3390/foods10020341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
This review focuses on the importance of developing meat products with healthier lipid content and strategies such as the use of structured lipids to develop these enriched products. The review also conducts a critical analysis of the use of vibrational spectroscopy as a tool to further these developments. Meat and meat products are extensively recognized and consumed in the world. They are an important nutritional contribution in our diet. However, their consumption has also been associated with some negative consequences for health due to some of its components. There are new trends in the design of healthy meat products focusing mainly on improving their composition. From among the different strategies, improving lipid content is the one that has received the most attention. A novel development is the formation of lipid materials based on structured lipids such emulsion gels (EGs) or oil-bulking agents (OBAs) that offer attractive applications in the reformulation of health-enhanced meat products. A deeper interpretation is required of the complicated relationship between the structure of their components and their properties in order to obtain structured lipids and healthier meat products with improved lipid content and acceptable characteristics. To this end, vibrational spectroscopy techniques (Raman and infrared spectroscopy) have been demonstrated to be suitable in the elucidation of the structural characteristics of lipid materials based on structured lipids (EGs or OBAs) and the corresponding reformulated health-enhanced meat products into which these fat replacers have been incorporated. Future research on these structures and how they correlate to certain technological properties could help in selecting the best lipid material to achieve specific technological properties in healthier meat products with improved lipid content.
Collapse
|
41
|
Aredo V, Bittencourt GM, Pallone EMDJA, Guimarães FEC, Oliveira ALD. Formation of edible oil-loaded beeswax microparticles using PGSS – Particles from Gas-Saturated Solutions. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2020.105106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Herculano LS, Lukasievicz GVB, Sehn E, Torquato AS, Belançon MP, Savi E, Kimura NM, Malacarne LC, Baesso ML, Astrath NGC. The correlation of physicochemical properties of edible vegetable oils by chemometric analysis of spectroscopic data. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118877. [PMID: 32920439 DOI: 10.1016/j.saa.2020.118877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
This work aimed to investigate and compare the composition and the physicochemical properties of 18 different sources of edible vegetable oils. A systematic study on the correlation between composition and physical properties was performed using Fourier Transform Infrared (FTIR) Spectroscopy and fatty acid chromatographic analysis. Principal component analysis of FTIR spectra is performed to classify edible oils concerning their physical properties. The results demonstrate the potentiality of the method associated with multivariate statistics analysis as powerful, fast, and non-destructive tools for characterization and quality control of edible vegetable oils.
Collapse
Affiliation(s)
- Leandro S Herculano
- Departamento de Física, Universidade Tecnológica Federal do Paraná, Medianeira, PR 85884-000, Brazil.
| | - Gustavo V B Lukasievicz
- Departamento de Física, Universidade Tecnológica Federal do Paraná, Medianeira, PR 85884-000, Brazil
| | - Elizandra Sehn
- Departamento de Física, Universidade Tecnológica Federal do Paraná, Medianeira, PR 85884-000, Brazil
| | - Alex S Torquato
- Departamento de Química, Universidade Tecnológica Federal do Paraná, Medianeira, PR 85884-000, Brazil
| | - Marcos P Belançon
- Departamento de Física, Universidade Tecnológica Federal do Paraná, Pato Branco, PR 85503-390, Brazil
| | - Elton Savi
- Departamento de Física, Universidade Estadual de Maringá, Maringá, PR 87020-900, Brazil
| | - Newller M Kimura
- Departamento de Física, Universidade Estadual de Maringá, Maringá, PR 87020-900, Brazil
| | - Luis C Malacarne
- Departamento de Física, Universidade Estadual de Maringá, Maringá, PR 87020-900, Brazil
| | - Mauro L Baesso
- Departamento de Física, Universidade Estadual de Maringá, Maringá, PR 87020-900, Brazil
| | - Nelson G C Astrath
- Departamento de Física, Universidade Estadual de Maringá, Maringá, PR 87020-900, Brazil.
| |
Collapse
|
43
|
MACHATE DJ, CANDIDO CJ, INADA AC, FRANCO BC, CARVALHO IRAD, OLIVEIRA LCSD, CORTES MR, CAIRES ARL, SILVA RHD, HIANE PA, BOGO D, LIMA NVD, NASCIMENTO VAD, GUIMARÃES RDCA, POTT A. Fatty acid profile and physicochemical, optical and thermal characteristics of Campomanesia adamantium (Cambess.) O. Berg seed oil. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.32719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Arnildo POTT
- Universidade Federal de Mato Grosso do Sul, Brasil
| |
Collapse
|
44
|
Microencapsulation of black seed oil in alginate beads for stability and taste masking. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Nosratpour M, Wang Y, Woo MW, Selomulya C. Characterisation of thermal and structural behaviour of lipid blends composed of fish oil and milkfat. Food Res Int 2020; 137:109377. [PMID: 33233079 DOI: 10.1016/j.foodres.2020.109377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 10/24/2022]
Abstract
The blend of fish oil with a high percentage of long chain poly-unsaturated fatty acids, and milkfat with a high percentage of saturated fatty acids, could potentially demonstrate desirable characteristics from both components, such as increased omega-3 fatty acids and melting point, as well as improved crystallization and oxidative stability. In this study, the effect of various milkfat concentrations on thermal properties and crystalline structure of these blends were analysed to understand parameters determining the overall characteristics of the blend. Blends with different ratios of fish oil: milkfat (9:1, 7:3, 5:5, 3:7, 1:9), as well as pure fish oil and pure milkfat, were investigated at different cooling conditions. The crystallization behaviour in all samples shifted to lower temperature ranges, by increasing the cooling rate from 1 to 32 °C/min. However, the changes in cooling rate did not have significant effect on the melting profile of the samples. Whereas changes in milkfat ratio affect both the crystallization and melting behaviour. New crystallization peaks were observed on DSC spectra between the range of -4 to -13 °C in the blends. Moreover, new melting peaks appeared in two ranges of -1 to -8 °C and 8-9 °C, in the blends. The crystallization and melting behaviour of the blends were similar to those of milkfat when >30% milkfat was used. This was further confirmed via XRD where milkfat demonstrated the dominant polymorphic behaviour. Regarding shape of the crystals, fractal dimension analysis showed a similarity between clusters in blends containing 50% milkfat or higher. Increasing the ratio of milkfat led to an increase in fractal dimension which indicates higher mass-spatial distribution of the crystal networks in the blends. The data showed that adding 30% or more milkfat to pure fish oil resulted in blends demonstrating similar characteristics to milkfat, including thermal, structural, and oxidative stability. This shows the potential of blending a high percentage of docosahexaenoic acid in milk fat to improve their overall stability.
Collapse
Affiliation(s)
- Mitra Nosratpour
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Meng Wai Woo
- Department of Chemical and Materials Engineering, University of Auckland, New Zealand
| | | |
Collapse
|
46
|
Effects of Heavy Ion Particle Irradiation on Spore Germination of Bacillus spp. from Extremely Hot and Cold Environments. Life (Basel) 2020; 10:life10110264. [PMID: 33143156 PMCID: PMC7693761 DOI: 10.3390/life10110264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Extremophiles are optimal models in experimentally addressing questions about the effects of cosmic radiation on biological systems. The resistance to high charge energy (HZE) particles, and helium (He) ions and iron (Fe) ions (LET at 2.2 and 200 keV/µm, respectively, until 1000 Gy), of spores from two thermophiles, Bacillushorneckiae SBP3 and Bacilluslicheniformis T14, and two psychrotolerants, Bacillus sp. A34 and A43, was investigated. Spores survived He irradiation better, whereas they were more sensitive to Fe irradiation (until 500 Gy), with spores from thermophiles being more resistant to irradiations than psychrotolerants. The survived spores showed different germination kinetics, depending on the type/dose of irradiation and the germinant used. After exposure to He 1000 Gy, D-glucose increased the lag time of thermophilic spores and induced germination of psychrotolerants, whereas L-alanine and L-valine increased the germination efficiency, except alanine for A43. FTIR spectra showed important modifications to the structural components of spores after Fe irradiation at 250 Gy, which could explain the block in spore germination, whereas minor changes were observed after He radiation that could be related to the increased permeability of the inner membranes and alterations of receptor complex structures. Our results give new insights on HZE resistance of extremophiles that are useful in different contexts, including astrobiology.
Collapse
|
47
|
Abstract
Curcumin nanoemulsion was prepared using coconut oil, Tween 80 (surfactant) and polyethylene glycol (co-solvent) with the addition of honey and glycerol as additives. The nanoemulsion was optimized and systematically characterized for transdermal delivery. Small particle size (15.92 nm), low polydispersity index (0.17) and slight acidic (pH 4.18) curcumin nanoemulsion was obtained without any chemical degradation based on the Fourier transform infrared (FTIR) spectrum. The incorporation of curcumin inside nanoglobul improved curcumin stability and skin permeability. Its high permeability can be seen from Nile dyed curcumin in different layers of skin through fluorescent imaging. The release kinetic of curcumin followed the Higuchi model, which explains why the skin permeation was a Fickian diffusion-controlled process because the Korsmeyer constant was proven to be 0.3 (<0.5). Nanoencapsulation slightly decreased the antioxidant capacity of curcumin for about 7.9% compared to its free counterpart. It showed low cytotoxicity (EC50 2.3552 µg/mL) to human skin fibroblasts. Cell death was noticed at a high concentration (2.5 µg/mL) of treatment. Curcumin was also found to promote wound closure at low concentration 0.1563 µg/mL and was comparable with the performance of ascorbic acid based on scratch assay. Therefore, this nutritious curcumin nanoemulsion is a promising transdermal delivery system for topical application.
Collapse
|
48
|
Santos DN, Aredo V, Bazito RC, Oliveira AL. Water free incorporation of shark liver oil into starch microparticles by supercritical
CO
2
impregnation at low temperature. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Débora Nascimento Santos
- Natural Products and High Pressure Technology Laboratory (LTAPPN), Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA) University of São Paulo (USP) Pirassununga São Paulo Brazil
| | - Victor Aredo
- Natural Products and High Pressure Technology Laboratory (LTAPPN), Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA) University of São Paulo (USP) Pirassununga São Paulo Brazil
| | - Reinaldo Camino Bazito
- Group of Green and Environmental Chemistry (GQVA), Department of Fundamental Chemistry Institute of Chemistry (IQ), University of São Paulo (USP) Butantã São Paulo Brazil
| | - Alessandra Lopes Oliveira
- Natural Products and High Pressure Technology Laboratory (LTAPPN), Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA) University of São Paulo (USP) Pirassununga São Paulo Brazil
| |
Collapse
|
49
|
Amorim TL, Duarte LM, de Oliveira MAL, de la Fuente MA, Gómez-Cortés P. Prediction of Fatty Acids in Chocolates with an Emphasis on C18:1 trans Fatty Acid Positional Isomers Using ATR-FTIR Associated with Multivariate Calibration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10893-10901. [PMID: 32870685 DOI: 10.1021/acs.jafc.0c04316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work aimed to predict C18:1 TFA isomers as well as other groups of fatty acids (saturated, monounsaturated, polyunsaturated, and total TFA) in chocolates by ATR-FTIR and partial least square regression. The quantification of fatty acids in representative samples (white, dark, and milk chocolates) was rapid (<30 s) and did not require derivatization. The optimized models showed satisfactory linear correlations compared to a reference gas chromatographic method. Coefficients of correlation for prediction considering C18:1 positional isomers were 0.973 (trans 6-8), 0.991 (trans 9), 0.991 (trans 10), 0.988 (trans 11), and 0.998 (trans 12). When considering fatty acids groups, these coefficients ranged from 0.965 to 0.999. The obtained results indicate that this straightforward procedure is suitable for chocolate analysis, for determining its general lipid composition and TFA isomeric profile, which would be of great interest for quality control programs in the face of the new TFA regulations.
Collapse
Affiliation(s)
- Tatiane Lima Amorim
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera, 9, Madrid 28049, Spain
- Grupo de Química Analítica e Quimiometria (GQAQ), Departamento de Química, Universidade Federal de Juiz de Fora, José Lourenço Kelmer, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Lucas Mattos Duarte
- Grupo de Química Analítica e Quimiometria (GQAQ), Departamento de Química, Universidade Federal de Juiz de Fora, José Lourenço Kelmer, Juiz de Fora, Minas Gerais 36036-900, Brazil
- Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Marcone Augusto Leal de Oliveira
- Grupo de Química Analítica e Quimiometria (GQAQ), Departamento de Química, Universidade Federal de Juiz de Fora, José Lourenço Kelmer, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Miguel Angel de la Fuente
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera, 9, Madrid 28049, Spain
| | - Pilar Gómez-Cortés
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera, 9, Madrid 28049, Spain
| |
Collapse
|
50
|
Pintado T, Muñoz-González I, Salvador M, Ruiz-Capillas C, Herrero AM. Phenolic compounds in emulsion gel-based delivery systems applied as animal fat replacers in frankfurters: Physico-chemical, structural and microbiological approach. Food Chem 2020; 340:128095. [PMID: 33007696 DOI: 10.1016/j.foodchem.2020.128095] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 01/20/2023]
Abstract
This article evaluates the use of emulsion gels (EGs) containing two different solid polyphenol extracts [from grape seed (R-EPG) or grape seed and olive (R-EPGO)] as animal fat replacers in the development of frankfurters. The incorporation of EGs improved their lipid content, particularly R-EPG and R-EPGO also contained high levels of phenolic compounds (hydroxytyrosol and flavanols). These frankfurters were judged acceptable by the panellists and showed good thermal and storage stability. Colour parameters, pH and textural properties were affected (p < 0.05) by the formulation, being significant the influence of polyphenols extracts. Spectroscopic results showed greater (p < 0.05) inter- and intramolecular lipid disorder in the frankfurters with EGs, irrespective of the presence of polyphenol extracts. Comparing the reduced-fat samples, R-EPG and R-EPGO showed the lowest (p < 0.05) total viable counts. Significant changes in pH and texture parameters were observed during chilled storage while lipid structure was not affected.
Collapse
Affiliation(s)
- Tatiana Pintado
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain.
| | - Irene Muñoz-González
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain
| | - Marina Salvador
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain
| | - Claudia Ruiz-Capillas
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain
| | - Ana M Herrero
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain.
| |
Collapse
|