1
|
Patil PD, Gargate N, Dongarsane K, Jagtap H, Phirke AN, Tiwari MS, Nadar SS. Revolutionizing biocatalysis: A review on innovative design and applications of enzyme-immobilized microfluidic devices. Int J Biol Macromol 2024; 281:136193. [PMID: 39362440 DOI: 10.1016/j.ijbiomac.2024.136193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/01/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Integrating microfluidic devices and enzymatic processes in biocatalysis is a rapidly advancing field with promising applications. This review explores various facets, including applications, scalability, techno-commercial implications, and environmental consequences. Enzyme-embedded microfluidic devices offer advantages such as compact dimensions, rapid heat transfer, and minimal reagent consumption, especially in pharmaceutical optically pure compound synthesis. Addressing scalability challenges involves strategies for uniform flow distribution and consistent residence time. Incorporation with downstream processing and biocatalytic reactions makes the overall process environmentally friendly. The review navigates challenges related to reaction kinetics, cofactor recycling, and techno-commercial aspects, highlighting cost-effectiveness, safety enhancements, and reduced energy consumption. The potential for automation and commercial-grade infrastructure is discussed, considering initial investments and long-term savings. The incorporation of machine learning in enzyme-embedded microfluidic devices advocates a blend of experimental and in-silico methods for optimization. This comprehensive review examines the advancements and challenges associated with these devices, focusing on their integration with enzyme immobilization techniques, the optimization of process parameters, and the techno-commercial considerations crucial for their widespread implementation. Furthermore, this review offers novel insights into strategies for overcoming limitations such as design complexities, laminar flow challenges, enzyme loading optimization, catalyst fouling, and multi-enzyme immobilization, highlighting the potential for sustainable and efficient enzymatic processes in various industries.
Collapse
Affiliation(s)
- Pravin D Patil
- Department of Basic Science & Humanities, Mukesh Patel School of Technology Management & Engineering, SVKM's NMIMS, Mumbai, Maharashtra 400056, India
| | - Niharika Gargate
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Khushi Dongarsane
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Hrishikesh Jagtap
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Ajay N Phirke
- Department of Basic Science & Humanities, Mukesh Patel School of Technology Management & Engineering, SVKM's NMIMS, Mumbai, Maharashtra 400056, India
| | - Manishkumar S Tiwari
- Department of Data Science, Mukesh Patel School of Technology Management & Engineering, SVKM's NMIMS, Mumbai, Maharashtra 400056, India
| | - Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India.
| |
Collapse
|
2
|
Seo S, Kim T. Gas transport mechanisms through gas-permeable membranes in microfluidics: A perspective. BIOMICROFLUIDICS 2023; 17:061301. [PMID: 38025658 PMCID: PMC10656118 DOI: 10.1063/5.0169555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Gas-permeable membranes (GPMs) and membrane-like micro-/nanostructures offer precise control over the transport of liquids, gases, and small molecules on microchips, which has led to the possibility of diverse applications, such as gas sensors, solution concentrators, and mixture separators. With the escalating demand for GPMs in microfluidics, this Perspective article aims to comprehensively categorize the transport mechanisms of gases through GPMs based on the penetrant type and the transport direction. We also provide a comprehensive review of recent advancements in GPM-integrated microfluidic devices, provide an overview of the fundamental mechanisms underlying gas transport through GPMs, and present future perspectives on the integration of GPMs in microfluidics. Furthermore, we address the current challenges associated with GPMs and GPM-integrated microfluidic devices, taking into consideration the intrinsic material properties and capabilities of GPMs. By tackling these challenges head-on, we believe that our perspectives can catalyze innovative advancements and help meet the evolving demands of microfluidic applications.
Collapse
Affiliation(s)
- Sangjin Seo
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Taesung Kim
- Author to whom correspondence should be addressed:. Tel.: +82-52-217-2313. Fax: +82-52-217-2409
| |
Collapse
|
3
|
Jun Yim S, Gyak KW, Kawale SA, Mottafegh A, Park CH, Ko Y, Kim I, Soo Jee S, Kim DP. One-flow Multi-step Synthesis of a Monomer as a Precursor of Thermal-Conductive Semiconductor Packaging Polymer via Multi-phasic Separation. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
4
|
Ultrasound spray nozzle atomizer as a chemical reaction medium: Evaluation using Villermaux-Dushman test reaction. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1285-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
5
|
Yim S, Oh H, Choi Y, Ahn G, Park C, Kim YH, Ryu J, Kim D. Modular Flow Reactors for Valorization of Kraft Lignin and Low-Voltage Hydrogen Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204170. [PMID: 36285674 PMCID: PMC9762309 DOI: 10.1002/advs.202204170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/21/2022] [Indexed: 05/22/2023]
Abstract
Recent studies have found that green hydrogen production and biomass utilization technologies can be combined to efficiently produce both hydrogen and value-added chemicals using biomass as an electron and proton source. However, the majority of them have been limited to proof-of-concept demonstrations based on batch systems. Here the authors report the design of modular flow systems for the continuous depolymerization and valorization of lignin and low-voltage hydrogen production. A redox-active phosphomolybdic acid is used as a catalyst to depolymerize lignin with the production of aromatic compounds and extraction of electrons for hydrogen production. Individual processes for lignin depolymerization, byproduct separation, and hydrogen production with catalyst reactivation are modularized and integrated to perform the entire process in the serial flow. Consequently, this work enabled a one-flow process from biomass conversion to hydrogen gas generation under a cyclic loop. In addition, the unique advantages of the fluidic system (i.e., effective mass and heat transfer) substantially improved the yield and efficiency, leading to hydrogen production at a higher current density (20.5 mA cm-2 ) at a lower voltage (1.5 V) without oxygen evolution. This sustainable eco-chemical platform envisages scalable co-production of valuable chemicals and green hydrogen for industrial purposes in an energy-saving and safe manner.
Collapse
Affiliation(s)
- Se‐Jun Yim
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Hyeonmyeong Oh
- Department of Energy EngineeringSchool of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- Emergent Hydrogen Technology R&D CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Yuri Choi
- Department of Energy EngineeringSchool of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- Emergent Hydrogen Technology R&D CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Gwang‐Noh Ahn
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Chae‐Hyeon Park
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Yong Hwan Kim
- Department of Energy EngineeringSchool of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Jungki Ryu
- Department of Energy EngineeringSchool of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- Emergent Hydrogen Technology R&D CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- Graduate School of Carbon NeutralityUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Dong‐Pyo Kim
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| |
Collapse
|
6
|
Griffiths O, Ley SV. Multicomponent Direct Assembly of N-Heterospirocycles Facilitated by Visible-Light-Driven Photocatalysis. J Org Chem 2022; 87:13204-13223. [PMID: 36103403 PMCID: PMC9552240 DOI: 10.1021/acs.joc.2c01684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Indexed: 11/29/2022]
Abstract
N-heterospirocycles are interesting structural units found in both natural products and medicinal compounds but have relatively few reliable methods for their synthesis. Here, we enlist the photocatalytic generation of N-centered radicals to construct β-spirocyclic pyrrolidines from N-allylsulfonamides and alkenes. A variety of β-spirocyclic pyrrolidines have been constructed, including drug derivatives, in moderate to very good yields. Further derivatization of the products has also been demonstrated as has a viable scale-up procedure, making use of flow chemistry techniques.
Collapse
Affiliation(s)
- Oliver
M. Griffiths
- Yusuf Hamied Department
of
Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Steven V. Ley
- Yusuf Hamied Department
of
Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
7
|
Kang JH, Ahn GN, Lee H, Yim SJ, Lahore S, Lee HJ, Kim H, Kim JT, Kim DP. Scalable Subsecond Synthesis of Drug Scaffolds via Aryllithium Intermediates by Numbered-up 3D-Printed Metal Microreactors. ACS CENTRAL SCIENCE 2022; 8:43-50. [PMID: 35106371 PMCID: PMC8796307 DOI: 10.1021/acscentsci.1c00972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Indexed: 05/10/2023]
Abstract
Continuous-flow microreactors enable ultrafast chemistry; however, their small capacity restricts industrial-level productivity of pharmaceutical compounds. In this work, scale-up subsecond synthesis of drug scaffolds was achieved via a 16 numbered-up printed metal microreactor (16N-PMR) assembly to render high productivity up to 20 g for 10 min operation. Initially, ultrafast synthetic chemistry of unstable lithiated intermediates in the halogen-lithium exchange reactions of three aryl halides and subsequent reactions with diverse electrophiles were carried out using a single microreactor (SMR). Larger production of the ultrafast synthesis was achieved by devising a monolithic module of 4 numbered-up 3D-printed metal microreactor (4N-PMR) that was integrated by laminating four SMRs and four bifurcation flow distributors in a compact manner. Eventually, the 16N-PMR system for the scalable subsecond synthesis of three drug scaffolds was assembled by stacking four monolithic modules of 4N-PMRs.
Collapse
Affiliation(s)
- Ji-Ho Kang
- Center
for Intelligent Microprocess of Pharmaceutical Synthesis, Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Gwang-Noh Ahn
- Center
for Intelligent Microprocess of Pharmaceutical Synthesis, Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Heekwon Lee
- Department
of Mechanical Engineering, The University
of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Se-Jun Yim
- Center
for Intelligent Microprocess of Pharmaceutical Synthesis, Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Santosh Lahore
- Center
for Intelligent Microprocess of Pharmaceutical Synthesis, Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Hyune-Jea Lee
- Department
of Chemistry, College of Science, Korea
University, Seoul 02841, Republic of Korea
| | - Heejin Kim
- Department
of Chemistry, College of Science, Korea
University, Seoul 02841, Republic of Korea
| | - Ji Tae Kim
- Department
of Mechanical Engineering, The University
of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dong-Pyo Kim
- Center
for Intelligent Microprocess of Pharmaceutical Synthesis, Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| |
Collapse
|
8
|
An Empirical Study on Hazardous Chemicals Risk of Urban Residents in China: Analysis of Mediating Effect and Channel Preference of Response Action Decision Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010932. [PMID: 34682677 PMCID: PMC8536028 DOI: 10.3390/ijerph182010932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/21/2022]
Abstract
Because urban residents do not have a strong understanding of hazardous chemicals, they cannot effectively make response action decisions to ensure safety, protect lives, and reduce property damage. This paper constructs the Response Action Decision Model of hazardous chemicals, and analyzes the mediating effect of Information Processing and Threat Perception, as well as channel preferences of urban residents with different demographic characteristics. A total of 1700 questionnaires were collected in Chongqing, Tianjin, Fujian Zhangzhou, Shandong Zibo and Lanzhou, where there are significant hazardous chemicals factories. The results show that: Firstly, Information Processing and Threat Perception have significant mediating effects on the relationship between Mass Media, Social Media, Face-to-face communication and Response Action Decision in a single channel, which can effectively promote the spread effect of different channels, affecting the ways that urban residents make hazard response action decisions; secondly, Information Processing and Threat Perception do not have a mediating effect on the relationship between the channel combination of “Mass Media ↔ Social Media”, “Mass Media ↔ Face-to-face communication”, “Social Media ↔ Face-to-face communication” and Response Action Decision, and the channel combination can directly link to the Response Action Decision; thirdly, in terms of the extent that it affects urban residents to make response action decisions, Mass Media is greater than Social Media and greater than Face-to-face communication; fourthly, two demographic characteristics of gender and experience have a stronger moderating effect for the Mass Media channel, while other demographic characteristics have greater influences on the Response Action Decision Model; finally, the Response Action Decision Model can be better applied to those analyses and research which address threat perception of hazardous chemicals and response action decisions of urban residents in China.
Collapse
|
9
|
Vaz M, Courboin D, Winter M, Roth PMC. Scale-Up of Ozonolysis using Inherently Safer Technology in Continuous Flow under Pressure: Case Study on β-Pinene. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Margaux Vaz
- École Nationale Supérieure de Chimie de Paris—Université PSL, 11 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Daniel Courboin
- Corning Reactor Technologies, Corning SAS, 7 bis Avenue de Valvins, CS 70156 Samois sur Seine, 77215 Avon Cedex, France
| | - Marc Winter
- Corning Reactor Technologies, Corning SAS, 7 bis Avenue de Valvins, CS 70156 Samois sur Seine, 77215 Avon Cedex, France
| | - Philippe M. C. Roth
- Corning Reactor Technologies, Corning SAS, 7 bis Avenue de Valvins, CS 70156 Samois sur Seine, 77215 Avon Cedex, France
| |
Collapse
|
10
|
Lee HJ, Yonekura Y, Kim N, Yoshida JI, Kim H. Regioselective Synthesis of α-Functional Stilbenes via Precise Control of Rapid cis- trans Isomerization in Flow. Org Lett 2021; 23:2904-2910. [PMID: 33797929 DOI: 10.1021/acs.orglett.1c00538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rapid cis-trans isomerization of α-anionic stilbene was regioselectively controlled by using flow microreactors, and its reaction with various electrophiles was conducted. The reaction time was precisely controlled within milliseconds to seconds at -50 °C to selectively give the cis- or trans-isomer in high yields. This synthetic method in flow was well-applied to synthesize precursors of commercial drug compound, (E)- and (Z)-tamoxifen with high regioselectivity and productivity.
Collapse
Affiliation(s)
- Hyune-Jea Lee
- Department of Chemistry, College of Science, Korea University, Seongbuk-gu, Seoul 02841, South Korea
| | - Yuya Yonekura
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-08510, Japan
| | - Nayoung Kim
- Department of Chemistry, College of Science, Korea University, Seongbuk-gu, Seoul 02841, South Korea
| | - Jun-Ichi Yoshida
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-08510, Japan.,National Institution of Technology, Suzuka College, Suzuka, Mie 510-0294, Japan
| | - Heejin Kim
- Department of Chemistry, College of Science, Korea University, Seongbuk-gu, Seoul 02841, South Korea.,Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-08510, Japan
| |
Collapse
|
11
|
Niculescu AG, Chircov C, Bîrcă AC, Grumezescu AM. Nanomaterials Synthesis through Microfluidic Methods: An Updated Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:864. [PMID: 33800636 PMCID: PMC8066900 DOI: 10.3390/nano11040864] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 01/10/2023]
Abstract
Microfluidic devices emerged due to an interdisciplinary "collision" between chemistry, physics, biology, fluid dynamics, microelectronics, and material science. Such devices can act as reaction vessels for many chemical and biological processes, reducing the occupied space, equipment costs, and reaction times while enhancing the quality of the synthesized products. Due to this series of advantages compared to classical synthesis methods, microfluidic technology managed to gather considerable scientific interest towards nanomaterials production. Thus, a new era of possibilities regarding the design and development of numerous applications within the pharmaceutical and medical fields has emerged. In this context, the present review provides a thorough comparison between conventional methods and microfluidic approaches for nanomaterials synthesis, presenting the most recent research advancements within the field.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Cristina Chircov
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (C.C.); (A.C.B.)
| | - Alexandra Cătălina Bîrcă
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (C.C.); (A.C.B.)
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (C.C.); (A.C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
12
|
Niculescu AG, Chircov C, Bîrcă AC, Grumezescu AM. Fabrication and Applications of Microfluidic Devices: A Review. Int J Mol Sci 2021; 22:2011. [PMID: 33670545 PMCID: PMC7921936 DOI: 10.3390/ijms22042011] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Microfluidics is a relatively newly emerged field based on the combined principles of physics, chemistry, biology, fluid dynamics, microelectronics, and material science. Various materials can be processed into miniaturized chips containing channels and chambers in the microscale range. A diverse repertoire of methods can be chosen to manufacture such platforms of desired size, shape, and geometry. Whether they are used alone or in combination with other devices, microfluidic chips can be employed in nanoparticle preparation, drug encapsulation, delivery, and targeting, cell analysis, diagnosis, and cell culture. This paper presents microfluidic technology in terms of the available platform materials and fabrication techniques, also focusing on the biomedical applications of these remarkable devices.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Cristina Chircov
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.)
| | - Alexandra Cătălina Bîrcă
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.)
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
13
|
Direct numerical simulation of microbubble streaming in a microfluidic device: The effect of the bubble protrusion depth on the vortex pattern. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0656-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Ortseifen V, Viefhues M, Wobbe L, Grünberger A. Microfluidics for Biotechnology: Bridging Gaps to Foster Microfluidic Applications. Front Bioeng Biotechnol 2020; 8:589074. [PMID: 33282849 PMCID: PMC7691494 DOI: 10.3389/fbioe.2020.589074] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Microfluidics and novel lab-on-a-chip applications have the potential to boost biotechnological research in ways that are not possible using traditional methods. Although microfluidic tools were increasingly used for different applications within biotechnology in recent years, a systematic and routine use in academic and industrial labs is still not established. For many years, absent innovative, ground-breaking and “out-of-the-box” applications have been made responsible for the missing drive to integrate microfluidic technologies into fundamental and applied biotechnological research. In this review, we highlight microfluidics’ offers and compare them to the most important demands of the biotechnologists. Furthermore, a detailed analysis in the state-of-the-art use of microfluidics within biotechnology was conducted exemplarily for four emerging biotechnological fields that can substantially benefit from the application of microfluidic systems, namely the phenotypic screening of cells, the analysis of microbial population heterogeneity, organ-on-a-chip approaches and the characterisation of synthetic co-cultures. The analysis resulted in a discussion of potential “gaps” that can be responsible for the rare integration of microfluidics into biotechnological studies. Our analysis revealed six major gaps, concerning the lack of interdisciplinary communication, mutual knowledge and motivation, methodological compatibility, technological readiness and missing commercialisation, which need to be bridged in the future. We conclude that connecting microfluidics and biotechnology is not an impossible challenge and made seven suggestions to bridge the gaps between those disciplines. This lays the foundation for routine integration of microfluidic systems into biotechnology research procedures.
Collapse
Affiliation(s)
- Vera Ortseifen
- Proteome and Metabolome Research, Faculty of Biology, Center for Biotechnology/CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Martina Viefhues
- Experimental Biophysics and Applied Nanosciences, Faculty of Physics, Bielefeld University, Bielefeld, Germany
| | - Lutz Wobbe
- Algae Biotechnology and Bioenergy Group, Faculty of Biology, Center for Biotechnology/CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Alexander Grünberger
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
15
|
Han S, Kashfipour MA, Ramezani M, Abolhasani M. Accelerating gas-liquid chemical reactions in flow. Chem Commun (Camb) 2020; 56:10593-10606. [PMID: 32785297 DOI: 10.1039/d0cc03511d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past decade, continuous flow reactors have emerged as a powerful tool for accelerated fundamental and applied studies of gas-liquid reactions, offering facile gas delivery and process intensification. In particular, unique features of highly gas-permeable tubular membranes in flow reactors (i.e., tube-in-tube flow reactor configuration) have been exploited as (i) an efficient analytic tool for gas-liquid solubility and diffusivity measurements and (ii) reliable gas delivery/generation strategy, providing versatile adaptability for a wide range of gas-liquid processes. The tube-in-tube flow reactors have been successfully adopted for rapid exploration of a wide range of gas-liquid reactions (e.g., amination, carboxylation, carbonylation, hydrogenation, ethylenation, oxygenation) using gaseous species both as the reactant and the product, safely handling toxic and flammable gases or unstable intermediate compounds. In this highlight, we present an overview of recent developments in the utilization of such intensified flow reactors within modular flow chemistry platforms for different gas-liquid processes involving carbon dioxide, oxygen, and other gases. We provide a detailed step-by-step guideline for robust assembly and safe operation of tube-in-tube flow reactors. We also discuss the current challenges and potential future directions for further development and utilization of tubular membrane-based flow reactors for gas-liquid processes.
Collapse
Affiliation(s)
- Suyong Han
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA.
| | | | | | | |
Collapse
|
16
|
Dallinger D, Gutmann B, Kappe CO. The Concept of Chemical Generators: On-Site On-Demand Production of Hazardous Reagents in Continuous Flow. Acc Chem Res 2020; 53:1330-1341. [PMID: 32543830 PMCID: PMC7467564 DOI: 10.1021/acs.accounts.0c00199] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
In recent years, a steadily growing number of chemists, from both
academia and industry, have dedicated their research to the development
of continuous flow processes performed in milli- or microreactors.
The common availability of continuous flow equipment at virtually
all scales and affordable cost has additionally impacted this trend.
Furthermore, regulatory agencies such as the United States Food and
Drug Administration actively encourage continuous manufacturing of
active pharmaceutical ingredients (APIs) with the vision of quality
and productivity improvements. That is why the pharmaceutical industry
is progressively implementing continuous flow technologies. As a result
of the exceptional characteristics of continuous flow reactors such
as small reactor volumes and remarkably fast heat and mass transfer,
process conditions which need to be avoided in conventional batch
syntheses can be safely employed. Thus, continuous operation is particularly
advantageous for reactions at high temperatures/pressures (novel process
windows) and for ultrafast, exothermic reactions (flash chemistry). In addition to conditions that are outside of the operation range
of conventional stirred tank reactors, reagents possessing a high
hazard potential and therefore not amenable to batch processing can
be safely utilized (forbidden chemistry). Because of the small reactor
volumes, risks in case of a failure are minimized. Such hazardous
reagents often are low molecular weight compounds, leading generally
to the most atom-, time-, and cost-efficient route toward the desired
product. Ideally, they are generated from benign, readily available
and cheap precursors within the closed environment of the flow reactor
on-site on-demand. By doing so, the transport, storage, and handling
of those compounds, which impose a certain safety risk especially
on a large scale, are circumvented. This strategy also positively
impacts the global supply chain dependency, which can be a severe
issue, particularly in times of stricter safety regulations or an
epidemic. The concept of the in situ production of a hazardous material
is generally referred to as the “generator” of the material.
Importantly, in an integrated flow process, multiple modules can be
assembled consecutively, allowing not only an in-line purification/separation
and quenching of the reagent, but also its downstream conversion to
a nonhazardous product. For the past decade, research in our
group has focused on the continuous
generation of hazardous reagents using a range of reactor designs
and experimental techniques, particularly toward the synthesis of
APIs. In this Account, we therefore introduce chemical generator concepts
that have been developed in our laboratories for the production of
toxic, explosive, and short-lived reagents. We have defined three
different classes of generators depending on the reactivity/stability
of the reagents, featuring reagents such as Br2, HCN, peracids,
diazomethane (CH2N2), or hydrazoic acid (HN3). The various reactor designs, including in-line membrane
separation techniques and real-time process analytical technologies
for the generation, purification, and monitoring of those hazardous
reagents, and also their downstream transformations are presented.
This Account should serve as food for thought to extend the scope
of chemical generators for accomplishing more efficient and more economic
processes.
Collapse
Affiliation(s)
- Doris Dallinger
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Bernhard Gutmann
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - C. Oliver Kappe
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
17
|
Yim SJ, Ramanjaneyulu BT, Vidyacharan S, Yang YD, Kang IS, Kim DP. Compact reaction-module on a pad for scalable flow-production of organophosphates as drug scaffolds. LAB ON A CHIP 2020; 20:973-978. [PMID: 31998900 DOI: 10.1039/c9lc01099h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Continuous pharmaceutical manufacturing receives intense attention as an alternative way to meet flexible market needs with the assurance of higher safety and quality control. Here, we report a compact reaction-module on a pad (CRP, 170 × 170 × 1.2 mm) for scale-up production of drug precursors in a continuous-flow. The CRP system was devised by stacking 9 films of the patterned polyimide to integrate micro-flow circuits, combining the functions of the even distribution of feeds, being completely mixed in less than a few milliseconds. A methodology of using a highly reactive species for the single-step synthesis of α-phosphonyloxy ketone, a drug scaffold, required the synthesis time of a few seconds in microfluidics. The fast reaction in the single CRP was capable of producing 19.2 g h-1 drug precursor, which indicates a solid step toward kilogram-scale pharmaceutical manufacturing in small footage.
Collapse
Affiliation(s)
- Se Jun Yim
- Center of Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea.
| | - Bandaru T Ramanjaneyulu
- Center of Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea.
| | - Shinde Vidyacharan
- Center of Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea.
| | - Yu Dong Yang
- Computational Fluid Dynamics, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea.
| | - In Seok Kang
- Computational Fluid Dynamics, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea.
| | - Dong-Pyo Kim
- Center of Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea.
| |
Collapse
|
18
|
Hao H, Wang D, Wang Z. Design of Substrate-Integrated Waveguide Loading Multiple Complementary Open Resonant Rings (CSRRs) for Dielectric Constant Measurement. SENSORS (BASEL, SWITZERLAND) 2020; 20:E857. [PMID: 32041152 PMCID: PMC7038781 DOI: 10.3390/s20030857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 11/16/2022]
Abstract
In order to solve the low-sensitivity problem of the dielectric constant with the resonant cavity method, a sensor based on a substrate-integrated waveguide structure loaded with a multi-complementary open resonant ring is proposed. With the enhanced resonance characteristics of the sensor, this design realized the measurement of complex dielectric constants in a wide range. The frequency selectivity of the sensor is improved by the high-quality factor of the substrate-integrated waveguide. By loading three complementary resonant rings with different opening directions in the ground plane, a deeper notch and better out-of-band suppression are achieved. The effect of the complex dielectric constant on both resonant frequency and quality factor is discussed by calculating the material under test with a known dielectric constant. Simulation and experimental results show that a resonance frequency offset of 102 MHz for the per unit dielectric constant is achieved. A wide frequency offset is the prerequisite for accurate measurement. The measurement results of four plates match well with the standard values, with a relative error of the real part of the dielectric constant of less than 2% and an error of less than 0.0099 for the imaginary part.
Collapse
Affiliation(s)
- Honggang Hao
- College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (D.W.); (Z.W.)
| | | | | |
Collapse
|
19
|
Ramanjaneyulu BT, Vidyacharan S, Ahn GN, Kim DP. Ultrafast synthesis of 2-(benzhydrylthio)benzo[ d]oxazole, an antimalarial drug, via an unstable lithium thiolate intermediate in a capillary microreactor. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00038h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We present an ultrafast approach for the synthesis of 2-(benzhydrylthio)benzo[d]oxazole, an antimalarial drug, in 75% yield from benzo[d]oxazole-2-thiol and benzhydryl bromide via an unstable lithium thiolate intermediate in the presence of n-BuLi.
Collapse
Affiliation(s)
- Bandaru T. Ramanjaneyulu
- Center of Intelligent Microprocess of Pharmaceutical Synthesis
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- 37673 Korea
| | - Shinde Vidyacharan
- Center of Intelligent Microprocess of Pharmaceutical Synthesis
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- 37673 Korea
| | - Gwang-Noh Ahn
- Center of Intelligent Microprocess of Pharmaceutical Synthesis
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- 37673 Korea
| | - Dong-Pyo Kim
- Center of Intelligent Microprocess of Pharmaceutical Synthesis
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- 37673 Korea
| |
Collapse
|
20
|
Ramanjaneyulu BT, Vidyacharan S, Yim SJ, Kim DP. Fast-Synthesis of α-Phosphonyloxy Ketones as Drug Scaffolds in a Capillary Microreactor. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bandaru T. Ramanjaneyulu
- Center of Intelligent Microprocess of Pharmaceutical Synthesis; Department of Chemical Engineering; Pohang University of Science and Technology (POSTECH); 37673 Pohang Korea
| | - Shinde Vidyacharan
- Center of Intelligent Microprocess of Pharmaceutical Synthesis; Department of Chemical Engineering; Pohang University of Science and Technology (POSTECH); 37673 Pohang Korea
| | - Se Jun Yim
- Center of Intelligent Microprocess of Pharmaceutical Synthesis; Department of Chemical Engineering; Pohang University of Science and Technology (POSTECH); 37673 Pohang Korea
| | - Dong-Pyo Kim
- Center of Intelligent Microprocess of Pharmaceutical Synthesis; Department of Chemical Engineering; Pohang University of Science and Technology (POSTECH); 37673 Pohang Korea
| |
Collapse
|
21
|
Lee HJ, Roberts RC, Im DJ, Yim SJ, Kim H, Kim JT, Kim DP. Enhanced Controllability of Fries Rearrangements Using High-Resolution 3D-Printed Metal Microreactor with Circular Channel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1905005. [PMID: 31729122 DOI: 10.1002/smll.201905005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/27/2019] [Indexed: 05/12/2023]
Abstract
High-resolution 3D-printed stainless steel metal microreactors (3D-PMRs) with different cross-sectional geometry are fabricated to control ultrafast intramolecular rearrangement reactions in a comparative manner. The 3D-PMR with circular channel demonstrates the improved controllability in rapid Fries-type rearrangement reactions, because of the superior mixing efficiency to rectangular cross-section channels (250 µm × 125 µm) which is confirmed based on the computational flow dynamics simulation. Even in case of very rapid intramolecular rearrangement of sterically small acetyl group occurring in 333 µs of reaction time, the desired intermolecular reaction can outpace to the undesired intramolecular rearrangement using 3D-PMR to result in high conversion and yield.
Collapse
Affiliation(s)
- Hyune-Jea Lee
- Centre for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, POSTECH (Pohang University of Science and Technology), Pohang, 37673, South Korea
| | - Robert C Roberts
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Do Jin Im
- Department of Chemical Engineering, Pukyong National University, Busan, 48513, South Korea
| | - Se-Jun Yim
- Centre for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, POSTECH (Pohang University of Science and Technology), Pohang, 37673, South Korea
| | - Heejin Kim
- Department of Chemistry, College of Science, Korea University, Seoul, 02841, South Korea
| | - Ji Tae Kim
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dong-Pyo Kim
- Centre for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, POSTECH (Pohang University of Science and Technology), Pohang, 37673, South Korea
| |
Collapse
|
22
|
Ahn GN, Yu T, Lee HJ, Gyak KW, Kang JH, You D, Kim DP. A numbering-up metal microreactor for the high-throughput production of a commercial drug by copper catalysis. LAB ON A CHIP 2019; 19:3535-3542. [PMID: 31555789 DOI: 10.1039/c9lc00764d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Microreactors are emerging as an efficient, sustainable synthetic tool compared to conventional batch reactors. Here, we present a new numbering-up metal microreactor by integrating a flow distributor and a copper catalytic module for high productivity of a commercial synthetic drug. A flow distributor and an embedded baffle disc were manufactured by CNC machining and 3D printing of stainless steel (S/S), respectively, whereas a catalytic reaction module was composed of 25 copper coiled capillaries configured in parallel. Eventually, the numbering-up microreactor system assembled with functional modules showed uniform flow distribution and high mixing efficiency regardless of clogging, and achieved high-throughput synthesis of the drug "rufinamide", an anticonvulsant medicine, via a Cu(i)-catalyzed azide-alkyne cycloaddition reaction under optimized conditions.
Collapse
Affiliation(s)
- Gwang-Noh Ahn
- Center of Intelligent Microprocess for Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology, Environ. Eng. Bldg., San 31, Hyoja-dong, Nam-gu, Pohang, South Korea.
| | | | | | | | | | | | | |
Collapse
|
23
|
Lee H, Kim H, Kim D. From
p
‐Xylene to Ibuprofen in Flow: Three‐Step Synthesis by a Unified Sequence of Chemoselective C−H Metalations. Chemistry 2019; 25:11641-11645. [PMID: 31338883 DOI: 10.1002/chem.201903267] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Hyune‐Jea Lee
- Centre for Intelligent Microprocess of Pharmaceutical Synthesis Department of Chemical Engineering POSTECH (Pohang University of Science and Technology) Pohang 790-784 South Korea
| | - Heejin Kim
- Department of Chemistry College of Science Korea University Seoul 02841 South Korea
| | - Dong‐Pyo Kim
- Centre for Intelligent Microprocess of Pharmaceutical Synthesis Department of Chemical Engineering POSTECH (Pohang University of Science and Technology) Pohang 790-784 South Korea
| |
Collapse
|
24
|
Sthalam VK, Singh AK, Pabbaraja S. An Integrated Continuous Flow Micro-Total Ultrafast Process System (μ-TUFPS) for the Synthesis of Celecoxib and Other Cyclooxygenase Inhibitors. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Vinay Kumar Sthalam
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad 201002, Uttar Pradesh, India
| | - Ajay K. Singh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
25
|
Mahajan B, Mujawar T, Ghosh S, Pabbaraja S, Singh AK. Micro-electro-flow reactor (μ-EFR) system for ultra-fast arene synthesis and manufacture of daclatasvir. Chem Commun (Camb) 2019; 55:11852-11855. [DOI: 10.1039/c9cc06127d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Electro-micro flow reactor containing Pt@Ni@Cu anode materials for reductant free biaryl synthesis, further extended to daclatasvir synthesis.
Collapse
Affiliation(s)
- Bhushan Mahajan
- Division of Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Taufiqueahmed Mujawar
- Division of Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| | - Subhash Ghosh
- Division of Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| | - Srihari Pabbaraja
- Division of Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Ajay K. Singh
- Division of Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
26
|
Aand D, Mahajan B, Pabbaraja S, Singh AK. Integrated continuous flow/batch protocol for the photoreduction of ortho-methyl phenyl ketones using water as the hydrogen source. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00110g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The direct hydrogenation of ketones (RRCO) with water to secondary alcohols under catalyst-free, minimal risk conditions, through the light-driven transfer hydrogenation platform.
Collapse
Affiliation(s)
- Dnyaneshwar Aand
- Department of Organic Synthesis & Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - Bhushan Mahajan
- Department of Organic Synthesis & Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - Srihari Pabbaraja
- Department of Organic Synthesis & Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - Ajay K. Singh
- Department of Organic Synthesis & Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| |
Collapse
|
27
|
van der Helm MP, Bracco P, Busch H, Szymańska K, Jarzębski AB, Hanefeld U. Hydroxynitrile lyases covalently immobilized in continuous flow microreactors. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02192a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymes are supreme catalysts when it comes to high enantiopurities and their immobilization will pave the way for continuous operation.
Collapse
Affiliation(s)
| | - Paula Bracco
- Biokatalyse
- Afdeling Biotechnologie
- Technische Universiteit Delft
- 2629HZ Delft
- The Netherlands
| | - Hanna Busch
- Biokatalyse
- Afdeling Biotechnologie
- Technische Universiteit Delft
- 2629HZ Delft
- The Netherlands
| | - Katarzyna Szymańska
- Department of Chemical Engineering and Process Design
- Silesian University of Technology
- 44-100 Gliwice
- Poland
| | - Andrzej B. Jarzębski
- Department of Chemical Engineering and Process Design
- Silesian University of Technology
- 44-100 Gliwice
- Poland
- Institute of Chemical Engineering
| | - Ulf Hanefeld
- Biokatalyse
- Afdeling Biotechnologie
- Technische Universiteit Delft
- 2629HZ Delft
- The Netherlands
| |
Collapse
|
28
|
Akwi FM, Watts P. Continuous flow chemistry: where are we now? Recent applications, challenges and limitations. Chem Commun (Camb) 2018; 54:13894-13928. [PMID: 30483683 DOI: 10.1039/c8cc07427e] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A general outlook of the changing face of chemical synthesis is provided in this article through recent applications of continuous flow processing in both industry and academia. The benefits, major challenges and limitations associated with the use of this mode of processing are also given due attention as an attempt to put into perspective the current position of continuous flow processing, either as an alternative or potential combinatory technology for batch processing.
Collapse
Affiliation(s)
- Faith M Akwi
- Nelson Mandela University, University Way, Port Elizabeth, 6031, South Africa.
| | | |
Collapse
|
29
|
Dimitriou E, Jones RH, Pritchard RG, Miller GJ, O'Brien M. Gas-liquid flow hydrogenation of nitroarenes: Efficient access to a pharmaceutically relevant pyrrolobenzo[1,4]diazepine scaffold. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Zhou H, Hu D, Yang C, Chen C, Ji J, Chen M, Chen Y, Yang Y, Mu X. Multi-Band Sensing for Dielectric Property of Chemicals Using Metamaterial Integrated Microfluidic Sensor. Sci Rep 2018; 8:14801. [PMID: 30287826 PMCID: PMC6172240 DOI: 10.1038/s41598-018-32827-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022] Open
Abstract
The growth of the chemical industry has brought tremendous challenges to chemical sensing technology. Chemical sensors based on metamaterials have great potential because of their label-free and non-destructive characteristics. However, metamaterials applied in chemical sensing have mainly been investigated from the measurement of sample concentration or the determination of the dielectric properties at a fixed frequency. Here we present a metamaterial integrated microfluidic (MIM) sensor for the multi-band sensing for dielectric property of chemicals, which is promising for the identification of chemicals. The MIM sensor mainly consists of multiple pair of high sensitive symmetrical double split-ring resonators (DSRRs) and meandering microfluidic channels with a capacity of only 4 μL. A dielectric model has been innovatively established and experimentally verified to accurately estimate the complex permittivity and thus realize the multi-band sensing of dielectric property of chemicals. With the increase in the number of resonators in the sensor, a dielectric spectrum like curve could be obtained for more detailed dielectric information. This work delivers a miniaturized, reusable, label-free and non-destructive metamaterial-microfluidic solution and paves a way of the multi-band sensing for dielectric property of chemicals.
Collapse
Affiliation(s)
- Hong Zhou
- International R & D center of Micro-nano Systems and New Materials Technology, Key Laboratory of Optoelectronic Technology & Systems Ministry of Education, Chongqing University, Chongqing, 400044, China.,The State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400044, China
| | - Donglin Hu
- International R & D center of Micro-nano Systems and New Materials Technology, Key Laboratory of Optoelectronic Technology & Systems Ministry of Education, Chongqing University, Chongqing, 400044, China.,The State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400044, China
| | - Cheng Yang
- Department of Clinical Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Cong Chen
- International R & D center of Micro-nano Systems and New Materials Technology, Key Laboratory of Optoelectronic Technology & Systems Ministry of Education, Chongqing University, Chongqing, 400044, China.,The State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400044, China
| | - Junwang Ji
- International R & D center of Micro-nano Systems and New Materials Technology, Key Laboratory of Optoelectronic Technology & Systems Ministry of Education, Chongqing University, Chongqing, 400044, China.,The State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400044, China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yu Chen
- Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ya Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China.
| | - Xiaojing Mu
- International R & D center of Micro-nano Systems and New Materials Technology, Key Laboratory of Optoelectronic Technology & Systems Ministry of Education, Chongqing University, Chongqing, 400044, China. .,The State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
31
|
Zhao S, Wu J, Zhu P, Xia H, Chen C, Shen R. Microfluidic Platform for Preparation and Screening of Narrow Size-Distributed Nanoscale Explosives and Supermixed Composite Explosives. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03434] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Jeong SG, Jeong JH, Kang KK, Jin SH, Lee B, Choi CH, Lee CS. Nanoliter scale microloop reactor with rapid mixing ability for biochemical reaction. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0110-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
De Angelis S, Carlucci C, de Candia M, Rebuzzini G, Celestini P, Riscazzi M, Luisi R, Degennaro L. Targeting a Mirabegron precursor by BH3-mediated continuous flow reduction process. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.09.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Ramanjaneyulu BT, Vishwakarma NK, Vidyacharan S, Adiyala PR, Kim DP. Towards Versatile Continuous-Flow Chemistry and Process Technology Via New Conceptual Microreactor Systems. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11467] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bandaru T. Ramanjaneyulu
- Department of Chemical Engineering; Pohang University of Science and Technology (POSTECH); Pohang 37673 Korea
| | - Niraj K. Vishwakarma
- Department of Chemical Engineering; Pohang University of Science and Technology (POSTECH); Pohang 37673 Korea
| | - Shinde Vidyacharan
- Department of Chemical Engineering; Pohang University of Science and Technology (POSTECH); Pohang 37673 Korea
| | - Praveen Reddy Adiyala
- Department of Chemical Engineering; Pohang University of Science and Technology (POSTECH); Pohang 37673 Korea
| | - Dong-Pyo Kim
- Department of Chemical Engineering; Pohang University of Science and Technology (POSTECH); Pohang 37673 Korea
| |
Collapse
|
35
|
Lee HJ, Kim H, Yoshida JI, Kim DP. Control of tandem isomerizations: flow-assisted reactions of o-lithiated aryl benzyl ethers. Chem Commun (Camb) 2018; 54:547-550. [DOI: 10.1039/c7cc08460a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a flow microreactor platform for controlling tandem isomerizations of o-lithiated aryl benzyl ethers based on precise residence time control.
Collapse
Affiliation(s)
- Hyune-Jea Lee
- Centre for Intelligent Microprocess of Pharmaceutical Synthesis
- Department of Chemical Engineering
- POSTECH (Pohang University of Science and Technology)
- Pohang
- South Korea
| | - Heejin Kim
- Department of Synthetic and Biological Chemistry Graduate School of Engineering
- Kyoto University
- Kyoto
- Japan
| | - Jun-ichi Yoshida
- Department of Synthetic and Biological Chemistry Graduate School of Engineering
- Kyoto University
- Kyoto
- Japan
| | - Dong-Pyo Kim
- Centre for Intelligent Microprocess of Pharmaceutical Synthesis
- Department of Chemical Engineering
- POSTECH (Pohang University of Science and Technology)
- Pohang
- South Korea
| |
Collapse
|
36
|
Hur D, Say MG, Diltemiz SE, Duman F, Ersöz A, Say R. 3D Micropatterned All-Flexible Microfluidic Platform for Microwave-Assisted Flow Organic Synthesis. Chempluschem 2018; 83:42-46. [PMID: 31957319 DOI: 10.1002/cplu.201700440] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/27/2017] [Indexed: 12/15/2022]
Abstract
A large-area, all-flexible, microwaveable polydimethoxysilane microfluidic reactor was fabricated by using a 3D printing system. The sacrificial microchannels were printed on polydimethoxysilane substrates by a direct ink writing method using water-soluble Pluronic F-127 ink and then encapsulated between polydimethoxysilane layers. The structure of micron-sized channels was analyzed by optical and electron microscopy techniques. The fabricated flexible microfluidic reactors were utilized for the acetylation of different amines under microwave irradiation to obtain acetamides in shorter reaction times and good yields by flow organic synthesis.
Collapse
Affiliation(s)
- Deniz Hur
- Science Faculty, Chemistry Department, Anadolu University, Yunus Emre Campus, 26470, Eskişehir, Turkey.,Bionkit Co. Ltd., Anadolu University Teknopark, 26470, Eskisehir, Turkey
| | - Mehmet G Say
- Bionkit Co. Ltd., Anadolu University Teknopark, 26470, Eskisehir, Turkey.,Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174, Norrköping, Sweden
| | - Sibel E Diltemiz
- Science Faculty, Chemistry Department, Anadolu University, Yunus Emre Campus, 26470, Eskişehir, Turkey.,Bionkit Co. Ltd., Anadolu University Teknopark, 26470, Eskisehir, Turkey
| | - Fatma Duman
- Science Faculty, Chemistry Department, Anadolu University, Yunus Emre Campus, 26470, Eskişehir, Turkey
| | - Arzu Ersöz
- Science Faculty, Chemistry Department, Anadolu University, Yunus Emre Campus, 26470, Eskişehir, Turkey.,Bionkit Co. Ltd., Anadolu University Teknopark, 26470, Eskisehir, Turkey
| | - Rıdvan Say
- Science Faculty, Chemistry Department, Anadolu University, Yunus Emre Campus, 26470, Eskişehir, Turkey.,Bionkit Co. Ltd., Anadolu University Teknopark, 26470, Eskisehir, Turkey
| |
Collapse
|
37
|
|
38
|
Gruber P, Marques MPC, O'Sullivan B, Baganz F, Wohlgemuth R, Szita N. Conscious coupling: The challenges and opportunities of cascading enzymatic microreactors. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/24/2017] [Accepted: 04/05/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Pia Gruber
- Department of Biochemical Engineering; University College London; WC1H 0AH United Kingdom
| | - Marco P. C. Marques
- Department of Biochemical Engineering; University College London; WC1H 0AH United Kingdom
| | - Brian O'Sullivan
- Department of Biochemical Engineering; University College London; WC1H 0AH United Kingdom
| | - Frank Baganz
- Department of Biochemical Engineering; University College London; WC1H 0AH United Kingdom
| | | | - Nicolas Szita
- Department of Biochemical Engineering; University College London; WC1H 0AH United Kingdom
| |
Collapse
|
39
|
|