1
|
Ayar ŞN, Soyak Aytekin E, Şimşek C, Dağ O, Çağdaş D, Balaban YH. Inborn Errors of Immunity in Adults with Autoimmune Liver Diseases. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:560-567. [PMID: 39128084 PMCID: PMC11363372 DOI: 10.5152/tjg.2024.23171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/21/2023] [Indexed: 08/13/2024]
Abstract
BACKGROUND/AIMS Inborn errors of immunity (IEI) may associate with autoimmune diseases, including autoimmune liver diseases (AILD). However, both the IEI frequency and secondary effects of immunosuppressives are unknown in patients with AILD due to the lack of data. We aimed to evaluate the ratio of IEI in AILD. MATERIALS AND METHODS A total of 82 patients with AILD (39 autoimmune hepatitis, 32 primary biliary cholangitis, 7 variant syndromes (VS), and 4 primary sclerosing cholangitis patients) were included in this single-center, cross-sectional, and descriptive study. The patients were evaluated and classified according to diagnostic criteria for IEI. RESULTS Out of 82 patients with AILD, female/male ratio was 3.6. Median age of diagnosis of AILD was 45 years. We diagnosed 15 (18%) patients with immunodeficiency (ID). Inborn errors of immunity ratio was highest in VS patient group (29%). Out of 15 patients with ID, 4 (4.8%) patients had common variable immunodeficiency, 4 (4.8%) had partial immunoglobulin A deficiency, 4 (4.8%) had selective immunoglobulin M deficiency, and 3 (3.6%) had combined immunodeficiency. CONCLUSION We detect ID in about one-fifth of the patients with AILD. The present study showed a significant risk of IEI that is blurred by the shadow of immune suppressive treatments. We suggest that the AILD patients with ID will benefit from the individualized and targeted therapeutic options used in IEI. Further research with larger patient groups and long-term follow-up are desperately needed to elucidate the diagnostic, therapeutic, and prognostic impacts of IEI-related individualized therapy on AILD patients.
Collapse
Affiliation(s)
- Şefika Nur Ayar
- Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Elif Soyak Aytekin
- Department of Pediatric Immunology, Hacettepe University İhsan Doğramacı Children’s Hospital, Ankara, Türkiye
| | - Cem Şimşek
- Division of Gastroenterology, Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Osman Dağ
- Department of Biostatistics, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Deniz Çağdaş
- Department of Pediatric Immunology, Hacettepe University İhsan Doğramacı Children’s Hospital, Ankara, Türkiye
| | - Yasemin H. Balaban
- Division of Gastroenterology, Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
2
|
Mertowska P, Mertowski S, Smolak K, Kita G, Guz K, Kita A, Pasiarski M, Smok-Kalwat J, Góźdź S, Grywalska E. Could Immune Checkpoint Disorders and EBV Reactivation Be Connected in the Development of Hematological Malignancies in Immunodeficient Patients? Cancers (Basel) 2023; 15:4786. [PMID: 37835480 PMCID: PMC10572023 DOI: 10.3390/cancers15194786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Primary immunodeficiencies (PIDs) and secondary immunodeficiencies (SIDs) are characterized by compromised immune function, rendering individuals susceptible to infections and potentially influencing cancer development. Epstein-Barr virus (EBV), a widespread herpesvirus, has been linked to cancer, particularly in those with weakened immune systems. This study aims to compare selected immune parameters, focusing on immune checkpoint molecules (PD-1/PD-L1, CTLA-4/CD86, CD200R/CD200), and EBV reactivation in patients with chronic lymphocytic leukemia (CLL, a representative of SIDs) and common variable immunodeficiency (CVID, a representative of PIDs). We performed a correlation analysis involving patients diagnosed with CLL, CVID, and a healthy control group. EBV reactivation was assessed using specific antibody serology and viral load quantification. Peripheral blood morphology, biochemistry, and immunophenotyping were performed, with emphasis on T and B lymphocytes expressing immune checkpoints and their serum concentrations. Our findings revealed elevated EBV reactivation markers in both CLL and CVID patients compared with healthy controls, indicating increased viral activity in immunodeficient individuals. Furthermore, immune checkpoint expression analysis demonstrated significantly altered percentages of T and B lymphocytes expressing PD-1/PD-L1, CTLA-4/CD86, and CD200R/CD200 in CLL and CVID patients. This suggests a potential interplay between immune checkpoint dysregulation and EBV reactivation in the context of immunodeficiency. In conclusion, our study underscores the intricate relationship between immune dysfunction, EBV reactivation, and immune checkpoint modulation in the context of immunodeficiency-associated cancers. The altered expression of immune checkpoints, along with heightened EBV reactivation, suggests a potential mechanism for immune evasion and tumor progression. These findings provide insights into the complex interactions that contribute to cancer development in immunocompromised individuals, shedding light on potential therapeutic targets for improved management and treatment outcomes. Further investigations are warranted to elucidate the underlying mechanisms and to explore potential interventions to mitigate cancer risk in these patient populations.
Collapse
Affiliation(s)
- Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (K.S.); (G.K.); (K.G.); (A.K.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (K.S.); (G.K.); (K.G.); (A.K.); (E.G.)
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (K.S.); (G.K.); (K.G.); (A.K.); (E.G.)
| | - Gabriela Kita
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (K.S.); (G.K.); (K.G.); (A.K.); (E.G.)
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Katarzyna Guz
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (K.S.); (G.K.); (K.G.); (A.K.); (E.G.)
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Aleksandra Kita
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (K.S.); (G.K.); (K.G.); (A.K.); (E.G.)
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Marcin Pasiarski
- Department of Immunology, Faculty of Health Sciences, Jan Kochanowski University, 25-317 Kielce, Poland;
- Department of Hematology, Holy Cross Cancer Centre, 25-734 Kielce, Poland; (J.S.-K.); (S.G.)
| | - Jolanta Smok-Kalwat
- Department of Hematology, Holy Cross Cancer Centre, 25-734 Kielce, Poland; (J.S.-K.); (S.G.)
| | - Stanisław Góźdź
- Department of Hematology, Holy Cross Cancer Centre, 25-734 Kielce, Poland; (J.S.-K.); (S.G.)
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (K.S.); (G.K.); (K.G.); (A.K.); (E.G.)
| |
Collapse
|
3
|
Hajjar J, Voigt A, Conner M, Swennes A, Fowler S, Calarge C, Mendonca D, Armstrong D, Chang CY, Walter J, Butte M, Savidge T, Oh J, Kheradmand F, Petrosino J. Common Variable Immunodeficiency Patient Fecal Microbiota Transplant Recapitulates Gut Dysbiosis. RESEARCH SQUARE 2023:rs.3.rs-2640584. [PMID: 36993518 PMCID: PMC10055500 DOI: 10.21203/rs.3.rs-2640584/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Purpose Patients with non-infectious complications have worse clinical outcomes in common variable immunodeficiency (CVID) than those with infections-only. Non-infectious complications are associated with gut microbiome aberrations, but there are no reductionist animal models that emulate CVID. Our aim in this study was to uncover potential microbiome roles in the development of non-infectious complications in CVID. Methods We examined fecal whole genome shotgun sequencing from patients CVID, and non-infectious complications, infections-only, and their household controls. We also performed Fecal Microbiota transplant from CVID patients to Germ-Free Mice. Results We found potentially pathogenic microbes Streptococcus parasanguinis and Erysipelatoclostridium ramosum were enriched in gut microbiomes of CVID patients with non-infectious complications. In contrast, Fusicatenibacter saccharivorans and Anaerostipes hadrus, known to suppress inflammation and promote healthy metabolism, were enriched in gut microbiomes of infections-only CVID patients. Fecal microbiota transplant from non-infectious complications, infections-only, and their household controls into germ-free mice revealed gut dysbiosis patterns in recipients from CVID patients with non-infectious complications, but not infections-only CVID, or household controls recipients. Conclusion Our findings provide a proof of concept that fecal microbiota transplant from CVID patients with non-infectious complications to Germ-Free mice recapitulates microbiome alterations observed in the donors.
Collapse
|
4
|
Al-Tamemi S, Al-Zadjali S, Bruwer Z, Naseem SUR, Al-Siyabi N, ALRawahi M, Alkharusi K, Al-Thihli K, Al-Murshedi F, AlSayegh A, Al-Maawali A, Dennison D. Genetic Causes, Clinical Features, and Survival of Underlying Inborn Errors of Immunity in Omani Patients: a Single-Center Study. J Clin Immunol 2023; 43:452-465. [PMID: 36324046 DOI: 10.1007/s10875-022-01394-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Early identification of inborn errors of immunity (IEIs) is crucial due to the significant risk of morbidity and mortality. This study aimed to describe the genetic causes, clinical features, and survival rate of IEIs in Omani patients. METHODS A prospective study of all Omani patients evaluated for immunodeficiency was conducted over a 17-year period. Clinical features and diagnostic immunological findings were recorded. Targeted gene testing was performed in cases of obvious immunodeficiency. For cases with less conclusive phenotypes, a gene panel was performed, followed by whole-exome sequencing if necessary. RESULTS A total of 185 patients were diagnosed with IEIs during the study period; of these, 60.5% were male. Mean ages at symptom onset and diagnosis were 30.0 and 50.5 months, respectively. Consanguinity and a family history of IEIs were present in 86.9% and 50.8%, respectively. Most patients presented with lower respiratory infections (65.9%), followed by growth and development manifestations (43.2%). Phagocytic defects were the most common cause of IEIs (31.9%), followed by combined immunodeficiency (21.1%). Overall, 109 of 132 patients (82.6%) who underwent genetic testing received a genetic diagnosis, while testing was inconclusive for the remaining 23 patients (17.4%). Among patients with established diagnoses, 37 genes and 44 variants were identified. Autosomal recessive inheritance was present in 81.7% of patients with gene defects. Several variants were novel. Intravenous immunoglobulin therapy was administered to 39.4% of patients and 21.6% received hematopoietic stem cell transplantation. The overall survival rate was 75.1%. CONCLUSION This study highlights the genetic causes of IEIs in Omani patients. This information may help in the early identification and management of the disease, thereby improving survival and quality of life.
Collapse
Affiliation(s)
- Salem Al-Tamemi
- Clinical Immunology & Allergy Unit, Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman.
| | - Shoaib Al-Zadjali
- Molecular Hematology Unit, Department of Hematology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Zandre Bruwer
- Department of Clinical Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - Shafiq-Ur-Rehman Naseem
- Clinical Immunology & Allergy Unit, Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | - Nabila Al-Siyabi
- Clinical Immunology & Allergy Unit, Directorate of Nursing, Sultan Qaboos University Hospital, Muscat, Oman
| | - Mohammed ALRawahi
- Molecular Hematology Unit, Department of Hematology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Khalsa Alkharusi
- Department of Clinical Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - Khalid Al-Thihli
- Department of Clinical Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - Fathiya Al-Murshedi
- Department of Clinical Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - Abeer AlSayegh
- Department of Clinical Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - Almundher Al-Maawali
- Department of Clinical Genetics, Sultan Qaboos University Hospital, Muscat, Oman
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - David Dennison
- Molecular Hematology Unit, Department of Hematology, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
5
|
ALTIN Z, BAYRAK DEĞİRMENCİ P. İlaç alerjisi olan hastalarda otoantikor sıklığı. FAMILY PRACTICE AND PALLIATIVE CARE 2022. [DOI: 10.22391/fppc.1134893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Giriş: Bu çalışma, ilaç alerjisi olan hastalarda otoantikor sıklığını incelemeyi amaçlamaktadır. İlaç alerjisi üzerine gözlemsel araştırmalar, otoimmünite patofizyolojisi hakkında yeni hipotezlerin oluşturulmasına katkıda bulunabilir.Yöntem: Eğitim ve Araştırma Hastanesi veri tabanına 31 Aralık 2018 sonuna kadar kayıt olan ve ilaç alerjisi tanısı konan hastaların verileri geriye dönük olarak değerlendirildi. Genel olarak, ICD 10'a göre “ilaçlara alerji durumu” tanısı konan ve en az bir otoantikor sonucu olan 617 adet yetişkin hasta çalışmaya dahil edildi.Bulgular: Araştırmada en az bir otoantikora sahip olma sıklığı % 0 ile % 92,1 arasında değişti. En sık saptanan otoantikor romatoid faktör (RF) idi (n = 241; % 92,1). İkinci en sık rastlanan oto antikorun anti-doku transglütaminaz IgA (Anti-tTG-IgA) (n = 22; % 68,2) olduğu görüldü. Anti-tiroglobulin (Anti-TG), anti-tiroid peroksidaz (anti-TPO) ve anti-çift sarmallı DNA (Anti-dsDNA) sıklıkları sırasıyla % 65,2 (n = 155), % 59,7 (n = 159) ve % 43,6 (n = 55) olarak saptandı.Sonuç: Birçok ilaç, otoimmün hastalıkları için ilerleme olmaksızın otoantikor gelişimini tetikleyebilir. İlaçlara alerjisi olan hastalarda otoantikorlardan şüphelenilmesi gereklidir. İlaç alerjisi üzerine yapılan gözlemsel araştırmalar, otoimmünitenin patofizyolojisi hakkında yeni hipotezlerin oluşturulmasına katkı sağlayacaktır. Bu alanda yapılacak çok sayıda çalışma, riskli ilaçların yaygın kullanımını daha objektif bir şekilde tartışmamızı sağlayabilir. Çalışmamızın ilaç reaksiyonu ile otoimmün hastalıklar arasındaki ilişkiye ışık tutacağını düşünüyoruz.Anahtar kelimeler: Otoantikorlar, otoimmünite, ilaç alerjisi, ilaç aşırı duyarlılığı
Collapse
Affiliation(s)
- Zeynep ALTIN
- Department of Internal Medicine, Tepecik Training and Research Hospital, Izmir
| | - Papatya BAYRAK DEĞİRMENCİ
- Department of Internal Medicine, Division of Allergy Immunology, Tepecik Training and Research Hospital, Izmir
| |
Collapse
|
6
|
Akatsu C, Alborzian Deh Sheikh A, Matsubara N, Takematsu H, Schweizer A, Abdu-Allah HHM, Tedder TF, Nitschke L, Ishida H, Tsubata T. The inhibitory coreceptor CD22 restores B cell signaling by developmentally regulating Cd45-/- immunodeficient B cells. Sci Signal 2022; 15:eabf9570. [PMID: 35230871 DOI: 10.1126/scisignal.abf9570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The protein tyrosine phosphatase CD45 plays a crucial role in B cell antigen receptor (BCR) signaling by activating Src family kinases. Cd45-/- mice show altered B cell development and a phenotype likely due to reduced steady-state signaling; however, Cd45-/- B cells show relatively normal BCR ligation-induced signaling. In our investigation of how BCR signaling was restored in Cd45-/- cells, we found that the coreceptor CD22 switched from an inhibitory to a stimulatory function in these cells. We disrupted the ability of CD22 to interact with its ligands in Cd45-/- B cells by generating Cd45-/-St6galI-/- mice, which cannot synthesize the glycan ligand of CD22, or by treating Cd45-/- B cells in vitro with the sialoside GSC718, which inhibits ligand binding to CD22. BCR ligation-induced signaling was reduced by ST6GalI deficiency, but not by GSC718 treatment, suggesting that CD22 restored BCR ligation-induced signaling in Cd45-/- mature B cells by altering cellular phenotypes during development. CD22 was required for the increase in the surface amount of IgM-BCR on Cd45-/- B cells, which augmented signaling. Because B cell survival depends on steady-state BCR signaling, IgM-BCR abundance was likely increased by the selective survival of IgM-BCRhi Cd45-/- B cells because of CD22-mediated signaling under conditions of substantially reduced steady-state signaling. Because the amount of surface IgM-BCR is increased on B cells from patients with other BCR signaling deficiencies, including X-linked agammaglobulinemia, our findings suggest that CD22 may contribute to the partial restoration of B cell function in these patients.
Collapse
Affiliation(s)
- Chizuru Akatsu
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Amin Alborzian Deh Sheikh
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Naoko Matsubara
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hiromu Takematsu
- Faculty of Medical Technology, Fujita Health University, Toyoake, Aichi, Japan
| | - Astrid Schweizer
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | | | - Thomas F Tedder
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Hideharu Ishida
- Department of Applied Bio-organic Chemistry, Gifu University, Gifu 501-1193, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
7
|
Mertowska P, Mertowski S, Podgajna M, Grywalska E. The Importance of the Transcription Factor Foxp3 in the Development of Primary Immunodeficiencies. J Clin Med 2022; 11:947. [PMID: 35207219 PMCID: PMC8874698 DOI: 10.3390/jcm11040947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Transcription factors are an extremely important group of proteins that are responsible for the process of selective activation or deactivation of other cellular proteins, usually at the last stage of signal transmission in the cell. An important family of transcription factors that regulate the body's response is the FOX family which plays an important role in regulating the expression of genes involved in cell growth, proliferation, and differentiation. The members of this family include the intracellular protein Foxp3, which regulates the process of differentiation of the T lymphocyte subpopulation, and more precisely, is responsible for the development of regulatory T lymphocytes. This protein influences several cellular processes both directly and indirectly. In the process of cytokine production regulation, the Foxp3 protein interacts with numerous proteins and transcription factors such as NFAT, nuclear factor kappa B, and Runx1/AML1 and is involved in the process of histone acetylation in condensed chromatin. Malfunctioning of transcription factor Foxp3 caused by the mutagenesis process affects the development of disorders of the immune response and autoimmune diseases. This applies to the impairment or inability of the immune system to fight infections due to a disruption of the mechanisms supporting immune homeostasis which in turn leads to the development of a special group of disorders called primary immunodeficiencies (PID). The aim of this review is to provide information on the role of the Foxp3 protein in the human body and its involvement in the development of two types of primary immunodeficiency diseases: IPEX (Immunodysregulation Polyendocrinopathy Enteropathy X-linked syndrome) and CVID (Common Variable Immunodeficiency).
Collapse
Affiliation(s)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (P.M.); (M.P.); (E.G.)
| | | | | |
Collapse
|
8
|
Azar A, Aldaoud N, Hardenbergh D, Krimins R, Son J, Shiroky J, Timlin H. Systemic Lupus Erythematosus and Common Variable Immunodeficiency. J Clin Rheumatol 2022; 28:e245-e248. [PMID: 33790204 DOI: 10.1097/rhu.0000000000001709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Systemic lupus erythematosus (SLE) and common variable immunodeficiency (CVID) are both conditions defined by immune system dysfunction: one hyperactive, the other hypoactive. Although uncommon, these diseases can coexist in the same individual. This review aims to assess the state of the literature on the relationship between SLE and CVID, particularly when workup for CVID should be considered in individuals with SLE and how CVID in individuals with SLE should be treated.
Collapse
Affiliation(s)
- Antoine Azar
- From the Division of Immunology, Johns Hopkins University School of Medicine
| | - Nawras Aldaoud
- Division of Medicine, Georgetown University, MedStar Union Memorial Hospital
| | | | - Rebecca Krimins
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
| | | | | | - Homa Timlin
- Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
9
|
The Role of HLA in the Association between IgA Deficiency and Celiac Disease. DISEASE MARKERS 2021; 2021:8632861. [PMID: 35186163 PMCID: PMC8856801 DOI: 10.1155/2021/8632861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/17/2021] [Accepted: 11/10/2021] [Indexed: 01/18/2023]
Abstract
Selective IgA deficiency (SIgAD) is the most frequent primary immune defect. Since SIgAD is not characterized by relevant infectious issues in most cases, it is often diagnosed during the diagnostic work up of several and different autoimmune disorders, which are associated with this primary immune defect. The genetic background of SIgAD is complex and three HLA haplotypes resulted to be more frequently associated with it; in detail, two of them include HLA-DQB1∗02 allelic variants, which are essential predisposing factors to develop Celiac Disease (CD). Here, we discuss the evidence regarding the role of HLA in the etiopathogenesis of SIgAD and its association with CD. Actually, the HLA region seems to play a modest role in the genetic predisposition to SIgAD and we may speculate that the association with the HLA-DQB1∗02 alleles (or haplotypes including them) could derive from its link with CD. Indeed, SIgAD and some related immunological alterations are likely to predispose to several autoimmune diseases (with and despite different HLA backgrounds), including CD, which is relatively common and directly associated with the HLA-DQB1∗02 allelic variants coding the DQ2 heterodimer. Further and specific studies are needed to make final conclusions in this regard.
Collapse
|
10
|
Brinkmeyer-Langford C, Amstalden K, Konganti K, Hillhouse A, Lawley K, Perez-Gomez A, Young CR, Welsh CJ, Threadgill DW. Resilience in Long-Term Viral Infection: Genetic Determinants and Interactions. Int J Mol Sci 2021; 22:ijms222111379. [PMID: 34768809 PMCID: PMC8584141 DOI: 10.3390/ijms222111379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-induced neurological sequelae resulting from infection by Theiler's murine encephalomyelitis virus (TMEV) are used for studying human conditions ranging from epileptic seizures to demyelinating disease. Mouse strains are typically considered susceptible or resistant to TMEV infection based on viral persistence and extreme phenotypes, such as demyelination. We have identified a broader spectrum of phenotypic outcomes by infecting strains of the genetically diverse Collaborative Cross (CC) mouse resource. We evaluated the chronic-infection gene expression profiles of hippocampi and thoracic spinal cords for 19 CC strains in relation to phenotypic severity and TMEV persistence. Strains were clustered based on similar phenotypic profiles and TMEV levels at 90 days post-infection, and we categorized distinct TMEV response profiles. The three most common profiles included "resistant" and "susceptible," as before, as well as a "resilient" TMEV response group which experienced both TMEV persistence and mild neurological phenotypes even at 90 days post-infection. Each profile had a distinct gene expression signature, allowing the identification of pathways and networks specific to each TMEV response group. CC founder haplotypes for genes involved in these pathways/networks revealed candidate response-specific alleles. These alleles demonstrated pleiotropy and epigenetic (miRNA) regulation in long-term TMEV infection, with particular relevance for resilient mouse strains.
Collapse
Affiliation(s)
- Candice Brinkmeyer-Langford
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
- Correspondence:
| | - Katia Amstalden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA; (K.K.); (A.H.); (D.W.T.)
| | - Andrew Hillhouse
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA; (K.K.); (A.H.); (D.W.T.)
| | - Koedi Lawley
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
| | - Aracely Perez-Gomez
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
| | - C. Jane Welsh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - David W. Threadgill
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA; (K.K.); (A.H.); (D.W.T.)
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
11
|
Costagliola G, Cappelli S, Consolini R. Autoimmunity in Primary Immunodeficiency Disorders: An Updated Review on Pathogenic and Clinical Implications. J Clin Med 2021; 10:jcm10204729. [PMID: 34682853 PMCID: PMC8538991 DOI: 10.3390/jcm10204729] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/18/2022] Open
Abstract
During the last years, studies investigating the intriguing association between immunodeficiency and autoimmunity led to the discovery of new monogenic disorders, the improvement in the knowledge of the pathogenesis of autoimmunity, and the introduction of targeted treatments. Autoimmunity is observed with particular frequency in patients with primary antibody deficiencies, such as common variable immunodeficiency (CVID) and selective IgA deficiency, but combined immunodeficiency disorders (CIDs) and disorders of innate immunity have also been associated with autoimmunity. Among CIDs, the highest incidence of autoimmunity is described in patients with autoimmune polyendocrine syndrome 1, LRBA, and CTLA-4 deficiency, and in patients with STAT-related disorders. The pathogenesis of autoimmunity in patients with immunodeficiency is far to be fully elucidated. However, altered germ center reactions, impaired central and peripheral lymphocyte negative selection, uncontrolled lymphocyte proliferation, ineffective cytoskeletal function, innate immune defects, and defective clearance of the infectious agents play an important role. In this paper, we review the main immunodeficiencies associated with autoimmunity, focusing on the pathogenic mechanisms responsible for autoimmunity in each condition and on the therapeutic strategies. Moreover, we provide a diagnostic algorithm for the diagnosis of PIDs in patients with autoimmunity.
Collapse
|
12
|
Serum IgG Profiling of Toddlers Reveals a Subgroup with Elevated Seropositive Antibodies to Viruses Correlating with Increased Vaccine and Autoantigen Responses. J Clin Immunol 2021; 41:1031-1047. [PMID: 33656624 PMCID: PMC7927113 DOI: 10.1007/s10875-021-00993-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Purpose The human antibody repertoire forms in response to infections, the microbiome, vaccinations, and environmental exposures. The specificity of such antibody responses was compared among a cohort of toddlers to identify differences between seropositive versus seronegative responses. Methods An assessment of the serum IgM and IgG antibody reactivities in 197 toddlers of 1- and 2-years of age was performed with a microfluidic array containing 110 distinct antigens. Longitudinal profiling was done from years 1 to 2. Seropositivity to RNA and DNA viruses; bacteria; live attenuated, inactive, and subunit vaccines; and autoantigens was compared. A stratification was developed based on quantitative variations in the IgG responses. Clinical presentations and previously known genetic risk alleles for various immune system conditions were investigated in relation to IgG responses. Results IgG reactivities stratified toddlers into low, moderate, and high responder groups. The high group (17%) had elevated IgG responses to multiple RNA and DNA viruses (e.g., respiratory syncytial virus, Epstein-Barr virus, adenovirus, Coxsackievirus) and this correlated with increased responses to live attenuated viral vaccines and certain autoantigens. This high group was more likely to be associated with gestational diabetes and an older age. Genetic analyses identified polymorphisms in the IL2RB, TNFSF4, and INS genes in two high responder individuals that were associated with their elevated cytokine levels and clinical history of eczema and asthma. Conclusion Serum IgG profiling of toddlers reveals correlations between the magnitude of the antibody responses towards viruses, live attenuated vaccines, and certain autoantigens. A low responder group had much weaker responses overall, including against vaccines. The serum antibody screen also identifies individuals with IgG responses to less common infections (West Nile virus, parvovirus, tuberculosis). The characterization of the antibody responses in combination with the identification of genetic risk alleles provides an opportunity to identify children with increased risk of clinical disease. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-021-00993-w.
Collapse
|
13
|
Magen E, Blum I, Waitman DA, Kahan N, Forer B. Autoimmune Inner Ear Disease among Patients with Selective IgA Deficiency. Audiol Neurootol 2020; 26:127-134. [PMID: 33311024 DOI: 10.1159/000509577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/19/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Autoimmune inner ear disease (AIED) is a distinct clinical entity from sudden sensorineural hearing loss. The purpose of this study was to investigate the clinical characteristics of AIED in patients with selective IgA deficiency (sIgAD). MATERIALS AND METHODS This retrospective observational study was based on data from the Leumit Healthcare Services database in Israel. We searched all subjects aged ≥12 years who had undergone serum total IgA measurements during 2004-2014 for any reason. The sIgAD patients included all subjects with serum IgA of ≤7 mg/dL (0.07 g/L). A control group was randomly sampled from the full study population (n ≈ 730,000) with a case-control ratio of 10 controls for each case (1:10). RESULTS Among 347 subjects with sIgAD, we identified 9 patients with concomitant AIED (sIgAD + AIED group). This group was characterized by a higher prevalence of allergic diseases (8 patients; 88.9%) than sIgAD patients without AEID (sIgAD + AIED group; 153 patients; 45.2%; p = 0.014). Both systemic diseases (3 patients; 33.3%) and organ-specific autoimmune diseases (7 patients; 77.8%) were more prevalent in the sIgAD + AIED group (sIgAD + AIED group: 19 patients 5.5%, p = 0.015; sIgAD - AEID group: 76 patients, 21.9%, p < 0.001), with an OR of 8.39 (1.94-36.19; p = 0.004). sIgAD patients with and without AIED were characterized by a higher prevalence of documented episodes of acute otitis media, allergic diseases, and autoimmune diseases than the control group. CONCLUSION The study exposes a significant association between AIED and sIgAD. We believe that sIgAD has to be excluded in AIED patients.
Collapse
Affiliation(s)
- Eli Magen
- Leumit Health Services, Tel Aviv, Israel, .,Medicine C Department, Allergy and Clinical Immunology Unit, Barzilai University Medical Center, Ashkelon, Israel, .,Ben-Gurion University of the Negev, Beer Sheba, Israel,
| | - Idan Blum
- Medicine C Department, Allergy and Clinical Immunology Unit, Barzilai University Medical Center, Ashkelon, Israel.,Ben-Gurion University of the Negev, Beer Sheba, Israel
| | | | - Natan Kahan
- Leumit Health Services, Tel Aviv, Israel.,School of Public Health, Tel-Aviv University, Tel Aviv, Israel
| | - Boaz Forer
- School of Public Health, Tel-Aviv University, Tel Aviv, Israel.,Department of Otolaryngology Head and Neck Surgery, Barzilai Medical Center, Ashkelon, Israel
| |
Collapse
|
14
|
Odineal DD, Gershwin ME. The Epidemiology and Clinical Manifestations of Autoimmunity in Selective IgA Deficiency. Clin Rev Allergy Immunol 2020; 58:107-133. [PMID: 31267472 DOI: 10.1007/s12016-019-08756-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selective immunoglobulin A deficiency (SIgAD) is the most common primary immunodeficiency, defined as an isolated deficiency of IgA (less than 0.07 g/L). Although the majority of people born with IgA deficiency lead normal lives without significant pathology, there is nonetheless a significant association of IgA deficiency with mucosal infection, increased risks of atopic disease, and a higher prevalence of autoimmune disease. To explain these phenomena, we have performed an extensive literature review to define the geoepidemiology of IgA deficiency and particularly the relative risks for developing systemic lupus erythematosus, hyperthyroidism, hypothyroidism, type 1 diabetes mellitus, Crohn's disease, ulcerative colitis, rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing spondylitis, and vitiligo; these diseases have strong data to support an association. We also note weaker associations with scleroderma, celiac disease, autoimmune hepatitis, immune thrombocytopenic purpura, and autoimmune hemolytic anemia. Minimal if any associations are noted with myasthenia gravis, lichen planus, and multiple sclerosis. Finally, more recent data provide clues on the possible immunologic mechanisms that lead to the association of IgA deficiency and autoimmunity; these lessons are important for understanding the etiology of autoimmune disease.
Collapse
Affiliation(s)
- David D Odineal
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA
| |
Collapse
|
15
|
Rheumatologic and autoimmune manifestations in primary immune deficiency. Curr Opin Allergy Clin Immunol 2020; 19:545-552. [PMID: 31425194 DOI: 10.1097/aci.0000000000000583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Here we review the rheumatologic and autoimmune features of primary immune deficiencies with a focus on recently recognized genetic diseases, the spectrum of autoimmunity in PID, and targeted therapies. RECENT FINDINGS Primary immune deficiencies (PIDs) were initially described as genetic diseases of the immune system leading to susceptibility to infection. It is now well recognized that immune dysfunction and dysregulation also cause noninfectious complications including autoimmunity. The increased application of molecular testing for PID has revealed the diversity of clinical disease. Recent discoveries of diseases with prominent autoimmunity include activated phosphoinositide 3-kinase δ syndrome and PIDs caused by gain-of-function in STAT1 and STAT3. Similarly, identification of larger cohorts of patients with molecular diagnoses in more common PIDs, such as common variable immune deficiency (CVID), has led to increased understanding of the range of autoimmunity in PIDs. Understanding the molecular basis of these PIDs has the potential to lead to targeted therapy to treat associated autoimmunity. SUMMARY Autoimmunity and rheumatologic disease can be presenting symptoms and/or complicating features of primary immunodeficiencies. Evaluation for PIDs in patients who have early-onset, multiple, and/or atypical autoimmunity can enhance diagnosis and therapeutic options.
Collapse
|
16
|
Primary Humoral Immune Deficiencies: Overlooked Mimickers of Chronic Immune-Mediated Gastrointestinal Diseases in Adults. Int J Mol Sci 2020; 21:ijms21155223. [PMID: 32718006 PMCID: PMC7432083 DOI: 10.3390/ijms21155223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, the incidence of immune-mediated gastrointestinal disorders, including celiac disease (CeD) and inflammatory bowel disease (IBD), is increasingly growing worldwide. This generates a need to elucidate the conditions that may compromise the diagnosis and treatment of such gastrointestinal disorders. It is well established that primary immunodeficiencies (PIDs) exhibit gastrointestinal manifestations and mimic other diseases, including CeD and IBD. PIDs are often considered pediatric ailments, whereas between 25 and 45% of PIDs are diagnosed in adults. The most common PIDs in adults are the selective immunoglobulin A deficiency (SIgAD) and the common variable immunodeficiency (CVID). A trend to autoimmunity occurs, while gastrointestinal disorders are common in both diseases. Besides, the occurrence of CeD and IBD in SIgAD/CVID patients is significantly higher than in the general population. However, some differences concerning diagnostics and management between enteropathy/colitis in PIDs, as compared to idiopathic forms of CeD/IBD, have been described. There is an ongoing discussion whether CeD and IBD in CVID patients should be considered a true CeD and IBD or just CeD-like and IBD-like diseases. This review addresses the current state of the art of the most common primary immunodeficiencies in adults and co-occurring CeD and IBD.
Collapse
|
17
|
Stratigopoulou M, van Dam TP, Guikema JEJ. Base Excision Repair in the Immune System: Small DNA Lesions With Big Consequences. Front Immunol 2020; 11:1084. [PMID: 32547565 PMCID: PMC7272602 DOI: 10.3389/fimmu.2020.01084] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
The integrity of the genome is under constant threat of environmental and endogenous agents that cause DNA damage. Endogenous damage is particularly pervasive, occurring at an estimated rate of 10,000–30,000 per cell/per day, and mostly involves chemical DNA base lesions caused by oxidation, depurination, alkylation, and deamination. The base excision repair (BER) pathway is primary responsible for removing and repairing these small base lesions that would otherwise lead to mutations or DNA breaks during replication. Next to preventing DNA mutations and damage, the BER pathway is also involved in mutagenic processes in B cells during immunoglobulin (Ig) class switch recombination (CSR) and somatic hypermutation (SHM), which are instigated by uracil (U) lesions derived from activation-induced cytidine deaminase (AID) activity. BER is required for the processing of AID-induced lesions into DNA double strand breaks (DSB) that are required for CSR, and is of pivotal importance for determining the mutagenic outcome of uracil lesions during SHM. Although uracils are generally efficiently repaired by error-free BER, this process is surprisingly error-prone at the Ig loci in proliferating B cells. Breakdown of this high-fidelity process outside of the Ig loci has been linked to mutations observed in B-cell tumors and DNA breaks and chromosomal translocations in activated B cells. Next to its role in preventing cancer, BER has also been implicated in immune tolerance. Several defects in BER components have been associated with autoimmune diseases, and animal models have shown that BER defects can cause autoimmunity in a B-cell intrinsic and extrinsic fashion. In this review we discuss the contribution of BER to genomic integrity in the context of immune receptor diversification, cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Maria Stratigopoulou
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tijmen P van Dam
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
18
|
Homeostasis and regulation of autoreactive B cells. Cell Mol Immunol 2020; 17:561-569. [PMID: 32382130 DOI: 10.1038/s41423-020-0445-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
In contrast to the previous belief that autoreactive B cells are eliminated from the normal repertoire of B cells, many autoreactive B cells actually escape clonal deletion and develop into mature B cells. These autoreactive B cells in healthy individuals perform some beneficial functions in the host and are homeostatically regulated by regulatory T and B cells or other mechanisms to prevent autoimmune diseases. Autoreactive B-1 cells constitutively produce polyreactive natural antibodies for tissue homeostasis. Recently, autoreactive follicular B cells were reported to participate actively in the germinal center reaction. Furthermore, the selection and usefulness of autoreactive marginal zone (MZ) B cells found in autoimmune diseases are not well understood, although the repertoire of MZ B-cell receptors (BCRs) is presumed to be biased to detect bacterial antigens. In this review, we discuss the autoreactive B-cell populations among all three major B-cell subsets and their regulation in immune responses and diseases.
Collapse
|
19
|
Little Children, Bigger Problems: Anti-N-Methyl D-Aspartate Receptor Encephalitis! Indian J Pediatr 2019; 86:1048-1050. [PMID: 31197643 DOI: 10.1007/s12098-019-03000-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022]
Abstract
Anti N-methyl D-aspartate receptor (NMDAR) antibody positive autoimmune encephalitis is a well-described entity both in adults as well as in children. The authors report an 18-mo-old boy who presented with seizures, movement disorder, cognitive impairment, and behavioral disturbances. Anti-NMDAR encephalitis was confirmed by detection of NMDAR antibodies in the cerebrospinal fluid. The patient was administered pulse corticosteroids and intravenous immunoglobulin followed by further immunomodulatory therapy. No tumor was detected on screening. The child remained unresponsive to treatment. The authors wish to highlight the occurrence of anti-NMDAR encephalitis in young toddlers and the poor response to therapy often seen in very young children.
Collapse
|
20
|
Hajjar J. Cancer Immunotherapy for the Immunosuppressed: Dissecting the Conundrum of Safety and Efficacy. ACTA ACUST UNITED AC 2019. [DOI: 10.4103/jipo.jipo_15_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Joud Hajjar
- Department of Pediatrics, Section of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, The William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
21
|
Eskandarian Z, Fliegauf M, Bulashevska A, Proietti M, Hague R, Smulski CR, Schubert D, Warnatz K, Grimbacher B. Assessing the Functional Relevance of Variants in the IKAROS Family Zinc Finger Protein 1 ( IKZF1) in a Cohort of Patients With Primary Immunodeficiency. Front Immunol 2019; 10:568. [PMID: 31057532 PMCID: PMC6477086 DOI: 10.3389/fimmu.2019.00568] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most frequent symptomatic primary immunodeficiency. Patients with CVID are prone to recurrent bacterial infection due to the failure of adequate immunoglobulin production. Monogenetic defects have been identified in ~25% of CVID patients. Recently, mutations in IKZF1, encoding the zinc-finger transcription factor IKAROS which is broadly expressed in hematopoietic cells, have been associated with a CVID-like phenotype. Herein we describe 11 patients with heterozygous IKZF1 variants from eight different families with autosomal dominant CVID and two siblings with an IKZF1 variant presenting with inflammatory bowel disease (IBD). This study shows that mutations affecting the DNA binding domain of IKAROS can impair the interaction with the target DNA sequence thereby preventing heterochromatin and pericentromeric localization (HC-PC) of the protein. Our results also indicate an impairment of pericentromeric localization of IKAROS by overexpression of a truncated variant, caused by an immature stop codon in IKZF1. We also describe an additional variant in TNFSF10, encoding Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL), additionally presented in individuals of Family A. Our results indicate that this variant may impair the TRAIL-induced apoptosis in target cell lines and prohibit the NFκB activation by TRAIL and may act as a modifier in Family A.
Collapse
Affiliation(s)
- Zoya Eskandarian
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Manfred Fliegauf
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Alla Bulashevska
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Michele Proietti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Rosie Hague
- Royal Hospital for Children, Glasgow, United Kingdom
| | - Cristian Roberto Smulski
- Department of Medical Physics, Centro Atómico Bariloche, CONICET, San Carlos de Bariloche, Argentina
| | - Desirée Schubert
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Clinic for Rheumatology and Clinical Immunology, Faculty of Medicine, CCI, Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Satellite Center Freiburg, RESIST-Cluster of Excellence 2155, Hanover Medical School, Freiburg, Germany.,Satellite Center Freiburg, German Center for Infection Research, Freiburg, Germany.,Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| |
Collapse
|
22
|
Azizi G, Tavakol M, Rafiemanesh H, Kiaee F, Yazdani R, Heydari A, Abouhamzeh K, Anvari P, Mohammadikhajehdehi S, Sharifia L, Bagheri Y, Mohammadi H, Abolhassani H, Aghamohammadi A. Autoimmunity in a cohort of 471 patients with primary antibody deficiencies. Expert Rev Clin Immunol 2017; 13:1099-1106. [DOI: 10.1080/1744666x.2017.1384312] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzieh Tavakol
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Allergy and Clinical Immunology, Shahid Bahonar Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Hosein Rafiemanesh
- Students’ Research Committee, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kiaee
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Heydari
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Abouhamzeh
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Pardis Anvari
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Mohammadikhajehdehi
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Laleh Sharifia
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasser Bagheri
- Student Research Committee, Golstan University of Medical Sciences, Gorgan, Iran
- Department of Allergy and Clinical Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
23
|
Immune Gamma Globulin Therapeutic Indications in Immune Deficiency and Autoimmunity. Curr Allergy Asthma Rep 2017; 16:55. [PMID: 27401913 DOI: 10.1007/s11882-016-0632-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immune gamma globulin (IgG) has a long history in the treatment of both primary immune deficiency and autoimmune disorders. Disease indications continue to expand and new-generation products increase the versatility of delivery. This review encompasses a historical perspective as well as current and future implications of human immune globulin for the treatment of immune-mediated illness.
Collapse
|
24
|
Azizi G, Ziaee V, Tavakol M, Alinia T, Yazdai R, Mohammadi H, Abolhassani H, Aghamohammadi A. Approach to the Management of Autoimmunity in Primary Immunodeficiency. Scand J Immunol 2017; 85:13-29. [PMID: 27862144 DOI: 10.1111/sji.12506] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/04/2016] [Indexed: 12/14/2022]
Abstract
Primary immunodeficiency diseases (PIDs) consist of a genetically heterogeneous group of immune disorders that affect distinct elements of the immune system. PID patients are more prone to infections and non-infectious complications, particularly autoimmunity. The concomitance of immunodeficiency and autoimmunity appears to be paradoxical and leads to difficulty in the management of autoimmune complications in PID patients. Therefore, management of autoimmunity in patients with PID requires special considerations because dysregulations and dysfunctions of the immune system along with persistent inflammation impair the process of diagnosis and treatment.
Collapse
Affiliation(s)
- G Azizi
- Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - V Ziaee
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - M Tavakol
- Department of Allergy and Clinical Immunology, Shahid Bahonar Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - T Alinia
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - R Yazdai
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - H Mohammadi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - A Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Azizi G, Ahmadi M, Abolhassani H, Yazdani R, Mohammadi H, Mirshafiey A, Rezaei N, Aghamohammadi A. Autoimmunity in Primary Antibody Deficiencies. Int Arch Allergy Immunol 2016; 171:180-193. [DOI: 10.1159/000453263] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
26
|
Woon ST, Ameratunga R. Comprehensive genetic testing for primary immunodeficiency disorders in a tertiary hospital: 10-year experience in Auckland, New Zealand. Allergy Asthma Clin Immunol 2016; 12:65. [PMID: 27980540 PMCID: PMC5142146 DOI: 10.1186/s13223-016-0169-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/16/2016] [Indexed: 12/04/2022] Open
Abstract
Background and purpose New Zealand is a developed geographically isolated country in the South Pacific with a population of 4.4 million. Genetic diagnosis is the standard of care for most patients with primary immunodeficiency disorders (PIDs). Methods Since 2005, we have offered a comprehensive genetic testing service for PIDs and other immune-related disorders with a published sequence. Here we present results for this program, over the first decade, between 2005 and 2014. Results We undertook testing in 228 index cases and 32 carriers during this time. The three most common test requests were for X-linked lymphoproliferative (XLP), tumour necrosis factor receptor associated periodic syndrome (TRAPS) and haemophagocytic lymphohistiocytosis (HLH). Of the 32 suspected XLP cases, positive diagnoses were established in only 2 patients. In contrast, genetic defects in 8 of 11 patients with suspected X-linked agammaglobulinemia (XLA) were confirmed. Most XLA patients were initially identified from absence of B cells. Overall, positive diagnoses were made in about 23% of all tests requested. The diagnostic rate was lowest for several conditions with locus heterogeneity. Conclusions Thorough clinical characterisation of patients can assist in prioritising which genes should be tested. The clinician-driven customised comprehensive genetic service has worked effectively for New Zealand. Next generation sequencing will play an increasing role in disorders with locus heterogeneity.
Collapse
Affiliation(s)
- See-Tarn Woon
- Department of Virology and Immunology, LabPLUS, Auckland City Hospital, Grafton, Auckland, 1148 New Zealand
| | - Rohan Ameratunga
- Department of Virology and Immunology, LabPLUS, Auckland City Hospital, Grafton, Auckland, 1148 New Zealand
| |
Collapse
|
27
|
Azizi G, Pouyani MR, Abolhassani H, Sharifi L, dizaji MZ, Mohammadi J, Mirshafiey A, Aghamohammadi A. Cellular and molecular mechanisms of immune dysregulation and autoimmunity. Cell Immunol 2016; 310:14-26. [DOI: 10.1016/j.cellimm.2016.08.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/18/2016] [Accepted: 08/25/2016] [Indexed: 12/22/2022]
|
28
|
Merayo-Chalico J, Rajme-López S, Barrera-Vargas A, Alcocer-Varela J, Díaz-Zamudio M, Gómez-Martín D. Lymphopenia and autoimmunity: A double-edged sword. Hum Immunol 2016; 77:921-929. [DOI: 10.1016/j.humimm.2016.06.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 06/01/2016] [Accepted: 06/21/2016] [Indexed: 01/09/2023]
|
29
|
Azizi G, Abolhassani H, Asgardoon MH, Alinia T, Yazdani R, Mohammadi J, Rezaei N, Ochs HD, Aghamohammadi A. Autoimmunity in common variable immunodeficiency: epidemiology, pathophysiology and management. Expert Rev Clin Immunol 2016; 13:101-115. [DOI: 10.1080/1744666x.2016.1224664] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Gholamreza Azizi
- Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Mohammad Hosein Asgardoon
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Iranian Student Society for Immunodeficiencies, Student’s Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tina Alinia
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javad Mohammadi
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hans D. Ochs
- Seattle Children’s Research Institute and Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
30
|
Azizi G, Ghanavatinejad A, Abolhassani H, Yazdani R, Rezaei N, Mirshafiey A, Aghamohammadi A. Autoimmunity in primary T-cell immunodeficiencies. Expert Rev Clin Immunol 2016; 12:989-1006. [PMID: 27063703 DOI: 10.1080/1744666x.2016.1177458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Primary immunodeficiency diseases (PID) are a genetically heterogeneous group of more than 270 disorders that affect distinct components of both humoral and cellular arms of the immune system. Primary T cell immunodeficiencies affect subjects at the early age of life. In most cases, T-cell PIDs become apparent as combined T- and B-cell deficiencies. Patients with T-cell PID are prone to life-threatening infections. On the other hand, non-infectious complications such as lymphoproliferative diseases, cancers and autoimmunity seem to be associated with the primary T-cell immunodeficiencies. Autoimmune disorders of all kinds (organ specific or systemic ones) could be subjected to this class of PIDs; however, the most frequent autoimmune disorders are immune thrombocytopenic purpura (ITP) and autoimmune hemolytic anemia (AIHA). In this review, we discuss the proposed mechanisms of autoimmunity and review the literature reported on autoimmune disorder in each type of primary T-cell immunodeficiencies.
Collapse
Affiliation(s)
- Gholamreza Azizi
- a Department of Laboratory Medicine , Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences , Karaj , Iran.,b Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Alireza Ghanavatinejad
- c Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Hassan Abolhassani
- b Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,d Division of Clinical Immunology, Department of Laboratory Medicine , Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Reza Yazdani
- e Department of Immunology, School of Medicine , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Nima Rezaei
- b Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Abbas Mirshafiey
- c Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Asghar Aghamohammadi
- b Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
31
|
AlKhater SA. CNS vasculitis and stroke as a complication of DOCK8 deficiency: a case report. BMC Neurol 2016; 16:54. [PMID: 27113444 PMCID: PMC4845487 DOI: 10.1186/s12883-016-0578-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/23/2016] [Indexed: 11/23/2022] Open
Abstract
Background Primary immunodeficiency disorders associated with autoimmunity are poorly understood. Central nervous system (CNS) vasculitis can complicate the courses of such entities, but it is underappreciated. Deletion of the dedicator of cytokinesis 8 (DOCK8) gene is considered to be the autosomal recessive form of hyperimmunoglobulin E syndrome which is a rare type of primary immunodeficiency disease characterized by elevated levels of IgE antibody, eczema, and recurrent staphylococcal infections. DOCK8 deletion is associated with fatal CNS vasculitis. However, descriptions of such cases and their outcomes are scarce in the literature. Case presentation This report describes a young female with a DOCK8 gene deletion presenting acutely with squint, fatigue and visual hallucinations. The patient was diagnosed as having neuritis of the third oculomotor nerve and encephalitis, which were thought to be related to her underlying immune deficiency, however, she subsequently was diagnosed with CNS vasculitis based on brain magnetic imaging and magnetic resonance angiography findings. We provide here a comprehensive description of the patient’s clinical outcome and outline an effective treatment approach that may be useful for similar patients and includes the use of steroids and mycophenolate mofetil (MMF). The treatment was well tolerated and enabled the patient to recover most of her neurological deficits. However, despite the initial improvement, she later developed stroke. Conclusions To the best of our knowledge, this is the first report in the literature of a case of primary immunodeficiency complicated by CNS vasculitis demonstrating a successful outcome. Our observations indicate that the combination of MMF and steroids is an effective treatment for CNS vasculitis associated with DOCK8 deficiency. However, lack of awareness of the neurological comorbidities associated with primary immunodeficiencies and the delay in diagnosis likely contributed to the development of acute cerebral infarction. Early treatment and aggressive control of the disease’s initial inflammation is essential for preventing catastrophic stroke.
Collapse
Affiliation(s)
- Suzan A AlKhater
- Department of Pediatrics, College of Medicine, University of Dammam, Dammam, Saudi Arabia. .,King Fahad University Hospital, P.O. Box 2208, Al-Khobar, 31592, Saudi Arabia.
| |
Collapse
|
32
|
Dimitriades VR, Sorensen R. Rheumatologic manifestations of primary immunodeficiency diseases. Clin Rheumatol 2016; 35:843-50. [PMID: 26971790 DOI: 10.1007/s10067-016-3229-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 12/16/2022]
Abstract
In the last 5 years, several hundred articles have been published concerning the link between primary immunodeficiency disease (PID) and rheumatologic diseases. Although rheumatologic complications were originally thought to be at the opposite ends of the spectrum of immunopathologic manifestations, they are now all being considered secondary manifestations of a causative primary "immune derangement." For the rheumatologist, it is important to be able to identify patients who may present with typical rheumatologic findings but who have an underlying PID. In a systematic manner, this overview addresses both the systemic and organ-based rheumatologic diseases which have known associations with primary immunodeficiencies, and explores how immunodeficiency may actually cause these clinical manifestations.
Collapse
Affiliation(s)
- V R Dimitriades
- Department of Pediatrics, Division of Allergy/Immunology, Louisiana State University Health Sciences Center, 200 Henry Clay Avenue, New Orleans, LA, 70118, USA. .,Department of Pediatrics, Division of Rheumatology, Louisiana State University Health Sciences Center, 200 Henry Clay Avenue, New Orleans, LA, 70118, USA.
| | - R Sorensen
- Department of Pediatrics, Division of Allergy/Immunology, Louisiana State University Health Sciences Center, 200 Henry Clay Avenue, New Orleans, LA, 70118, USA.,Faculty of Medicine, University of La Frontera, Francisco Salazar 1145, Temuco, Chile
| |
Collapse
|
33
|
The crossroads of autoimmunity and immunodeficiency: Lessons from polygenic traits and monogenic defects. J Allergy Clin Immunol 2016; 137:3-17. [DOI: 10.1016/j.jaci.2015.11.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 01/16/2023]
|
34
|
Rosenberg JM, Price JV, Barcenas-Morales G, Ceron-Gutierrez L, Davies S, Kumararatne DS, Döffinger R, Utz PJ. Protein microarrays identify disease-specific anti-cytokine autoantibody profiles in the landscape of immunodeficiency. J Allergy Clin Immunol 2016; 137:204-213.e3. [PMID: 26365387 PMCID: PMC4715746 DOI: 10.1016/j.jaci.2015.07.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/09/2015] [Accepted: 07/16/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Anti-cytokine autoantibodies (ACAAs) are pathogenic in a handful of rare immunodeficiencies. However, the prevalence and significance of other ACAAs across immunodeficiencies have not yet been described. OBJECTIVE We profiled ACAAs in a diverse cohort of serum samples from patients with immunodeficiency and assessed the sensitivity and specificity of protein microarrays for ACAA identification and discovery. METHODS Highly multiplexed protein microarrays were designed and fabricated. Blinded serum samples from a cohort of 58 immunodeficiency patients and healthy control subjects were used to probe microarrays. Unsupervised hierarchical clustering was used to identify clusters of reactivity, and after unblinding, significance analysis of microarrays was used to identify disease-specific autoantibodies. A bead-based assay was used to validate protein microarray results. Blocking activity of serum containing ACAAs was measured in vitro. RESULTS Protein microarrays were highly sensitive and specific for the detection of ACAAs in patients with autoimmune polyendocrine syndrome type I and pulmonary alveolar proteinosis, detecting ACAA levels consistent with those reported in the published literature. Protein microarray results were validated by using an independent bead-based assay. To confirm the functional significance of these ACAAs, we tested and confirmed the blocking activity of select ACAAs in vitro. CONCLUSION Protein microarrays are a powerful tool for ACAA detection and discovery, and they hold promise as a diagnostic for the evaluation and monitoring of clinical immunodeficiency.
Collapse
Affiliation(s)
- Jacob M Rosenberg
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, Calif.
| | - Jordan V Price
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, Calif
| | - Gabriela Barcenas-Morales
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, United Kingdom; Laboratorio de Inmunologia, UNAM, FES-Cuautitlan, Cuautitlán Izcalli, Mexico
| | - Lourdes Ceron-Gutierrez
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Sophie Davies
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Dinakantha S Kumararatne
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Rainer Döffinger
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, United Kingdom; National Institute for Health Research (NIHR), Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Paul J Utz
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, Calif; Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
35
|
Abstract
The references provided include data from evidence A and B studies based on the relevant populations. Because many primary immunodeficiencies associated with autoimmune diseases are rare, illustrative cases (evidence D) also are referenced. On the basis of level A evidence, immunoglobulin A deficiency is the most common primary immunodeficiency and is associated with defective mucosal immunity and autoimmune disease. On the basis of strong evidence (level A), Wiskott Aldrich syndrome presents early in life and is associated with autoimmune arthritis and anemia. On the basis of strong evidence in the literature, a number of primary immunodeficiencies are associated with defects in T regulatory cell number and development, cytokine aberrancies, and, as a consequence, production of autoantibodies. On the basis of strong evidence (level A) and case reports (level D), complement deficiency can be associated with autoimmune disease, most notably systemic lupus erythematosus.
Collapse
Affiliation(s)
- Amrita Dosanjh
- Department of Pediatrics, Rady Childrens Hospital, San Diego, CA
| |
Collapse
|
36
|
Zuo L, Zhou T, Pannell BK, Ziegler AC, Best TM. Biological and physiological role of reactive oxygen species--the good, the bad and the ugly. Acta Physiol (Oxf) 2015; 214:329-48. [PMID: 25912260 DOI: 10.1111/apha.12515] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/27/2015] [Accepted: 04/21/2015] [Indexed: 12/16/2022]
Abstract
Reactive oxygen species (ROS) are chemically reactive molecules that are naturally produced within biological systems. Research has focused extensively on revealing the multi-faceted and complex roles that ROS play in living tissues. In regard to the good side of ROS, this article explores the effects of ROS on signalling, immune response and other physiological responses. To review the potentially bad side of ROS, we explain the consequences of high concentrations of molecules that lead to the disruption of redox homeostasis, which induces oxidative stress damaging intracellular components. The ugly effects of ROS can be observed in devastating cardiac, pulmonary, neurodegenerative and other disorders. Furthermore, this article covers the regulatory enzymes that mitigate the effects of ROS. Glutathione peroxidase, superoxide dismutase and catalase are discussed in particular detail. The current understanding of ROS is incomplete, and it is imperative that future research be performed to understand the implications of ROS in various therapeutic interventions.
Collapse
Affiliation(s)
- L. Zuo
- Radiologic Sciences and Respiratory Therapy Division; School of Health and Rehabilitation Sciences; The Ohio State University College of Medicine; Columbus OH USA
- Biophysics Graduate Program; The Ohio State University; Columbus OH USA
| | - T. Zhou
- Radiologic Sciences and Respiratory Therapy Division; School of Health and Rehabilitation Sciences; The Ohio State University College of Medicine; Columbus OH USA
- Biophysics Graduate Program; The Ohio State University; Columbus OH USA
| | - B. K. Pannell
- Radiologic Sciences and Respiratory Therapy Division; School of Health and Rehabilitation Sciences; The Ohio State University College of Medicine; Columbus OH USA
| | - A. C. Ziegler
- Radiologic Sciences and Respiratory Therapy Division; School of Health and Rehabilitation Sciences; The Ohio State University College of Medicine; Columbus OH USA
| | - T. M. Best
- Division of Sports Medicine; Department of Family Medicine; Sports Health & Performance Institute; The Ohio State University Wexner Medical Center; Columbus OH USA
| |
Collapse
|
37
|
Immunodeficiencies with hypergammaglobulinemia: a review. LYMPHOSIGN JOURNAL-THE JOURNAL OF INHERITED IMMUNE DISORDERS 2015. [DOI: 10.14785/lpsn-2014-0019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Primary immunodeficiencies (PID) can present with recurrent infections, autoimmunity, inflammation, or malignancy and each of these conditions can be associated with elevated immunoglobulin. A high level of immunoglobulin G (IgG) is an uncommon finding, especially in pediatrics, and does not rule out primary immunodeficiency. Deficiencies in varied aspects of immune response have been described with high IgG. Reported PID conditions with elevated IgG include defects in humoral, cellular, and innate immunity. Some of these immunodeficiencies can have fatal outcomes, some require hematopoetic stem cell transplantation, and some require systemic medications. The mechanisms driving elevated IgG are not well understood, but in some cases abnormal cytokine production has been proposed. The evaluation of a patient with high IgG is guided by the patient's history and a physical examination, with special attention to autoimmunity in pediatrics and malignancy and liver disease in adults. In the setting of autoimmunity, chronic gastrointestinal disease, or chronic infections, the measurement of specific antibodies to evaluate the function of the IgG should be considered. An increased appreciation of elevation in IgG reflecting immune dysregulation may lead to earlier PID diagnoses.
Collapse
|
38
|
Rosenberg JM, Utz PJ. Protein microarrays: a new tool for the study of autoantibodies in immunodeficiency. Front Immunol 2015; 6:138. [PMID: 25904912 PMCID: PMC4387933 DOI: 10.3389/fimmu.2015.00138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/12/2015] [Indexed: 12/19/2022] Open
Abstract
Autoimmunity is highly coincident with immunodeficiency. In a small but growing number of primary immunodeficiencies, autoantibodies are diagnostic of a given disease and implicated in disease pathogenesis. In order to improve our understanding of the role of autoantibodies in immunodeficiencies and to discover novel autoantibodies, new proteomic tools are needed. Protein microarrays have the ability to screen for reactivity to hundreds to many thousands of unique autoantigens simultaneously on a single chip using minimal serum input. Here, we review different types of protein microarrays and how they can be useful in framing the study of primary and secondary immunodeficiencies.
Collapse
Affiliation(s)
- Jacob M Rosenberg
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine , Stanford, CA , USA
| | - Paul J Utz
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine , Stanford, CA , USA ; Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine , Stanford, CA , USA
| |
Collapse
|
39
|
A glance on recent progresses in diagnosis and treatment of primary immunodeficiencies/ Progrese recente în diagnosticul şi tratamentul imunodeficienţelor primare. REV ROMANA MED LAB 2014. [DOI: 10.2478/rrlm-2014-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|