1
|
Aboushouk AA, Saad HM, Rohiem AH, Gad El-Karim DRS. New Insights on the potential therapeutic effects of glibenclamide and Obeticholic acid against Alloxan-Induced diabetes mellitus in rat model. Int Immunopharmacol 2024; 143:113469. [PMID: 39461241 DOI: 10.1016/j.intimp.2024.113469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Diabetes mellitus (DM) represents a highly prevalent metabolic disorder across the globe. This study aimed to determine the ameliorative efficacy of glibenclamide (Gli) and obeticholic acid (OCA) against biochemical and pathological changes related to alloxan-induced diabetes. Twenty male Wistar rats were allocated into four groups; Control group, Diabetic group: received intraperitoneal injection of alloxan (120 mg/kg) for induction of diabetes, Diabetic + Gli group: Diabetic rats treated daily with oral Gli (5 mg/kg) and Diabetic + OCA group: Diabetic rats treated daily with oral OCA (10 mg/kg). All rats were subjected to 30 days treatments. Our results indicated that Gli successfully ameliorated hyperglycemia and dyslipidemia with a significant decline in serum pancreatic lipase activity and increased insulin level, while OCA had the same effect but without any enhancement in serum insulin levels. Additionally, the disturbances in liver function-related parameters and the evoked oxidative stress, interleukin(IL)-6 and IL-10 in the liver and pancreas were abrogated upon treatment with Gli and OCA. Furthermore, Gli and OCA increased AMP-activated protein kinase (P-AMPK), insulin receptor substrate 1 (IRS1), farnesoid X receptor (FXR), and glucagon-like peptide-1 receptor (GLP-1R) expressions and downregulated sterol regulatory element binding protein-1c mRNA expression. Besides, Gli and OCA have alleviated diabetes-induced histopathological distortions in hepatic and pancreatic tissues and enhanced the immunoexpression of insulin, and proliferating cell nuclear antigen with decreased immune reactivity of glucagon within pancreatic tissues. Gli and OCA decreased the immune reactivity of nuclear factor kappa B and increased the glycogen content of hepatic tissues. In conclusion, OCA is efficacious in the management of dyslipidemia and hyperglycemia of DM and its related oxidative stress.
Collapse
Affiliation(s)
- Asmaa A Aboushouk
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh 51744, Egypt.
| | - Aya H Rohiem
- Department of Physiology, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Dina R S Gad El-Karim
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| |
Collapse
|
2
|
El-Demerdash FM, Minjal AH, El-Sayed RA, Baghdadi HH. Hepatoprotective Effect of Ethanolic Pomegranate Peel Extract Against Levofloxacin via Suppression of Oxidative Stress, Proinflammation, and Apoptosis in Male Rats. J Med Food 2024; 27:866-878. [PMID: 39001843 DOI: 10.1089/jmf.2023.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024] Open
Abstract
One of the fluoroquinolone antibiotics, levofloxacin (LEV), is used to treat a variety of illnesses leading to oxidative stress and cellular damage. Peel from Punica granatum is a waste product abundant in phytochemicals with various biological activities. This study aimed to evaluate P. granatum peel extract's (PGPE) potential to mitigate oxidative stress, inflammation, apoptosis, and liver damage caused by LEV. There were four groups of rats: control, PGPE, LEV, and PGPE + LEV, respectively, and they were orally administered their daily treatments for 2 weeks. Results revealed that PGPE has a large number of phytochemical components with high antioxidant activity. PGPE intake alone enhanced the antioxidant status and decreased oxidative stress. On the other hand, pretreatment of the LEV group with PGPE restored oxidative stress, antioxidant enzymes, glutathione content, liver function biomarkers, and hematological parameters. Also, normalization of gene expressions (cyclooxygenase-2, transforming growth factor-beta1, caspase-3, heme oxygenase-1, B cell lymphoma-2, interleukin [IL]-10, and IL-1) and improvement in liver architecture, and immunohistochemical alpha-smooth muscle actin, were seen in comparison to the LEV group. Conclusively, PGPE exhibits strong anti-inflammatory, antiapoptotic, and antioxidant properties that shield rat liver from the damaging effects of LEV and offer a fresh viewpoint on the application of fruit waste products.
Collapse
Affiliation(s)
- Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| | - Ali H Minjal
- Department of Environmental Studies, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| | - Raghda A El-Sayed
- Department of Environmental Studies, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| | - Hoda H Baghdadi
- Department of Environmental Studies, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
3
|
Saturated Fat and Cardiovascular Health: Phenotype and Dietary Factors Influencing Interindividual Responsiveness. Curr Atheroscler Rep 2022; 24:391-398. [PMID: 35320834 DOI: 10.1007/s11883-022-01014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Recent inconsistencies in nutrition research studies examining the influence of saturated fat (SFA) on cardiovascular disease (CVD) risk have led to substantial scientific debate and increased public confusion. This review will summarize metabolic characteristics and food-based factors that underlie interindividual responsiveness to SFA consumption. RECENT FINDINGS The magnitude of postprandial blood lipid responses to SFA intake is dependent on a number of individual factors including age, sex, and adiposity status. Further, the metabolic effects of SFA intake are influenced by the specific types of SFAs and the food matrix within which they are contained. Importantly, results from research examining the effects of SFA on CVD risk should be interpreted with consideration of the comparator nutrient (i.e., carbohydrate, monounsaturated fat, polyunsaturated fat). A more nuanced understanding of the multitude of factors mediating the influence of SFA on lipid metabolism and CVD risk might help resolve the current controversy and inform more precise personalized recommendations for future dietary guidelines.
Collapse
|
4
|
El-Demerdash FM, Talaat Y, El-Sayed RA, Kang W, Ghanem NF. Hepatoprotective Effect of Actinidia deliciosa against Streptozotocin-Induced Oxidative Stress, Apoptosis, and Inflammations in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1499510. [PMID: 35345832 PMCID: PMC8957427 DOI: 10.1155/2022/1499510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/09/2022] [Accepted: 01/19/2022] [Indexed: 12/23/2022]
Abstract
The present research intended to assess the possible protective and hypoglycemic effect of Actinidia deliciosa fruit aqueous extract (ADAE) in diabetic rats. The scavenging antioxidant capabilities of ADAE were evaluated using GC-MS analysis. In addition, rats were divided into four groups: control, ADAE, streptozotocin-induced DM (STZ), and STZ-treated rats + ADAE in an in vivo investigation. GC-MS analysis of ADAE was shown to include major components with high total phenolic contents and high DPPH scavenging activity. In diabetic rats, significant elevation in blood glucose level, lipid peroxidation, bilirubin, and lactate dehydrogenase activity as well as a change in lipid profile was observed, while insulin, body and liver weights, enzymatic and nonenzymatic antioxidants, liver function biomarkers, and protein content were significantly decreased. Furthermore, changes in the expression of the peroxisome proliferator-activated receptor (PPAR-γ), apoptotic, and inflammation-related genes were found. In addition, histological differences in rat liver tissue architecture were discovered, corroborating the biochemical modifications. However, consuming ADAE alone reduced lipid peroxidation and improved antioxidant status. Furthermore, diabetic rats given ADAE showed significant reductions in oxidative stress indicators and biochemical parameters, as well as improved tissue structure, when compared to the diabetic rats' group. Also, ADAE supplementation protects diabetic rats' hepatic tissue by upregulating PPAR-γ and downregulating apoptotic and inflammatory-related gene expression. In conclusion, A. deliciosa has beneficial protective effects so, it might be used as a complementary therapy in diabetes mellitus.
Collapse
Affiliation(s)
- Fatma M. El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Yousra Talaat
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Raghda A. El-Sayed
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Nora F. Ghanem
- Department of Zoology, Faculty of Science, Kafrelsheikh University, Kafr ElSheikh, Egypt
| |
Collapse
|
5
|
Madhuri K, Naik PR. Ameliorative effect of borneol, a natural bicyclic monoterpene against hyperglycemia, hyperlipidemia and oxidative stress in streptozotocin-induced diabetic Wistar rats. Biomed Pharmacother 2017; 96:336-347. [DOI: 10.1016/j.biopha.2017.09.122] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/19/2017] [Accepted: 09/23/2017] [Indexed: 11/15/2022] Open
|
6
|
|
7
|
Stanimirovic J, Obradovic M, Zafirovic S, Resanovic I, Bogdanovic N, Gluvic Z, Mousa SA, Isenovic ER. Effects of altered hepatic lipid metabolism on regulation of hepatic iNOS. ACTA ACUST UNITED AC 2015. [DOI: 10.2217/clp.15.8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Jayachandran M, Chandrasekaran B, Namasivayam N. Effect of geraniol, a plant derived monoterpene on lipids and lipid metabolizing enzymes in experimental hyperlipidemic hamsters. Mol Cell Biochem 2014; 398:39-53. [PMID: 25218494 DOI: 10.1007/s11010-014-2203-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 08/30/2014] [Indexed: 12/31/2022]
Abstract
Hyperlipidemia is a major, modifiable risk factor for atherosclerosis and cardiovascular disease. In the present study, we have focused on the effect of different doses of geraniol (GOH) on the lipid profile and lipid metabolizing enzymes in atherogenic diet (AD) fed hamsters. Male Syrian hamsters were grouped into seven: group 1 were control animals; group 2 were animals fed GOH alone (200 mg/kg b.w); group 3 were animals fed AD (10 % coconut oil, 0.25 % cholesterol, and 0.25 % cholic acid); group 4 were animals fed AD + corn oil (2.5 ml/kg b.w); and groups 5, 6, and 7 were fed AD as in group 3 + different doses of GOH (50, 100, and 200 mg/kg b.w), respectively, for 12 weeks. At the end of the experimental period, animals were sacrificed by cervical dislocation and various assays were performed in the plasma and tissues. The AD hamsters showed marked changes in lipid profile and lipid metabolizing enzymes. However, supplementation with GOH counteracted the hyperlipidemia by inhibiting HMG CoA reductase and suppressing lipogenesis. The antihyperlipidemic efficacy of GOH was found to be effective at the dose of 100 mg/kg b.w. This study illustrates that GOH is effective in lowering the risk of hyperlipidemia in AD fed hamsters.
Collapse
Affiliation(s)
- Muthukumaran Jayachandran
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608002, Tamilnadu, India
| | | | | |
Collapse
|
9
|
Flock MR, Green MH, Kris-Etherton PM. Effects of adiposity on plasma lipid response to reductions in dietary saturated fatty acids and cholesterol. Adv Nutr 2011; 2:261-74. [PMID: 22332058 PMCID: PMC3090171 DOI: 10.3945/an.111.000422] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Dietary SFA and cholesterol are major targets for reducing plasma total and LDL cholesterol as a strategy to decrease cardiovascular disease risk. However, many studies show that excess adiposity attenuates the expected lipid and lipoprotein response to a plasma cholesterol-lowering diet. Diets low in SFA and cholesterol are less effective in improving the lipid profile in obese individuals and in patients with metabolic syndrome. In contrast, lean persons are more responsive to reductions in dietary SFA and cholesterol. Multiple mechanisms likely contribute to the altered plasma lipid responses to dietary changes in individuals with excess adiposity. The greater rate of hepatic cholesterol synthesis in obese individuals suppresses the expression of hepatic LDL receptors (LDLR), thereby reducing hepatic LDL uptake. Insulin resistance develops as a result of adipose-tissue induced inflammation, causing significant changes in enzymes necessary for normal lipid metabolism. In addition, the LDLR-mediated uptake in obesity is attenuated by alterations in neuroendocrine regulation of hormonal secretions (e.g. growth hormone, thyroid hormone, and cortisol) as well as the unique gut microbiota, the latter of which appears to affect lipid absorption. Reducing adipose tissue mass, especially from the abdominal region, is an effective strategy to improve the lipid response to dietary interventions by reducing inflammation, enhancing insulin sensitivity, and improving LDLR binding. Thus, normalizing adipose tissue mass is an important goal for maximizing the diet response to a plasma cholesterol-lowering diet.
Collapse
|