1
|
Transferrin-Enabled Blood–Brain Barrier Crossing Manganese-Based Nanozyme for Rebalancing the Reactive Oxygen Species Level in Ischemic Stroke. Pharmaceutics 2022; 14:pharmaceutics14061122. [PMID: 35745695 PMCID: PMC9231148 DOI: 10.3390/pharmaceutics14061122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Acute ischemic stroke (IS) is one of the main causes of human disability and death. Therefore, multifunctional nanosystems that effectively cross the blood–brain barrier (BBB) and efficiently eliminate reactive oxygen species (ROS) are urgently needed for comprehensive neuroprotective effects. (2) Methods: We designed a targeted transferrin (Tf)-based manganese dioxide nanozyme (MnO2@Tf, MT) using a mild biomimetic mineralization method for rebalancing ROS levels. Furthermore, MT can be efficiently loaded with edaravone (Eda), a clinical neuroprotective agent, to obtain the Eda-MnO2@Tf (EMT) nanozyme. (3) Results: The EMT nanozyme not only accumulates in a lesion area and crosses the BBB but also possesses satisfactory biocompatibility and biosafety based on the functional inheritance of Tf. Meanwhile, EMT has intrinsic hydroxyl radical-scavenging ability and superoxide-dismutase-like and catalase-like nanozyme abilities, allowing it to ameliorate ROS-mediated damage and decrease inflammatory factor levels in vivo. Moreover, the released Mn2+ ions in the weak acid environment of the lesion area can be used for magnetic resonance imaging (MRI) to monitor the treatment process. (4) Conclusions: Our study not only paves a way to engineer alternative targeted ROS scavengers for intensive reperfusion-induced injury in ischemic stroke but also provides new insights into the construction of bioinspired Mn-based nanozymes.
Collapse
|
2
|
Mulder IA, van Bavel ET, de Vries HE, Coutinho JM. Adjunctive cytoprotective therapies in acute ischemic stroke: a systematic review. Fluids Barriers CNS 2021; 18:46. [PMID: 34666786 PMCID: PMC8524879 DOI: 10.1186/s12987-021-00280-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/29/2021] [Indexed: 01/08/2023] Open
Abstract
With the introduction of endovascular thrombectomy (EVT), a new era for treatment of acute ischemic stroke (AIS) has arrived. However, despite the much larger recanalization rate as compared to thrombolysis alone, final outcome remains far from ideal. This raises the question if some of the previously tested neuroprotective drugs warrant re-evaluation, since these compounds were all tested in studies where large-vessel recanalization was rarely achieved in the acute phase. This review provides an overview of compounds tested in clinical AIS trials and gives insight into which of these drugs warrant a re-evaluation as an add-on therapy for AIS in the era of EVT. A literature search was performed using the search terms "ischemic stroke brain" in title/abstract, and additional filters. After exclusion of papers using pre-defined selection criteria, a total of 89 trials were eligible for review which reported on 56 unique compounds. Trial compounds were divided into 6 categories based on their perceived mode of action: systemic haemodynamics, excitotoxicity, neuro-inflammation, blood-brain barrier and vasogenic edema, oxidative and nitrosative stress, neurogenesis/-regeneration and -recovery. Main trial outcomes and safety issues are summarized and promising compounds for re-evaluation are highlighted. Looking at group effect, drugs intervening with oxidative and nitrosative stress and neurogenesis/-regeneration and -recovery appear to have a favourable safety profile and show the most promising results regarding efficacy. Finally, possible theories behind individual and group effects are discussed and recommendation for promising treatment strategies are described.
Collapse
Affiliation(s)
- I A Mulder
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - E T van Bavel
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - H E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - J M Coutinho
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Tian X, Fan T, Zhao W, Abbas G, Han B, Zhang K, Li N, Liu N, Liang W, Huang H, Chen W, Wang B, Xie Z. Recent advances in the development of nanomedicines for the treatment of ischemic stroke. Bioact Mater 2021; 6:2854-2869. [PMID: 33718667 PMCID: PMC7905263 DOI: 10.1016/j.bioactmat.2021.01.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is still a serious threat to human life and health, but there are few therapeutic options available to treat stroke because of limited blood-brain penetration. The development of nanotechnology may overcome some of the problems related to traditional drug development. In this review, we focus on the potential applications of nanotechnology in stroke. First, we will discuss the main molecular pathological mechanisms of ischemic stroke to develop a targeted strategy. Second, considering the important role of the blood-brain barrier in stroke treatment, we also delve mechanisms by which the blood-brain barrier protects the brain, and the reasons why the therapeutics must pass through the blood-brain barrier to achieve efficacy. Lastly, we provide a comprehensive review related to the application of nanomaterials to treat stroke, including liposomes, polymers, metal nanoparticles, carbon nanotubes, graphene, black phosphorus, hydrogels and dendrimers. To conclude, we will summarize the challenges and future prospects of nanomedicine-based stroke treatments.
Collapse
Affiliation(s)
- Xing Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Taojian Fan
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Wentian Zhao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Ghulam Abbas
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Ke Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Nan Li
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Ning Liu
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Weiyuan Liang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Hao Huang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Wen Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Bing Wang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Zhongjian Xie
- Shenzhen International Institute for Biomedical Research, 518116, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Mifflin L, Ofengeim D, Yuan J. Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target. Nat Rev Drug Discov 2020; 19:553-571. [PMID: 32669658 PMCID: PMC7362612 DOI: 10.1038/s41573-020-0071-y] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
Abstract
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is a key mediator of cell death and inflammation. The unique hydrophobic pocket in the allosteric regulatory domain of RIPK1 has enabled the development of highly selective small-molecule inhibitors of its kinase activity, which have demonstrated safety in preclinical models and clinical trials. Potential applications of these RIPK1 inhibitors for the treatment of monogenic and polygenic autoimmune, inflammatory, neurodegenerative, ischaemic and acute conditions, such as sepsis, are emerging. This article reviews RIPK1 biology and disease-associated mutations in RIPK1 signalling pathways, highlighting clinical trials of RIPK1 inhibitors and potential strategies to mitigate development challenges. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) — a key mediator of cell death and inflammation — is activated in human diseases. Here, Yuan and colleagues discuss current understanding of RIPK1 biology and its association with diseases including inflammatory and autoimmune disorders, neurodegenerative diseases and sepsis. The clinical development of small-molecule RIPK1 inhibitors and associated challenges are discussed.
Collapse
Affiliation(s)
- Lauren Mifflin
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Dimitry Ofengeim
- Rare and Neurologic Disease Research, Sanofi, Framingham, MA, USA
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Dhir N, Medhi B, Prakash A, Goyal MK, Modi M, Mohindra S. Pre-clinical to Clinical Translational Failures and Current Status of Clinical Trials in Stroke Therapy: A Brief Review. Curr Neuropharmacol 2020; 18:596-612. [PMID: 31934841 PMCID: PMC7457423 DOI: 10.2174/1570159x18666200114160844] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/31/2019] [Accepted: 12/28/2019] [Indexed: 12/16/2022] Open
Abstract
In stroke (cerebral ischemia), despite continuous efforts both at the experimental and clinical level, the only approved pharmacological treatment has been restricted to tissue plasminogen activator (tPA). Stroke is the leading cause of functional disability and mortality throughout worldwide. Its pathophysiology starts with energy pump failure, followed by complex signaling cascade that ultimately ends in neuronal cell death. Ischemic cascade involves excessive glutamate release followed by raised intracellular sodium and calcium influx along with free radicals' generation, activation of inflammatory cytokines, NO synthases, lipases, endonucleases and other apoptotic pathways leading to cell edema and death. At the pre-clinical stage, several agents have been tried and proven as an effective neuroprotectant in animal models of ischemia. However, these agents failed to show convincing results in terms of efficacy and safety when the trials were conducted in humans following stroke. This article highlights the various agents which have been tried in the past but failed to translate into stroke therapy along with key points that are responsible for the lagging of experimental success to translational failure in stroke treatment.
Collapse
Affiliation(s)
| | - Bikash Medhi
- Address correspondence to this author at the Department of Pharmacology, Research Block B, 4th Floor, Room no 4043, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India; E-mail:
| | | | | | | | | |
Collapse
|
6
|
Liska MG, Crowley MG, Tuazon JP, Borlongan CV. Neuroprotective and neuroregenerative potential of pharmacologically-induced hypothermia with D-alanine D-leucine enkephalin in brain injury. Neural Regen Res 2018; 13:2029-2037. [PMID: 30323116 PMCID: PMC6199924 DOI: 10.4103/1673-5374.241427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022] Open
Abstract
Neurovascular disorders, such as traumatic brain injury and stroke, persist as leading causes of death and disability - thus, the search for novel therapeutic approaches for these disorders continues. Many hurdles have hindered the translation of effective therapies for traumatic brain injury and stroke primarily because of the inherent complexity of neuropathologies and an inability of current treatment approaches to adapt to the unique cell death pathways that accompany the disorder symptoms. Indeed, developing potent treatments for brain injury that incorporate dynamic and multiple disorder-engaging therapeutic targets are likely to produce more effective outcomes than traditional drugs. The therapeutic use of hypothermia presents a promising option which may fit these criteria. While regulated temperature reduction has displayed great promise in preclinical studies of brain injury, clinical trials have been far less consistent and associated with adverse effects, especially when hypothermia is pursued via systemic cooling. Accordingly, devising better methods of inducing hypothermia may facilitate the entry of this treatment modality into the clinic. The use of the delta opioid peptide D-alanine D-leucine enkephalin (DADLE) to pharmacologically induce temperature reduction may offer a potent alternative, as DADLE displays both the ability to cause temperature reduction and to confer a broad profile of other neuroprotective and neuroregenerative processes. This review explores the prospect of DADLE-mediated hypothermia to treat neurovascular brain injuries, emphasizing the translational steps necessary for its clinical translation.
Collapse
Affiliation(s)
- M. Grant Liska
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Marci G. Crowley
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Julian P. Tuazon
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| |
Collapse
|
7
|
Phase I and Phase II Therapies for Acute Ischemic Stroke: An Update on Currently Studied Drugs in Clinical Research. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4863079. [PMID: 28286764 PMCID: PMC5329656 DOI: 10.1155/2017/4863079] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/23/2016] [Indexed: 02/06/2023]
Abstract
Acute ischemic stroke is a devastating cause of death and disability, consequences of which depend on the time from ischemia onset to treatment, the affected brain region, and its size. The main targets of ischemic stroke therapy aim to restore tissue perfusion in the ischemic penumbra in order to decrease the total infarct area by maintaining blood flow. Advances in research of pathological process and pathways during acute ischemia have resulted in improvement of new treatment strategies apart from restoring perfusion. Additionally, limiting the injury severity by manipulating the molecular mechanisms during ischemia has become a promising approach, especially in animal research. The purpose of this article is to review completed and ongoing phases I and II trials for the treatment of acute ischemic stroke, reviewing studies on antithrombotic, thrombolytic, neuroprotective, and antineuroinflammatory drugs that may translate into more effective treatments.
Collapse
|
8
|
Linden J, Van de Beeck L, Plumier JC, Ferrara A. Procedural learning as a measure of functional impairment in a mouse model of ischemic stroke. Behav Brain Res 2016; 307:35-45. [DOI: 10.1016/j.bbr.2016.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 01/20/2023]
|
9
|
Luvizutto GJ, Bazan R, Braga GP, Resende LADL, Bazan SGZ, El Dib R. Pharmacological interventions for unilateral spatial neglect after stroke. Cochrane Database Syst Rev 2015; 2015:CD010882. [PMID: 26544542 PMCID: PMC6465189 DOI: 10.1002/14651858.cd010882.pub2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Unilateral spatial neglect (USN) is characterized by the inability to report or respond to people or objects presented on the side contralateral to the lesioned side of the brain and has been associated with poor functional outcomes and long stays in hospitals and rehabilitation centers. Pharmacological interventions (medical interventions only, use of drugs to improve the health condition), such as dopamine and noradrenergic agonists or pro-cholinergic treatment, have been used in people affected by USN after stroke, and effects of these treatments could provide new insights for health professionals and policy makers. OBJECTIVES To evaluate the effectiveness and safety of pharmacological interventions for USN after stroke. SEARCH METHODS We searched the Cochrane Stroke Group Trials Register (April 2015), the Cochrane Central Register of Controlled Trials (April 2015), MEDLINE (1946 to April 2015), the Cumulative Index to Nursing and Allied Health Literature (CINAHL) (1982 to April 2015), EMBASE (1980 to April 2015), PsycINFO (1806 to April 2015) and Latin American Caribbean Health Sciences Literature (LILACS) (1982 to April 2015). We also searched trials and research registers, screened reference lists, and contacted study authors and pharmaceutical companies (April 2015). SELECTION CRITERIA We included randomized controlled trials (RCTs) and quasi-randomized controlled trials (quasi-RCTs) of pharmacological interventions for USN after stroke. DATA COLLECTION AND ANALYSIS Two review authors independently assessed risk of bias in the included studies and extracted data. MAIN RESULTS We included in the review two studies with a total of 30 randomly assigned participants. We rated the quality of the evidence as very low as the result of study limitations, small numbers of events, and small sample sizes, with imprecision in the confidence interval (CI). We were not able to perform meta-analysis because of heterogeneity related to the different interventions evaluated between included studies. Very low-quality evidence from one trial (20 participants) comparing effects of rivastigmine plus rehabilitation versus rehabilitation on overall USN at discharge showed the following: Barrage (mean difference (MD) 0.30, 95% confidence interval (CI) -0.18 to 0.78); Letter Cancellation (MD 10.60, 95% CI 2.07 to 19.13); Sentence Reading (MD 0.20, 95% CI -0.69 to 1.09), and the Wundt-Jastrow Area Illusion Test (MD -4.40, 95% CI -8.28 to -0.52); no statistical significance was observed for the same outcomes at 30 days' follow-up. In another trial (10 participants), study authors showed statistically significant reduction in omissions in the three cancellation tasks under transdermal nicotine treatment (mean number of omissions 2.93 ± 0.5) compared with both baseline (4.95 ± 0.8) and placebo (5.14 ± 0.9) (main effect of treatment condition: F (2.23) = 11.06; P value < 0.0001). One major adverse event occurred in the transdermal nicotine treatment group, and treatment was discontinued in the affected participant. None of the included trials reported data on several of the prespecified outcomes (falls, balance, depression or anxiety, poststroke fatigue, and quality of life). AUTHORS' CONCLUSIONS The quality of the evidence from available RCTs was very low. The effectiveness and safety of pharmacological interventions for USN after stroke are therefore uncertain. Additional large RCTs are needed to evaluate these treatments.
Collapse
Affiliation(s)
- Gustavo José Luvizutto
- Botucatu Medical School, Universidade Estadual Paulista (UNESP)Department of NeurologyDistrict of Rubiao JuniorBotucatu, São PauloBrazil
| | - Rodrigo Bazan
- Botucatu Medical School, Universidade Estadual Paulista (UNESP)Department of NeurologyDistrict of Rubiao JuniorBotucatu, São PauloBrazil
| | - Gabriel Pereira Braga
- Botucatu Medical School, Universidade Estadual Paulista (UNESP)Department of NeurologyDistrict of Rubiao JuniorBotucatu, São PauloBrazil
| | - Luiz Antônio de Lima Resende
- Botucatu Medical School, Universidade Estadual Paulista (UNESP)Department of NeurologyDistrict of Rubiao JuniorBotucatu, São PauloBrazil
| | - Silméia Garcia Z Bazan
- Botucatu Medical School, Universidade Estadual Paulista (UNESP)Department of Internal MedicineBotucatu, São PauloBrazil18618‐970
| | - Regina El Dib
- Botucatu Medical School, Universidade Estadual Paulista (UNESP)Department of AnaesthesiologyDistrito de Rubião Júnior, s/nBotucatu, São PauloBrazil18603‐970
| | | |
Collapse
|
10
|
Wu H, Yang SF, Dai J, Qiu YM, Miao YF, Zhang XH. Combination of early and delayed ischemic postconditioning enhances brain-derived neurotrophic factor production by upregulating the ERK-CREB pathway in rats with focal ischemia. Mol Med Rep 2015; 12:6427-34. [PMID: 26398857 PMCID: PMC4626133 DOI: 10.3892/mmr.2015.4327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 04/15/2015] [Indexed: 01/19/2023] Open
Abstract
Ischemic postconditioning, including early and delayed ischemic postconditioning, has been recognized as a simple and promising strategy in the treatment of stroke. However, the effects of the combination of early and delayed ischemic postconditioning, and the mechanisms underlying these effects, remain unclear. The aim of the present study was to determine whether the combination of early and delayed ischemic postconditioning offers greater protection against stroke, and enhances the production of brain‑derived neurotrophic factor (BDNF). A combination of early and delayed ischemic postconditioning was established by repeated, transient occlusion and reperfusion of the ipsilateral common carotid artery in a rat model of middle cerebral artery occlusion. Infarct size, motor function, cerebral blood flow and brain edema were then evaluated, in order to confirm the effects of combinative ischemic postconditioning. TUNEL staining was used to analyze the rate of apoptosis of cells in the penumbral area. BDNF, extracellular signal‑regulated kinases 1/2 (ERK1/2) and cAMP response element‑binding protein (CREB) expression was detected using immunofluorescence staining and western blot analysis. The results of the present study indicated that the combination of early and delayed ischemic postconditioning further reduced the infarct volume, stabilized cerebral blood disturbance and attenuated neuronal apoptosis, compared with either alone. However, combinative postconditioning exerted the same effect on neurological function and brain edema, compared with early or delayed ischemic postconditioning alone. Further investigation indicated that combinative ischemic postconditioning increased the expression of BDNF, and a significantly higher number of BDNF‑positive cells was observed in neurons and astrocytes from the combined group than in the early or delayed groups. Combinative ischemic postconditioning also induced the phosphorylation of ERK1/2 and CREB in the cortex, following focal ischemia. The results of the present study suggest that the combination of early and delayed ischemic postconditioning may further reduce brain ischemic reperfusion injury following focal ischemia, compared with either treatment alone. In addition, it induces the production of BDNF in neurons and astrocytes. Furthermore, the effects of combinative ischemic postconditioning may be mediated by the activation of ERK1/2 and CREB.
Collapse
Affiliation(s)
- Hui Wu
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201112, P.R. China
| | - Shao-Feng Yang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201112, P.R. China
| | - Jiong Dai
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201112, P.R. China
| | - Yong-Ming Qiu
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201112, P.R. China
| | - Yi-Feng Miao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201112, P.R. China
| | - Xiao-Hua Zhang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201112, P.R. China
| |
Collapse
|
11
|
Herson PS, Traystman RJ. Animal models of stroke: translational potential at present and in 2050. FUTURE NEUROLOGY 2014; 9:541-551. [PMID: 25530721 DOI: 10.2217/fnl.14.44] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Translation from basic science bench research in ischemic stroke to bedside treatment of patients suffering ischemic stroke remains a difficult challenge. Despite literally hundreds of compounds and interventions that provide benefit in experimental models of cerebral ischemia, efficacy in humans remains to be demonstrated. The reasons for failure to translate the extensive positive basic science findings to successful clinical trials have been the focus of discussion for years. Some attribute the failure to flaws in clinical trial design, others question the predictive value of current animal models and some question the quality of preclinical data. It is likely that a combination of all these shortcomings have ultimately led to the failure. The purpose of this review is to analyze the commonly used animal models used in the field today, provide a framework for understanding the current state of basic science research in the ischemic stroke field and discuss a path forward.
Collapse
Affiliation(s)
- Paco S Herson
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, 12800 E 19th Avenue, Aurora, CO 80045, USA ; Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, 12800 E 19th Avenue, Aurora, CO 80045, USA
| | - Richard J Traystman
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, 12800 E 19th Avenue, Aurora, CO 80045, USA ; Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, 12800 E 19th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
12
|
White HS, Löscher W. Searching for the ideal antiepileptogenic agent in experimental models: single treatment versus combinatorial treatment strategies. Neurotherapeutics 2014; 11:373-84. [PMID: 24425186 PMCID: PMC3996126 DOI: 10.1007/s13311-013-0250-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A major unmet medical need is the lack of treatments to prevent (or modify) epilepsy in patients at risk, for example, after epileptogenic brain insults such as traumatic brain injury, stroke, or prolonged acute symptomatic seizures like complex febrile seizures or status epilepticus. Typically, following such brain insults there is a seizure-free interval ("latent period"), lasting months to years before the onset of spontaneous recurrent epileptic seizures. The latent period after a brain insult offers a window of opportunity in which an appropriate treatment may prevent or modify the epileptogenic process induced by a brain insult. A similar latent period occurs in patients with epileptogenic gene mutations. Studies using animal models of epilepsy have led to a greater understanding of the factors underlying epileptogenesis and have provided significant insight into potential targets by which the development of epilepsy may be prevented or modified. This review focuses largely on some of the most common animal models of epileptogenesis and their potential utility for evaluating proposed antiepileptogenic therapies and identifying useful biomarkers. The authors also describe some of the limitations of using animal models in the search for therapies that move beyond the symptomatic treatment of epilepsy. Promising results of previous studies designed to evaluate antiepileptogenesis and the role of monotherapy versus polytherapy approaches are also discussed. Recent data from both models of genetic and acquired epilepsies strongly indicate that it is possible to prevent or modify epileptogenesis, and, hopefully, such promising results can ultimately be translated into the clinic.
Collapse
Affiliation(s)
- H. Steve White
- />Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT USA
| | - Wolfgang Löscher
- />Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
- />Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|