1
|
Gomaa S, Nassef M, Hafez A. Potentials of bone marrow cells-derived from naïve or diabetic mice in autoimmune type 1 diabetes: immunomodulatory, anti-inflammatory, anti hyperglycemic, and antioxidative. Endocrine 2024; 86:959-979. [PMID: 39014283 PMCID: PMC11554735 DOI: 10.1007/s12020-024-03929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND The scarcity of transplanted human islet tissue and the requirement for immunosuppressive drugs to prevent the rejection of allogeneic grafts have hindered the treatment of autoimmune type 1 diabetes mellitus (T1DM) through islet transplantation. However, there is hope in adoptively transferred bone marrow cells (BMCs) therapy, which has emerged as a propitious pathway for forthcoming medications. BMCs have the potential to significantly impact both replacement and regenerative therapies for a range of disorders, including diabetes mellitus, and have demonstrated anti-diabetic effects. AIM The main goal of this study is to evaluate the effectiveness of adoptively transferred bone marrow cells derived from either naïve mice (nBMCs) or diabetic mice (dBMCs) in treating a T1DM mice model. METHODS Male Swiss albino mice were starved for 16 h and then injected with streptozotocin (STZ) at a dose of 40 mg/kg body weight for 5 consecutive days to induce T1DM. After 14 days, the diabetic mice were distributed into four groups. The first group served as a diabetic control treated with sodium citrate buffer, while the other three groups were treated for two weeks, respectively, with insulin (subcutaneously at a dose of 8 U/kg/day), nBMCs (intravenously at a dose of 1 × 106 cells/mouse/once), and dBMCs (intravenously at a dose of 1 × 106 cells/mouse/once). RESULTS It is worth noting that administering adoptively transferred nBMCs or adoptively transferred dBMCs to STZ-induced T1DM mice resulted in a significant amelioration in glycemic condition, accompanied by a considerable reduction in the level of blood glucose and glycosylated hemoglobin % (HbA1C %), ultimately restoring serum insulin levels to their initial state in control mice. Administering nBMCs or dBMCs to STZ-induced T1DM mice led to a remarkable decrease in levels of inflammatory cytokine markers in the serum, including interferon-γ (INF-γ), tumor necrosis factor- α (TNF-α), tumor growth factor-β (TGF-β), interleukin-1 β (L-1β), interlekin-4 (IL-4), interleukin-6 (IL-6), and interleukin-10 (IL-10). Additionally, STZ-induced T1DM mice, when treated with nBMCs or dBMCs, experienced a notable rise in total immunoglobulin (Ig) level. Furthermore, there was a significant reduction in the levels of islet cell autoantibodies (ICA) and insulin autoantibodies (IAA). Furthermore, the serum of STZ-induced T1DM mice showed a significant increase in Zinc transporter 8 antigen protein (ZnT8), islet antigen 2 protein (IA-2), and glutamic acid decarboxylase antigen protein (GAD) levels. Interestingly, the administration of nBMCs or dBMCs resulted in a heightened expression of IA-2 protein in STZ-induced T1DM mice treated with nBMCs or dBMCs. Furthermore, the level of malondialdehyde (MDA) was increased, while the levels of catalase (CAT) and superoxide dismutase (SOD) were decreased in non-treated STZ-induced T1DM mice. However, when nBMCs or dBMCs were administered to STZ-induced T1DM mice, it had a significant impact on reducing oxidative stress. This was accomplished by reducing the levels of MDA in the serum and enhancing the activities of enzymatic antioxidants like CAT and SOD. STZ-induced T1DM mice displayed a significant elevation in the levels of liver enzymes ALT and AST, as well as heightened levels of creatinine and urea. Considering the crucial roles of the liver and kidney in metabolism and excretion, this research further examined the effects of administering nBMCs or dBMCs to STZ-induced T1DM mice. Notably, the administration of these cells alleviated the observed effects. CONCLUSION The present study suggests that utilizing adoptively transferred nBMCs or adoptively transferred dBMCs in the treatment of T1DM led to noteworthy decreases in blood glucose levels, possibly attributed to their capacity to enhance insulin secretion and improve the performance of pancreatic islets. Additionally, BMCs may exert their beneficial effects on the pancreatic islets of diabetic mice through their immunomodulatory, antioxidant, anti-inflammatory, and anti-oxidative stress properties.
Collapse
Affiliation(s)
- Soha Gomaa
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Mohamed Nassef
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Amira Hafez
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Ghoneim MA, Gabr MM, El-Halawani SM, Refaie AF. Current status of stem cell therapy for type 1 diabetes: a critique and a prospective consideration. Stem Cell Res Ther 2024; 15:23. [PMID: 38281991 PMCID: PMC10823744 DOI: 10.1186/s13287-024-03636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024] Open
Abstract
Over the past decade, there had been progress in the development of cell therapy for insulin-dependent diabetes. Nevertheless, important hurdles that need to be overcome still remain. Protocols for the differentiation of pluripotent stem cells into pancreatic progenitors or fully differentiated β-cells have been developed. The resulting insulin-producing cells can control chemically induced diabetes in rodents and were the subject of several clinical trials. However, these cells are immunogenic and possibly teratogenic for their transplantation, and an immunoisolation device and/or immunosuppression is needed. A growing number of studies have utilized genetic manipulations to produce immune evasive cells. Evidence must be provided that in addition to the expected benefit, gene manipulations should not lead to any unforeseen complications. Mesenchymal stem/stromal cells (MSCs) can provide a viable alternative. MSCs are widely available from many tissues. They can form insulin-producing cells by directed differentiation. Experimentally, evidence has shown that the transplantation of allogenic insulin-producing cells derived from MSCs is associated with a muted allogeneic response that does not interfere with their functionality. This can be explained by the immunomodulatory functions of the MSC subpopulation that did not differentiate into insulin-producing cells. Recently, exosomes derived from naive MSCs have been used in the experimental domain to treat diabetes in rodents with varying degrees of success. Several mechanisms for their beneficial functions were proposed including a reduction in insulin resistance, the promotion of autophagy, and an increase in the T regulatory population. However, euglycemia was not achieved in any of these experiments. We suggest that exosomes derived from β-cells or insulin-producing cells (educated) can provide a better therapeutic effect than those derived from undifferentiated cells.
Collapse
|
3
|
Giusto K, Wanczyk H, Jensen T, Finck C. Hyperoxia-induced bronchopulmonary dysplasia: better models for better therapies. Dis Model Mech 2021; 14:dmm047753. [PMID: 33729989 PMCID: PMC7927658 DOI: 10.1242/dmm.047753] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease caused by exposure to high levels of oxygen (hyperoxia) and is the most common complication that affects preterm newborns. At present, there is no cure for BPD. Infants can recover from BPD; however, they will suffer from significant morbidity into adulthood in the form of neurodevelopmental impairment, asthma and emphysematous changes of the lung. The development of hyperoxia-induced lung injury models in small and large animals to test potential treatments for BPD has shown some success, yet a lack of standardization in approaches and methods makes clinical translation difficult. In vitro models have also been developed to investigate the molecular pathways altered during BPD and to address the pitfalls associated with animal models. Preclinical studies have investigated the efficacy of stem cell-based therapies to improve lung morphology after damage. However, variability regarding the type of animal model and duration of hyperoxia to elicit damage exists in the literature. These models should be further developed and standardized, to cover the degree and duration of hyperoxia, type of animal model, and lung injury endpoint, to improve their translational relevance. The purpose of this Review is to highlight concerns associated with current animal models of hyperoxia-induced BPD and to show the potential of in vitro models to complement in vivo studies in the significant improvement to our understanding of BPD pathogenesis and treatment. The status of current stem cell therapies for treatment of BPD is also discussed. We offer suggestions to optimize models and therapeutic modalities for treatment of hyperoxia-induced lung damage in order to advance the standardization of procedures for clinical translation.
Collapse
Affiliation(s)
- Kiersten Giusto
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Heather Wanczyk
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Todd Jensen
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Christine Finck
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
- Department of Surgery, Connecticut Children's Medical Center, Hartford, CT, USA
| |
Collapse
|
4
|
De Paepe ME, Wong T, Chu S, Mao Q. Stromal cell-derived factor-1 (SDF-1) expression in very preterm human lungs: potential relevance for stem cell therapy for bronchopulmonary dysplasia. Exp Lung Res 2020; 46:146-156. [PMID: 32281423 DOI: 10.1080/01902148.2020.1751899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background: The axis formed by CXC chemokine receptor 4 (CXCR4), expressed on mesenchymal stromal cells (MSCs), and stromal cell-derived factor-1 (SDF-1), expressed in recipient organs, is a critical mediator of MSC migration in non-pulmonary injury models. The role and regulation of SDF-1 expression in preterm lungs, of potential relevance for MSC-based cell therapy for bronchopulmonary dysplasia (BPD), is unknown. The aim of this study was to determine the spatiotemporal pattern of CXCR4/SDF-1 expression in lungs of extremely preterm infants at risk for BPD.Methods: Postmortem lung samples were collected from ventilated extremely preterm infants who died between 23 and 29 wks ("short-term ventilated") or between 36 and 39 wks ("long-term ventilated") corrected postmenstrual age. Results were compared with age-matched infants who had lived <12 h or stillborn infants ("early" and "late" controls). CXCR4 and SDF-1 expression was studied by immunohistochemistry, immunofluorescence/confocal microscopy, and qRT-PCR analysis.Results: Compared with age-matched controls without antenatal infection, lungs of early control infants with evidence of intrauterine infection/inflammation showed significant upregulation of SDF-1 expression, localized to the respiratory epithelium, and of CXCR4 expression, localized to stromal cells. Similarly, pulmonary SDF-1 mRNA levels were significantly higher in long-term ventilated ex-premature infants with established BPD than in age-matched controls. The pulmonary vasculature was devoid of SDF-1 expression at all time points. Endogenous CXCR4-positive stromal cells were preferentially localized along the basal aspect of SDF-1-positive bronchial and respiratory epithelial cells, suggestive of functionality of the CXCR4/SDF-1 axis.Conclusions: Incipient and established neonatal lung injury is associated with upregulation of SDF-1 expression, restricted to the respiratory epithelium. Knowledge of the clinical associations, time-course and localization of pulmonary SDF-1 expression may guide decisions about the optimal timing and delivery route of MSC-based cell therapy for BPD.
Collapse
Affiliation(s)
- Monique E De Paepe
- Department of Pathology and Laboratory Medicine, Women and Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Talia Wong
- Department of Pathology and Laboratory Medicine, Women and Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Sharon Chu
- Department of Pathology and Laboratory Medicine, Women and Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Quanfu Mao
- Department of Pathology and Laboratory Medicine, Women and Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
5
|
Noninvasive Monitoring of Allogeneic Stem Cell Delivery with Dual-Modality Imaging-Visible Microcapsules in a Rabbit Model of Peripheral Arterial Disease. Stem Cells Int 2019; 2019:9732319. [PMID: 31001343 PMCID: PMC6437732 DOI: 10.1155/2019/9732319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/06/2019] [Accepted: 01/28/2019] [Indexed: 01/08/2023] Open
Abstract
Stem cell therapies, although promising for treating peripheral arterial disease (PAD), often suffer from low engraftment rates and the inability to confirm the delivery success and track cell distribution and engraftment. Stem cell microencapsulation combined with imaging contrast agents may provide a means to simultaneously enhance cell survival and enable cell tracking with noninvasive imaging. Here, we have evaluated a novel MRI- and X-ray-visible microcapsule formulation for allogeneic mesenchymal stem cell (MSC) delivery and tracking in a large animal model. Bone marrow-derived MSCs from male New Zealand White rabbits were encapsulated using a modified cell encapsulation method to incorporate a dual-modality imaging contrast agent, perfluorooctyl bromide (PFOB). PFOB microcapsules (PFOBCaps) were then transplanted into the medial thigh of normal or PAD female rabbits. In vitro MSC viability remained high (79 ± 5% at 4 weeks of postencapsulation), and as few as two and ten PFOBCaps could be detected in phantoms using clinical C-arm CT and 19F MRI, respectively. Successful injections of PFOBCaps in the medial thigh of normal (n = 15) and PAD (n = 16) rabbits were demonstrated on C-arm CT at 1-14 days of postinjection. Using 19F MRI, transplanted PFOBCaps were clearly identified as “hot spots” and showed one-to-one correspondence to the radiopacities on C-arm CT. Concordance of 19F MRI and C-arm CT locations of PFOBCaps with postmortem locations was high (95%). Immunohistological analysis revealed high MSC survival in PFOBCaps (>56%) two weeks after transplantation while naked MSCs were no longer viable beyond three days after delivery. These findings demonstrate that PFOBCaps could maintain cell viability even in the ischemic tissue and provide a means to monitor cell delivery and track engraftment using clinical noninvasive imaging systems.
Collapse
|
6
|
Li X, Meng Q, Zhang L. The Fate of Allogeneic Pancreatic Islets following Intraportal Transplantation: Challenges and Solutions. J Immunol Res 2018; 2018:2424586. [PMID: 30345316 PMCID: PMC6174795 DOI: 10.1155/2018/2424586] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
Pancreatic islet transplantation as a therapeutic option for type 1 diabetes mellitus is gaining widespread attention because this approach can restore physiological insulin secretion, minimize the risk of hypoglycemic unawareness, and reduce the risk of death due to severe hypoglycemia. However, there are many obstacles contributing to the early mass loss of the islets and progressive islet loss in the late stages of clinical islet transplantation, including hypoxia injury, instant blood-mediated inflammatory reactions, inflammatory cytokines, immune rejection, metabolic exhaustion, and immunosuppression-related toxicity that is detrimental to the islet allograft. Here, we discuss the fate of intrahepatic islets infused through the portal vein and propose potential interventions to promote islet allograft survival and improve long-term graft function.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086 Heilongjiang Province, China
| | - Qiang Meng
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086 Heilongjiang Province, China
| | - Lei Zhang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086 Heilongjiang Province, China
| |
Collapse
|
7
|
Evaluation of platelet lysate as a substitute for FBS in explant and enzymatic isolation methods of human umbilical cord MSCs. Sci Rep 2018; 8:12439. [PMID: 30127445 PMCID: PMC6102222 DOI: 10.1038/s41598-018-30772-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have immense potential for cell-based therapy of acute and chronic pathological conditions. MSC transplantation for cell-based therapy requires a substantial number of cells in the range of 0.5–2.5 × 106 cells/kg body weight of an individual. A prolific source of MSCs followed by in vitro propagation is therefore an absolute prerequisite for clinical applications. Umbilical cord tissue (UCT) is an abundantly available prolific source of MSC that are fetal in nature and have higher potential for ex-vivo expansion. However, the ex-vivo expansion of MSCs using a xenogeneic supplement such as fetal bovine serum (FBS) carries the risk of transmission of zoonotic infections and immunological reactions. We used platelet lysate (PL) as a xeno-free, allogeneic replacement for FBS and compared the biological and functional characteristics of MSC processed and expanded with PL and FBS by explant and enzymatic method. UCT-MSCs expanded using PL displayed typical immunophenotype, plasticity, immunomodulatory property and chromosomal stability. PL supplementation also showed 2-fold increase in MSC yield from explant culture with improved immunomodulatory activity as compared to enzymatically dissociated cultures. In conclusion, PL from expired platelets is a viable alternative to FBS for generating clinically relevant numbers of MSC from explant cultures over enzymatic method.
Collapse
|
8
|
Current Status of Stem Cell Treatment for Type I Diabetes Mellitus. Tissue Eng Regen Med 2018; 15:699-709. [PMID: 30603589 DOI: 10.1007/s13770-018-0143-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetes mellitus is a major health concern in current scenario which has been found to affect people of almost all ages. The disease has huge impact on global health; therefore, alternate methods apart from insulin injection are being explored to cure diabetes. Therefore, this review mainly focuses on the current status and therapeutic potential of stem cells mainly mesenchymal stem cells (MSCs) for Type 1 diabetes mellitus in preclinical animal models as well as humans. METHODS Current treatment for Type 1 diabetes mellitus mainly includes use of insulin which has its own limitations and also the underlying mechanism of diseases is still not explored. Therefore, alternate methods to cure diabetes are being explored. Stem cells are being investigated as an alternative therapy for treatment of various diseases including diabetes. Few preclinical studies have also been conducted using undifferentiated MSCs as well as in vitro MSCs differentiated into β islet cells. RESULTS These stem cell transplant studies have highlighted the benefits of MSCs, which have shown promising results. Few human trials using stem cells have also affirmed the potential of these cells in alleviating the symptoms. CONCLUSION Stem cell transplantation may prove to be a safe and effective treatment for patients with Type 1 diabetes mellitus.
Collapse
|
9
|
Early islets and mesenchyme from an injured adult pancreas improve syngeneic engraftments and islet graft function in diabetic rats. Acta Histochem 2018; 120:356-362. [PMID: 29622345 DOI: 10.1016/j.acthis.2018.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/10/2018] [Accepted: 03/26/2018] [Indexed: 12/12/2022]
Abstract
A decrease in mass of isografts and a decline in islet function are major challenges in islet transplantations. Despite this, transplantation of 84 h harvested pancreatic duct ligation (PDL) tissues have been shown to have the same functional ability to foetal pancreata, but there was only 40% success in reverting hyperglycaemia. We tested the potential of early islets with mesenchymal stromal cells (MSCs) to promote isogeneic grafts survival and to restore normoglycemia in diabetic rats, in comparison with late islets. Islets were isolated from injured adult pancreata of donor rats at 24 h post ligation either with MSCs (24 h islet/MSC+) or without MSCs (24 h islet/MSC-), and at 84 h without MSCs (84 h islet/MSC-). These cells were transplanted under the renal capsule of syngeneic STZ-diabetic recipient rats. The islet grafts were monitored using the BGLs of recipients and the immunohistomorphology of the grafts were analysed using anti-insulin and anti-Ki67 antibodies. The mean BGL in 24 h islet/MSC+ recipients was reduced over time toward the control value. The curves of the mean BGLs in the control islet/MSC- and the 24 h islet/MSC- recipients dropped significantly below the control normal glucose group's levels to reach their nadirs on weeks 4 and 6, respectively. Both curves had a peak overshoot on week 9, with no statistical significant difference between them. Engrafted islets were evident in these recipients, lasted for 5 and 6 weeks and correspondingly survived failure. However, insulin+ cells were present in the isografts of all recipients; but, only isografts in the 24 h islet/MSC+ presented with a homogenous subcapsular beta cell mass. In addition, the tendency of 24 h islet/MSC- to restore normoglycaemia with its survival capacity was statistically highly significant compared to the 84 islet/MSC- recipients (80%; 20%; p = 0.001). Transplantation of early islets with MSCs from injured adult pancreata prolongs islet graft survival and improves isograft function in diabetic rats. This novel observation requires much further exploration for its clinical application, but this model already provides hope for new sources of donor islets for transplantation.
Collapse
|
10
|
Arany EJ, Waseem M, Strutt BJ, Chamson-Reig A, Bernardo A, Eng E, Hill DJ. Direct comparison of the abilities of bone marrow mesenchymal versus hematopoietic stem cells to reverse hyperglycemia in diabetic NOD.SCID mice. Islets 2018; 10:137-150. [PMID: 30110202 PMCID: PMC6281365 DOI: 10.1080/19382014.2018.1480285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Both bone marrow-derived hematopoietic stem cells (HSC) and mesenchymal stem cells (MSC) improve glycemic control in diabetic mice, but their kinetics and associated changes in pancreatic morphology have not been directly compared. Our goal was to examine the time course of improvements in glucose tolerance and associated changes in β-cell mass and proliferation following transplantation of equivalent numbers of HSC or MSC from the same bone marrow into diabetic non-obese diabetic severe combined immune deficiency (NOD.SCID) mice. We used transgenic mice with a targeted expression of yellow fluorescent protein (YFP) driven by the Vav1 gene promoter to genetically tag HSC and progeny. HSC were separated from bone marrow by fluorescence-activated cell sorting and MSC following cell culture. Equivalent numbers of isolated HSC or MSC were transplanted directly into the pancreas of NOD.SCID mice previously made diabetic with streptozotocin. Glucose tolerance, serum insulin, β-cell mass and β-cell proliferation were examined up to 28 days following transplant. Transplantation with MSC improved glucose tolerance within 7 days and serum insulin levels increased, but with no increase in β-cell mass. Mice transplanted with HSC showed improved glucose tolerance only after 3 weeks associated with increased β-cell proliferation and mass. We conclude that single injections of either MSC or HSC transiently improved glycemic control in diabetic NOD.SCID mice, but with different time courses. However, only HSC infiltrated the islets and were associated with an expanded β-cell mass. This suggests that MSC and HSC have differing mechanisms of action.
Collapse
Affiliation(s)
- Edith J. Arany
- Lawson Health Research Institute, London, ON, Canada
- Department of Medicine, Western University, London, ON, Canada
- Department of Pathology, Western University, London, ON, Canada
- CONTACT Dr. David J. Hill Lawson Health Research Institute, St. Joseph’s Health Care, 268 Grosvenor St, London ON Canada N6A 4V2
| | - Muhammad Waseem
- Lawson Health Research Institute, London, ON, Canada
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | | | - Adam Bernardo
- Lawson Health Research Institute, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Elizabeth Eng
- Lawson Health Research Institute, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - David J. Hill
- Lawson Health Research Institute, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Department of Medicine, Western University, London, ON, Canada
| |
Collapse
|
11
|
Peng BY, Dubey NK, Mishra VK, Tsai FC, Dubey R, Deng WP, Wei HJ. Addressing Stem Cell Therapeutic Approaches in Pathobiology of Diabetes and Its Complications. J Diabetes Res 2018; 2018:7806435. [PMID: 30046616 PMCID: PMC6036791 DOI: 10.1155/2018/7806435] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/19/2018] [Accepted: 05/27/2018] [Indexed: 12/14/2022] Open
Abstract
High morbidity and mortality of diabetes mellitus (DM) throughout the human population is a serious threat which needs to be addressed cautiously. Type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) are most prevalent forms. Disruption in insulin regulation and resistance leads to increased formation and accumulation of advanced end products (AGEs), which further enhance oxidative and nitrosative stress leading to microvascular (retinopathy, neuropathy, and nephropathy) and macrovascular complications. These complications affect the normal function of organ and tissues and may cause life-threatening disorders, if hyperglycemia persists and improperly controlled. Current and traditional treatment procedures are only focused on to regulate the insulin level and do not cure the diabetic complications. Pancreatic transplantation seemed a viable alternative; however, it is limited due to lack of donors. Cell-based therapy such as stem cells is considered as a promising therapeutic agent against DM and diabetic complications owing to their multilineage differentiation and regeneration potential. Previous studies have demonstrated the various impacts of both pluripotent and multipotent stem cells on DM and its micro- and macrovascular complications. Therefore, this review summarizes the potential of stem cells to treat DM and its related complications.
Collapse
Affiliation(s)
- Bou-Yue Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Department of Dentistry, Taipei Medical University Hospital, Taipei City 110, Taiwan
| | - Navneet Kumar Dubey
- Ceramics and Biomaterials Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Viraj Krishna Mishra
- Applied Biotech Engineering Centre (ABEC), Department of Biotechnology, Ambala College of Engineering and Applied Research, Ambala, India
| | - Feng-Chou Tsai
- Department of Stem Cell Research, Cosmetic Clinic Group, Taipei City 110, Taiwan
| | - Rajni Dubey
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei City 106, Taiwan
| | - Win-Ping Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Hong-Jian Wei
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
| |
Collapse
|
12
|
Ee MT, Thébaud B. The Therapeutic Potential of Stem Cells for Bronchopulmonary Dysplasia: "It's About Time" or "Not so Fast" ? Curr Pediatr Rev 2018; 14:227-238. [PMID: 30205800 PMCID: PMC6416190 DOI: 10.2174/1573396314666180911100503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/09/2018] [Accepted: 09/10/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVE While the survival of extremely premature infants has improved over the past decades, the rate of complications - especially for bronchopulmonary dysplasia (BPD) - remains unacceptably high. Over the past 50 years, no safe therapy has had a substantial impact on the incidence and severity of BPD. METHODS This may stem from the multifactorial disease pathogenesis and the increasing lung immaturity. Mesenchymal Stromal Cells (MSCs) display pleiotropic effects and show promising results in neonatal rodents in preventing or rescuing lung injury without adverse effects. Early phase clinical trials are now underway to determine the safety and efficacy of this therapy in extremely premature infants. RESULTS AND CONCLUSION This review summarizes our current knowledge about MSCs, their mechanism of action and the results of preclinical studies that provide the rationale for early phase clinical trials and discuss remaining gaps in our knowledge.
Collapse
Affiliation(s)
- Mong Tieng Ee
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, Canada
| | - Bernard Thébaud
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, Canada.,Sinclair Centre for Regenerative Medicine, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
13
|
Song L, Sun Z, Kim DS, Gou W, Strange C, Dong H, Cui W, Gilkeson G, Morgan KA, Adams DB, Wang H. Adipose stem cells from chronic pancreatitis patients improve mouse and human islet survival and function. Stem Cell Res Ther 2017; 8:192. [PMID: 28854965 PMCID: PMC5577777 DOI: 10.1186/s13287-017-0627-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/09/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Chronic pancreatitis has surgical options including total pancreatectomy to control pain. To avoid surgical diabetes, the explanted pancreas can have islets harvested and transplanted. Immediately following total pancreatectomy with islet autotransplantation (TP-IAT), many islet cells die due to isolation and transplantation stresses. The percentage of patients remaining insulin free after TP-IAT is therefore low. We determined whether cotransplantation of adipose-derived mesenchymal stem cells (ASCs) from chronic pancreatitis patients (CP-ASCs) would protect islets after transplantation. METHODS In a marginal mass islet transplantation model, islets from C57BL/6 mice were cotransplanted with CP-ASCs into syngeneic streptozotocin-treated diabetic mice. Treatment response was defined by the percentage of recipients reaching normoglycemia, and by the area under the curve for glucose and c-peptide in a glucose tolerance test. Macrophage infiltration, β-cell apoptosis, and islet graft vasculature were measured in transplanted islet grafts by immunohistochemistry. mRNA expression profiling of 84 apoptosis-related genes in islet grafts transplanted alone or with CP-ASCs was measured by the RT2 Profiler™ Apoptosis PCR Array. The impact of insulin-like growth factor-1 (IGF-1) on islet apoptosis was determined in islets stimulated with cytokines (IL-1β and IFN-γ) in the presence and absence of CP-ASC conditioned medium. RESULTS CP-ASC-treated mice were more often normoglycemic compared to mice receiving islets alone. ASC cotransplantation reduced macrophage infiltration, β-cell death, suppressed expression of TNF-α and Bcl-2 modifying factor (BMF), and upregulated expressions of IGF-1 and TNF Receptor Superfamily Member 11b (TNFRSF11B) in islet grafts. Islets cultured in conditioned medium from CP-ASCs showed reduced cell death. This protective effect was diminished when IGF-1 was blocked in the conditioned medium by the anti-IGF-1 antibody. CONCLUSION Cotransplantation of islets with ASCs from the adipose of chronic pancreatitis patients improved islet survival and islet function after transplantation. The effects are in part mediated by paracrine secretion of IGF-1, suppression of inflammation, and promotion of angiogenesis. ASCs from chronic pancreatitis patients have the potential to be used as a synergistic therapy to enhance the efficacy of islet transplantation following pancreatectomy.
Collapse
Affiliation(s)
- Lili Song
- Department of Surgery, Medical University of South Carolina, BSB 641, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Zhen Sun
- Department of Surgery, Medical University of South Carolina, BSB 641, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Do-Sung Kim
- Department of Surgery, Medical University of South Carolina, BSB 641, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Wenyu Gou
- Department of Surgery, Medical University of South Carolina, BSB 641, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Charlie Strange
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Huansheng Dong
- Department of Surgery, Medical University of South Carolina, BSB 641, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Wanxing Cui
- Medstar Georgetown University Hospital, Washington, DC, USA
| | - Gary Gilkeson
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Katherine A Morgan
- Department of Surgery, Medical University of South Carolina, BSB 641, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - David B Adams
- Department of Surgery, Medical University of South Carolina, BSB 641, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, BSB 641, 173 Ashley Avenue, Charleston, SC, 29425, USA. .,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
14
|
Westenfelder C, Gooch A, Hu Z, Ahlstrom J, Zhang P. Durable Control of Autoimmune Diabetes in Mice Achieved by Intraperitoneal Transplantation of "Neo-Islets," Three-Dimensional Aggregates of Allogeneic Islet and "Mesenchymal Stem Cells". Stem Cells Transl Med 2017; 6:1631-1643. [PMID: 28467694 PMCID: PMC5689775 DOI: 10.1002/sctm.17-0005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/01/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
Novel interventions that reestablish endogenous insulin secretion and thereby halt progressive end-organ damage and prolong survival of patients with autoimmune Type 1 diabetes mellitus (T1DM) are urgently needed. While this is currently accomplished with allogeneic pancreas or islet transplants, their utility is significantly limited by both the scarcity of organ donors and life-long need for often-toxic antirejection drugs. Coadministering islets with bone marrow-derived mesenchymal stem cells (MSCs) that exert robust immune-modulating, anti-inflammatory, anti-apoptotic, and angiogenic actions, improves intrahepatic islet survival and function. Encapsulation of insulin-producing cells to prevent immune destruction has shown both promise and failures. Recently, stem cell-derived insulin secreting β-like cells induced euglycemia in diabetic animals, although their clinical use would still require encapsulation or anti-rejection drugs. Instead of focusing on further improvements in islet transplantation, we demonstrate here that the intraperitoneal administration of islet-sized "Neo-Islets" (NIs), generated by in vitro coaggregation of allogeneic, culture-expanded islet cells with high numbers of immuno-protective and cyto-protective MSCs, resulted in their omental engraftment in immune-competent, spontaneously diabetic nonobese diabetic (NOD) mice. This achieved long-term glycemic control without immunosuppression and without hypoglycemia. In preparation for an Food and Drug Administration-approved clinical trial in dogs with T1DM, we show that treatment of streptozotocin-diabetic NOD/severe combined immunodeficiency mice with identically formed canine NIs produced durable euglycemia, exclusively mediated by dog-specific insulin. We conclude that this novel technology has significant translational relevance for canine and potentially clinical T1DM as it effectively addresses both the organ donor scarcity (>80 therapeutic NI doses/donor pancreas can be generated) and completely eliminates the need for immunosuppression. Stem Cells Translational Medicine 2017;6:1631-1643.
Collapse
Affiliation(s)
- Christof Westenfelder
- Department of Medicine, Division of Nephrology, University of Utah and VA Medical Centers, Salt Lake City, Utah, USA
| | - Anna Gooch
- SymbioCellTech, LLC, Salt Lake City, Utah, USA
| | - Zhuma Hu
- SymbioCellTech, LLC, Salt Lake City, Utah, USA
| | | | - Ping Zhang
- SymbioCellTech, LLC, Salt Lake City, Utah, USA
| |
Collapse
|
15
|
Kota DJ, Prabhakara KS, Toledano-Furman N, Bhattarai D, Chen Q, DiCarlo B, Smith P, Triolo F, Wenzel PL, Cox CS, Olson SD. Prostaglandin E2 Indicates Therapeutic Efficacy of Mesenchymal Stem Cells in Experimental Traumatic Brain Injury. Stem Cells 2017; 35:1416-1430. [DOI: 10.1002/stem.2603] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Daniel J. Kota
- Children-s Health Research Center; Sanford Research; Sioux Falls South Dakota USA
| | - Karthik S. Prabhakara
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Naama Toledano-Furman
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Deepa Bhattarai
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Qingzheng Chen
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Bryan DiCarlo
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Philippa Smith
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Fabio Triolo
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Pamela L. Wenzel
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Charles S. Cox
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Scott D. Olson
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| |
Collapse
|
16
|
Staels W, De Groef S, Heremans Y, Coppens V, Van Gassen N, Leuckx G, Van de Casteele M, Van Riet I, Luttun A, Heimberg H, De Leu N. Accessory cells for β-cell transplantation. Diabetes Obes Metab 2016; 18:115-24. [PMID: 26289770 DOI: 10.1111/dom.12556] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/22/2015] [Accepted: 08/13/2015] [Indexed: 12/16/2022]
Abstract
Despite recent advances, insulin therapy remains a treatment, not a cure, for diabetes mellitus with persistent risk of glycaemic alterations and life-threatening complications. Restoration of the endogenous β-cell mass through regeneration or transplantation offers an attractive alternative. Unfortunately, signals that drive β-cell regeneration remain enigmatic and β-cell replacement therapy still faces major hurdles that prevent its widespread application. Co-transplantation of accessory non-islet cells with islet cells has been shown to improve the outcome of experimental islet transplantation. This review will highlight current travails in β-cell therapy and focuses on the potential benefits of accessory cells for islet transplantation in diabetes.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Cell Separation/trends
- Cells, Cultured
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/surgery
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/surgery
- Endothelial Progenitor Cells/cytology
- Endothelial Progenitor Cells/immunology
- Endothelial Progenitor Cells/pathology
- Endothelial Progenitor Cells/transplantation
- Graft Rejection/immunology
- Graft Rejection/metabolism
- Graft Rejection/prevention & control
- Graft Survival
- Humans
- Immune Tolerance
- Insulin-Secreting Cells/cytology
- Insulin-Secreting Cells/immunology
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/transplantation
- Islets of Langerhans Transplantation/adverse effects
- Islets of Langerhans Transplantation/immunology
- Mesenchymal Stem Cell Transplantation/adverse effects
- Mesenchymal Stem Cell Transplantation/trends
- Neural Crest/cytology
- Neural Crest/immunology
- Neural Crest/pathology
- Neural Crest/transplantation
- Stem Cell Transplantation/adverse effects
- Stem Cell Transplantation/trends
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- T-Lymphocytes, Regulatory/transplantation
- Transplantation, Autologous/adverse effects
- Transplantation, Autologous/trends
- Transplantation, Heterotopic/adverse effects
- Transplantation, Heterotopic/trends
- Transplantation, Homologous/adverse effects
- Transplantation, Homologous/trends
Collapse
Affiliation(s)
- W Staels
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- Division of Pediatric Endocrinology, Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
- Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - S De Groef
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Y Heremans
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - V Coppens
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - N Van Gassen
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - G Leuckx
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - M Van de Casteele
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - I Van Riet
- Department Hematology Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - A Luttun
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - H Heimberg
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - N De Leu
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Endocrinology, UZ Brussel, Brussels, Belgium
- Department of Endocrinology, ASZ Aalst, Aalst, Belgium
| |
Collapse
|
17
|
He B, Li X, Yu H, Zhou Z. Therapeutic potential of umbilical cord blood cells for type 1 diabetes mellitus. J Diabetes 2015; 7:762-73. [PMID: 25799887 DOI: 10.1111/1753-0407.12286] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/25/2015] [Accepted: 03/09/2015] [Indexed: 12/18/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic disorder that results from autoimmune-mediated destruction of pancreatic islet β-cells. However, to date, no conventional intervention has successfully treated the disease. The optimal therapeutic method for T1DM should effectively control the autoimmunity, restore immune homeostasis, preserve residual β-cells, reverse β-cell destruction, and protect the regenerated insulin-producing cells against re-attack. Umbilical cord blood is rich in regulatory T (T(reg)) cells and multiple types of stem cells that exhibit immunomodulating potential and hold promise in their ability to restore peripheral tolerance towards pancreatic islet β-cells through remodeling of immune responses and suppression of autoreactive T cells. Recently, reinfusion of autologous umbilical cord blood or immune cells from cord blood has been proposed as a novel therapy for T1DM, with the advantages of no risk to the donors, minimal ethical concerns, a low incidence of graft-versus-host disease and easy accessibility. In this review, we revisit the role of autologous umbilical cord blood or immune cells from cord blood-based applications for the treatment of T1DM.
Collapse
Affiliation(s)
- Binbin He
- Institute of Metabolism and Endocrinology, 2nd Xiangya Hospital, Central South University, Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Xia Li
- Institute of Metabolism and Endocrinology, 2nd Xiangya Hospital, Central South University, Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Haibo Yu
- Institute of Metabolism and Endocrinology, 2nd Xiangya Hospital, Central South University, Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Zhiguang Zhou
- Institute of Metabolism and Endocrinology, 2nd Xiangya Hospital, Central South University, Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| |
Collapse
|
18
|
Tse HM, Kozlovskaya V, Kharlampieva E, Hunter CS. Minireview: Directed Differentiation and Encapsulation of Islet β-Cells-Recent Advances and Future Considerations. Mol Endocrinol 2015; 29:1388-99. [PMID: 26340406 DOI: 10.1210/me.2015-1085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus has rapidly become a 21st century epidemic with the promise to create vast economic and health burdens, if left unchecked. The 2 major forms of diabetes arise from unique causes, with outcomes being an absolute (type 1) or relative (type 2) loss of functional pancreatic islet β-cell mass. Currently, patients rely on exogenous insulin and/or other pharmacologies that restore glucose homeostasis. Although these therapies have prolonged countless lives over the decades, the striking increases in both type 1 and type 2 diabetic diagnoses worldwide suggest a need for improved treatments. To this end, islet biologists are developing cell-based therapies by which a patient's lost insulin-producing β-cell mass is replenished. Pancreatic or islet transplantation from cadaveric donors into diabetic patients has been successful, yet the functional islet demand far surpasses supply. Thus, the field has been striving toward transplantation of renewable in vitro-derived β-cells that can restore euglycemia. Challenges have been numerous, but progress over the past decade has generated much excitement. In this review we will summarize recent findings that have placed us closer than ever to β-cell replacement therapies. With the promise of cell-based diabetes therapies on the horizon, we will also provide an overview of cellular encapsulation technologies that will deliver critical protection of newly implanted cells.
Collapse
Affiliation(s)
- Hubert M Tse
- Department of Microbiology and the Comprehensive Diabetes Center (H.M.T.) and Departments of Chemistry (V.K., E.K.) and Medicine, Division of Endocrinology Diabetes and Metabolism, and Comprehensive Diabetes Center (C.S.H.), University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Veronika Kozlovskaya
- Department of Microbiology and the Comprehensive Diabetes Center (H.M.T.) and Departments of Chemistry (V.K., E.K.) and Medicine, Division of Endocrinology Diabetes and Metabolism, and Comprehensive Diabetes Center (C.S.H.), University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Eugenia Kharlampieva
- Department of Microbiology and the Comprehensive Diabetes Center (H.M.T.) and Departments of Chemistry (V.K., E.K.) and Medicine, Division of Endocrinology Diabetes and Metabolism, and Comprehensive Diabetes Center (C.S.H.), University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Chad S Hunter
- Department of Microbiology and the Comprehensive Diabetes Center (H.M.T.) and Departments of Chemistry (V.K., E.K.) and Medicine, Division of Endocrinology Diabetes and Metabolism, and Comprehensive Diabetes Center (C.S.H.), University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
19
|
D'souza N, Rossignoli F, Golinelli G, Grisendi G, Spano C, Candini O, Osturu S, Catani F, Paolucci P, Horwitz EM, Dominici M. Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Med 2015; 13:186. [PMID: 26265166 PMCID: PMC4534031 DOI: 10.1186/s12916-015-0426-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/17/2015] [Indexed: 02/07/2023] Open
Abstract
Regenerative medicine relying on cell and gene therapies is one of the most promising approaches to repair tissues. Multipotent mesenchymal stem/stromal cells (MSC), a population of progenitors committing into mesoderm lineages, are progressively demonstrating therapeutic capabilities far beyond their differentiation capacities. The mechanisms by which MSC exert these actions include the release of biomolecules with anti-inflammatory, immunomodulating, anti-fibrogenic, and trophic functions. While we expect the spectra of these molecules with a therapeutic profile to progressively expand, several human pathological conditions have begun to benefit from these biomolecule-delivering properties. In addition, MSC have also been proposed to vehicle genes capable of further empowering these functions. This review deals with the therapeutic properties of MSC, focusing on their ability to secrete naturally produced or gene-induced factors that can be used in the treatment of kidney, lung, heart, liver, pancreas, nervous system, and skeletal diseases. We specifically focus on the different modalities by which MSC can exert these functions. We aim to provide an updated understanding of these paracrine mechanisms as a prerequisite to broadening the therapeutic potential and clinical impact of MSC.
Collapse
Affiliation(s)
- Naomi D'souza
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Filippo Rossignoli
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Giulia Golinelli
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Giulia Grisendi
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Carlotta Spano
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Olivia Candini
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Satoru Osturu
- The Division of Hematology/Oncology/BMT, Nationwide Children's Hospital, Departments of Pediatrics and Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Fabio Catani
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Paolo Paolucci
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Edwin M Horwitz
- The Division of Hematology/Oncology/BMT, Nationwide Children's Hospital, Departments of Pediatrics and Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy.
| |
Collapse
|
20
|
Buzhor E, Leshansky L, Blumenthal J, Barash H, Warshawsky D, Mazor Y, Shtrichman R. Cell-based therapy approaches: the hope for incurable diseases. Regen Med 2015; 9:649-72. [PMID: 25372080 DOI: 10.2217/rme.14.35] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cell therapies aim to repair the mechanisms underlying disease initiation and progression, achieved through trophic effect or by cell replacement. Multiple cell types can be utilized in such therapies, including stem, progenitor or primary cells. This review covers the current state of cell therapies designed for the prominent disorders, including cardiovascular, neurological (Parkinson's disease, amyotrophic lateral sclerosis, stroke, spinal cord injury), autoimmune (Type 1 diabetes, multiple sclerosis, Crohn's disease), ophthalmologic, renal, liver and skeletal (osteoarthritis) diseases. Various cell therapies have reached advanced clinical trial phases with potential marketing approvals in the near future, many of which are based on mesenchymal stem cells. Advances in pluripotent stem cell research hold great promise for regenerative medicine. The information presented in this review is based on the analysis of the cell therapy collection detailed in LifeMap Discovery(®) (LifeMap Sciences Inc., USA) the database of embryonic development, stem cell research and regenerative medicine.
Collapse
|
21
|
Guo Y, Hai Y, Yao C, Chen Z, Hou J, Li Z, He Z. Long-term culture and significant expansion of human Sertoli cells whilst maintaining stable global phenotype and AKT and SMAD1/5 activation. Cell Commun Signal 2015; 13:20. [PMID: 25880873 PMCID: PMC4380114 DOI: 10.1186/s12964-015-0101-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/16/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Sertoli cells play key roles in regulating spermatogenesis and testis development by providing structural and nutritional supports. Recent studies demonstrate that Sertoli cells can be converted into functional neural stem cells. Adult Sertoli cells have previously been considered the terminally differentiated cells with a fixed and unmodifiable population after puberty. However, this concept has been challenged. Since the number of adult human Sertoli cells is limited, it is essential to culture these cells for a long period and expand them to obtain sufficient cells for their basic research and clinic applications. Nevertheless, the studies on human Sertoli cells are restricted, because it is difficult to get access to human testis tissues. RESULTS Here we isolated adult human Sertoli cells with a high purity and viability from obstructive azoospermia patients with normal spermatogenesis. Adult human Sertoli cells were cultured with DMEM/F12 and fetal bovine serum for 2 months, and they could be expanded with a 59,049-fold increase of cell numbers. Morphology, phenotypic characteristics, and the signaling pathways of adult human Sertoli cells from different passages were compared. Significantly, adult human Sertoli cells assumed similar morphological features, stable global gene expression profiles and numerous proteins, and activation of AKT and SMAD1/5 during long-period culture. CONCLUSIONS This study demonstrates that adult human Sertoli cells can be cultured for a long period and expanded with remarkable increase of cell numbers whilst maintaining their primary morphology, phenotype and signaling pathways. This study could provide adequate human Sertoli cells for reproductive and regenerative medicine.
Collapse
Affiliation(s)
- Ying Guo
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Yanan Hai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Chencheng Yao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Zheng Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Jingmei Hou
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Zheng Li
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Andrology, Shanghai Human Sperm Bank, 145 Shangdong Road, Shanghai, 200001, China.
| | - Zuping He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China. .,Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Andrology, Shanghai Human Sperm Bank, 145 Shangdong Road, Shanghai, 200001, China. .,Shanghai Key Laboratory of Assisted Reproduction and Reproductive Genetics, Shanghai, 200127, China. .,Shanghai Key Laboratory of Reproductive Medicine, Shanghai, 200025, China.
| |
Collapse
|
22
|
Hu J, Wang Y, Wang F, Wang L, Yu X, Sun R, Wang Z, Wang L, Gao H, Fu Z, Zhao W, Yan S. Effect and mechanisms of human Wharton's jelly-derived mesenchymal stem cells on type 1 diabetes in NOD model. Endocrine 2015; 48:124-34. [PMID: 24590294 DOI: 10.1007/s12020-014-0219-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/14/2014] [Indexed: 01/03/2023]
Abstract
Type 1 diabetes is an autoimmune disease that results from an inflammatory destruction of β-cells in islets. Mesenchymal stem cells derived from Wharton's jelly (WJ-MSCs) own a peculiar immunomodulatory feature and might reverse the inflammatory destruction and repair the function of β-cells. Sixty NOD mice were divided into four groups, including normal control group, WJ-MSCs prevention group (before onset), WJ-MSCs treatment group (after onset), and diabetic control group. After homologous therapy, onset time of diabetes, levels of fasting plasma glucose (FPG), fed blood glucose and C-peptide, regulation of cytokines, and islet cells were examined and evaluated. After WJ-MSCs infusion, FPG and fed blood glucose in WJ-MSCs treatment group decreased to normal level in 6-8 days and maintained for 6 weeks. Level of fasting C-peptide of these mice was higher compared to diabetic control mice (P=0.027). In WJ-MSCs prevention group, WJ-MSCs played a protective role for 8-week delayed onset of diabetes, and fasting C-peptide in this group was higher compared to the other two diabetic groups (P=0.013, 0.035). Compared with diabetic control group, frequencies of CD4+CD25+Foxp3+ Tregs in WJ-MSCs prevention group and treatment group were higher, while levels of IL-2, IFN-γ, and TNF-α were lower (P<0.001); the degree of insulitis was also depressed, especially for WJ-MSCs prevention group (P<0.05). Infusion of WJ-MSCs could aid in T1DM through regulation of the autoimmunity and recovery of islet β-cells no matter before or after onset of T1DM. WJ-MSCs might be an effective method for T1DM.
Collapse
Affiliation(s)
- Jianxia Hu
- Stem Cell Research Center, The Affiliated Hospital of Medical College, Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
MSCs and hyaluronan: Sticking together for new therapeutic potential? Int J Biochem Cell Biol 2014; 55:1-10. [DOI: 10.1016/j.biocel.2014.07.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 12/29/2022]
|
24
|
Li M, Song LJ, Qin XY. Advances in the cellular immunological pathogenesis of type 1 diabetes. J Cell Mol Med 2014; 18:749-58. [PMID: 24629100 PMCID: PMC4119381 DOI: 10.1111/jcmm.12270] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/30/2014] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease caused by the immune-mediated destruction of insulin-producing pancreatic β cells. In recent years, the incidence of type 1 diabetes continues to increase. It is supposed that genetic, environmental and immune factors participate in the damage of pancreatic β cells. Both the immune regulation and the immune response are involved in the pathogenesis of type 1 diabetes, in which cellular immunity plays a significant role. For the infiltration of CD4(+) and CD8(+) T lymphocyte, B lymphocytes, natural killer cells, dendritic cells and other immune cells take part in the damage of pancreatic β cells, which ultimately lead to type 1 diabetes. This review outlines the cellular immunological mechanism of type 1 diabetes, with a particular emphasis to T lymphocyte and natural killer cells, and provides the effective immune therapy in T1D, which is approached at three stages. However, future studies will be directed at searching for an effective, safe and long-lasting strategy to enhance the regulation of a diabetogenic immune system with limited toxicity and without global immunosuppression.
Collapse
Affiliation(s)
- Min Li
- Department of General Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Lu-Jun Song
- Department of General Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Xin-Yu Qin
- Department of General Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| |
Collapse
|
25
|
Kota DJ, DiCarlo B, Hetz RA, Smith P, Cox CS, Olson SD. Differential MSC activation leads to distinct mononuclear leukocyte binding mechanisms. Sci Rep 2014; 4:4565. [PMID: 24691433 PMCID: PMC3972508 DOI: 10.1038/srep04565] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/13/2014] [Indexed: 02/06/2023] Open
Abstract
Advances in the field of Multipotent Mesenchymal Stromal cell (MSC) biology have demonstrated that MSCs can improve disease outcome when ‘activated' to exert immunomodulatory effects. However, the precise mechanisms modulating MSC-immune cells interactions remain largely elusive. In here, we activated MSC based on a recent polarization paradigm, in which MSCs can be polarized towards a pro- or anti-inflammatory phenotype depending on the Toll-like receptor stimulated, to dissect the mechanisms through which MSCs physically interact with and modulate leukocytes in this context. Our data show that MSCs activated through the Toll-like receptor (TLR) 4 pathway increased VCAM-1 and ICAM-1 dependent binding of leukocytes. On the other hand, TLR3 stimulation strongly increases leukocytes affinity to MSC comparatively, through the formation of cable-like hyaluronic acid structures. In addition, TLR4 activation elicited secretion of pro-inflammatory mediators by MSCs, whereas TLR3-activated MSCs displayed a milder pro-inflammatory phenotype, similar to inactivated MSCs. However, the differently activated MSCs maintained their ability to suppress leukocyte activation at similar levels in our in vitro model, and this immunomodulatory property was shown here to be partially mediated by prostaglandin. These results reinforce the concept that alternate activation profiles control MSC responses and may impact the therapeutic use of MSCs.
Collapse
Affiliation(s)
- Daniel J Kota
- Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin St., MSB 5.233, Houston, TX, USA 77030
| | - Bryan DiCarlo
- Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin St., MSB 5.233, Houston, TX, USA 77030
| | - Robert A Hetz
- Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin St., MSB 5.233, Houston, TX, USA 77030
| | - Philippa Smith
- Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin St., MSB 5.233, Houston, TX, USA 77030
| | - Charles S Cox
- Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin St., MSB 5.233, Houston, TX, USA 77030
| | - Scott D Olson
- Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin St., MSB 5.233, Houston, TX, USA 77030
| |
Collapse
|
26
|
Bhonde RR, Sheshadri P, Sharma S, Kumar A. Making surrogate β-cells from mesenchymal stromal cells: perspectives and future endeavors. Int J Biochem Cell Biol 2013; 46:90-102. [PMID: 24275096 DOI: 10.1016/j.biocel.2013.11.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/29/2013] [Accepted: 11/05/2013] [Indexed: 02/06/2023]
Abstract
Generation of surrogate β-cells is the need of the day to compensate the short supply of islets for transplantation to diabetic patients requiring daily shots of insulin. Over the years several sources of stem cells have been claimed to cater to the need of insulin producing cells. These include human embryonic stem cells, induced pluripotent stem cells, human perinatal tissues such as amnion, placenta, umbilical cord and postnatal tissues involving adipose tissue, bone marrow, blood monocytes, cord blood, dental pulp, endometrium, liver, labia minora dermis-derived fibroblasts and pancreas. Despite the availability of such heterogonous sources, there is no substantial breakthrough in selecting and implementing an ideal source for generating large number of stable insulin producing cells. Although the progress in derivation of β-cell like cells from embryonic stem cells has taken a greater leap, their application is limited due to controversy surrounding the destruction of human embryo and immune rejection. Since multipotent mesenchymal stromal cells are free of ethical and immunological complications, they could provide unprecedented opportunity as starting material to derive insulin secreting cells. The main focus of this review is to discuss the merits and demerits of MSCs obtained from human peri- and post-natal tissue sources to yield abundant glucose responsive insulin producing cells as ideal candidates for prospective stem cell therapy to treat diabetes.
Collapse
Affiliation(s)
- Ramesh R Bhonde
- Manipal Institute of Regenerative Medicine, GKVK Post, Alalsandra, Yelahanka, Bangalore 560065, India
| | - Preethi Sheshadri
- Manipal Institute of Regenerative Medicine, GKVK Post, Alalsandra, Yelahanka, Bangalore 560065, India
| | - Shikha Sharma
- Manipal Institute of Regenerative Medicine, GKVK Post, Alalsandra, Yelahanka, Bangalore 560065, India
| | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, GKVK Post, Alalsandra, Yelahanka, Bangalore 560065, India.
| |
Collapse
|
27
|
Chen M, Xiang Z, Cai J. The anti-apoptotic and neuro-protective effects of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) on acute optic nerve injury is transient. Brain Res 2013; 1532:63-75. [PMID: 23933426 DOI: 10.1016/j.brainres.2013.07.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 07/11/2013] [Accepted: 07/22/2013] [Indexed: 12/29/2022]
Abstract
Progressive death of retinal ganglion cells (RGCs) is a major cause of irreversible visual impairment after optic nerve injury. Clinically, there are still no effective treatments for recovering the visual function at present. The probable approaches to maintain the vision and RGCs function involve in preventing RGCs from death and/or promoting the regeneration of damaged RGCs. Previous studies have shown that mesenchymal stem cells (MSCs) take neuroprotective effects on ischemia-induced cortical and spinal cord injury, however, whether MSCs have a beneficial effect on the optical nerve injury is not clearly determined. In present study, we transplanted MSCs derived from human umbilical cord blood (hUCB-MSCs) into the vitreous cavity of adult rats and investigated the probable capacity of anti-apoptosis and pro-neuroprotective effects on RGCs. RGCs were retrogradely traced by fluorescent gold particles (FG); cellular apoptosis was investigated by caspase-3 immunohistochemistry and terminal dUTP nick end labeling (TUNEL) staining. Hematoxylin-eosin (HE) staining was used to observe the morphological changes of the retina. Growth associated protein 43 (GAP-43), an established marker for axonal regeneration, was used to visualize the regenerative process over time. Expression of P2X7 receptors (P2X7R), which are responsible for inflammatory and immune responses, was also monitored in our experiments. We found that the hUCB-MSC transplantation significantly decreased cellular apoptosis and promoted the survival of RGCs in early phase. However, this protection was transient and the RGCs could not be protected from death in the end. Consistent with apoptosis detection, P2X7R was also significantly decreased in hUCB-MSC transplanted rats in the early time but without obvious difference to the rats from control group in the end. Thus, our results imply that hUCB-MSCs take anti-apoptotic, pro-neuroregenerative and anti-inflammatory effects in the early time for acute optic nerve injury in adult rats but could not prevent RGCs from death eventually.
Collapse
Affiliation(s)
- Meilan Chen
- Department of Ophthalmology of Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | | | | |
Collapse
|
28
|
Abstract
Type 1 diabetes mellitus (T1D) is a chronic, multifactorial autoimmune disease that involves the progressive destruction of pancreatic β-cells, ultimately resulting in the loss of insulin production and secretion. The goal of clinical intervention is to prevent or arrest the onset and progression of autoimmunity, reverse β-cell destruction, and restore glycometabolic and immune homeostasis. Despite promising outcomes observed with islet transplantation and advancements in immunomodulatory therapies, the need for an effective cell replacement strategy for curing T1D still persists. Stem cell therapy offers a solution to the cited challenges of islet transplantation. While the regenerative potential of stem cells can be harnessed to make available a self-replenishing supply of glucose-responsive insulin-producing cells, their immunomodulatory properties may potentially be used to prevent, arrest, or reverse autoimmunity, ameliorate innate/alloimmune graft rejection, and prevent recurrence of the disease. Herein, we discuss the therapeutic potential of stem cells derived from a variety of sources for the cure of T1D, for example, embryonic stem cells, induced pluripotent stem cells, bone marrow-derived hematopoietic stem cells, and multipotent mesenchymal stromal cells derived from bone marrow, umbilical cord blood, and adipose tissue. The benefits of combinatorial approaches designed to ensure the successful clinical translation of stem cell therapeutic strategies, such as approaches combining effective stem cell strategies with islet transplantation, immunomodulatory drug regimens, and/or novel bioengineering techniques, are also discussed. To conclude, the application of stem cell therapy in the cure for T1D appears extremely promising.
Collapse
Affiliation(s)
- Preeti Chhabra
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kenneth L. Brayman
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|