1
|
Wei Y, Yu J. Association Between Life's Essential 8 and Diabetic Kidney Disease in Patients With Diabetes Mellitus: Evidence From National Health and Nutrition Examination Survey 2005-2018. Endocr Pract 2024:S1530-891X(24)00868-1. [PMID: 39701286 DOI: 10.1016/j.eprac.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/05/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Diabetic kidney disease (DKD) is often connected with an elevated cardiovascular disease risk. A novel index, the Life's Essential 8 (LE8), was developed with the American Heart Association to ascertain cardiovascular health. In people with diabetes mellitus, we aimed to estimate if LE8 possessed a connection with DKD risk. METHODS We implemented data from the National Health and Nutrition Examination Survey from 2005 to 2018. The correlation between LE8 and DKD was evaluated with weighted multivariate logistic regression models and restricted cubic spline models with covariate adjustments. In addition, we performed subgroup analyses and interaction tests. RESULTS After taking into account relevant confounding factors, the findings indicated that higher levels of LE8 was linked to a decreased probability of developing DKD (per 10-point increase in LE8, OR = 0.75, 95%CI = 0.68-0.84, P < .001). The subscales of the LE8 similarly demonstrated negative associations with DKD risk. After grouping the LE8 scores, it was found that individuals with high LE8 were significantly less likely to develop DKD compared to those with low LE8 (OR = 0.32, 95%CI = 0.15-0.70, P = .005). The association between LE8 and DKD was consistent across different subgroups. CONCLUSION LE8 scores were shown to have a significantly negative association with the risk of DKD in people with diabetes mellitus. By concentrating on the state of cardiovascular health, it may be possible to lessen the impact of DKD.
Collapse
Affiliation(s)
- Yi Wei
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangyi Yu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
2
|
Kryst J, Matejko B, Czerwińska-Ledwig O, Tota Ł, Zuziak R, Piotrowska A. Effects of Acute Maximum-Intensity Exercise on Matrix Metalloproteinase-2, -9, and Tissue Inhibitor of Metalloproteinase-1 Levels in Adult Males with Type 1 Diabetes Mellitus Treated with Insulin Pumps. J Clin Med 2024; 13:7077. [PMID: 39685536 DOI: 10.3390/jcm13237077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Dysregulation of matrix metalloproteinases (MMPs) activity is considered one of the potential causes of vascular complications in diabetic patients. Since training volume may influence MMPs levels in varying ways, the aim of our study was to evaluate changes in MMPs levels following acute maximum-intensity exercise in male patients with type 1 diabetes mellitus (T1DM). Methods: This study included 24 male T1DM patients and 10 healthy controls. Aerobic capacity was evaluated with a treadmill test. Levels of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinase-1 (TIMP-1) were measured both before the aerobic capacity test and 60 min after its completion utilizing enzyme-linked immunosorbent assay (ELISA) system kits. Results: Before the aerobic capacity test only, MMP-9 serum levels were significantly elevated in the T1DM group compared to the controls. Following maximum-intensity exercise, the levels of MMP-2, MMP-9, and TIMP-1 were significantly higher in T1DM patients than in the control group. Between-group comparisons revealed that maximum-intensity exercise induced a statistically significant increase in MMP-2 serum levels from baseline in T1DM patients compared to controls. Conclusions: Our findings suggest that high-intensity exercise in T1DM patients leads to dysregulation of MMPs, as manifested by a significant increase in MMP-2 levels. This dysregulation may play a role in the development of vascular complications in diabetic patients.
Collapse
Affiliation(s)
- Joanna Kryst
- Department of Chemistry and Biochemistry, Institute for Basics Sciences, Faculty of Physiotherapy, University of Physical Education in Kraków, 31-571 Kraków, Poland
| | - Bartłomiej Matejko
- Department of Metabolic Diseases, Jagiellonian University Medical College, 30-688 Kraków, Poland
- Metabolic Diseases and Diabetology Clinical Department, University Hospital in Krakow, 30-688 Kraków, Poland
| | - Olga Czerwińska-Ledwig
- Department of Chemistry and Biochemistry, Institute for Basics Sciences, Faculty of Physiotherapy, University of Physical Education in Kraków, 31-571 Kraków, Poland
| | - Łukasz Tota
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland
| | - Roxana Zuziak
- Department of Chemistry and Biochemistry, Institute for Basics Sciences, Faculty of Physiotherapy, University of Physical Education in Kraków, 31-571 Kraków, Poland
| | - Anna Piotrowska
- Department of Chemistry and Biochemistry, Institute for Basics Sciences, Faculty of Physiotherapy, University of Physical Education in Kraków, 31-571 Kraków, Poland
| |
Collapse
|
3
|
Mazzotta FA, Lucaccini Paoli L, Rizzi A, Tartaglione L, Leo ML, Popolla V, Barberio A, Viti L, Di Leo M, Pontecorvi A, Pitocco D. Unmet needs in the treatment of type 1 diabetes: why is it so difficult to achieve an improvement in metabolic control? Nutr Diabetes 2024; 14:58. [PMID: 39095349 PMCID: PMC11297181 DOI: 10.1038/s41387-024-00319-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
The development of advanced diabetes technology has permitted persons with type 1 diabetes mellitus to improve metabolic control significantly, particularly with the development of advanced hybrid closed-loop systems which have improved the quality of life by reducing hypoglycemia, decreasing macroangiopathy and microangiopathy-related complications, ameliorating HbA1c and improving glycemic variability. Despite the progression made over the past few decades, there is still significant margin for improvement to be made in terms of attaining appropriate metabolic control. Various factors are responsible for poor glycemic control including inappropriate carbohydrate counting, repeated bouts of hypoglycemia, hypoglycemia unawareness, cutaneous manifestations due to localized insulin use and prolonged use of diabetes technology, psychosocial comorbidities such as eating disorders or 'diabulimia', the coexistence of insulin resistance among people with type 1 diabetes and the inability to mirror physiological endogenous pancreatic insulin secretion appropriately. Hence, the aim of this review is to highlight and overcome the barriers in attaining appropriate metabolic control among people with type 1 diabetes by driving research into adjunctive treatment for coexistent insulin resistance and developing new advanced diabetic technologies to preserve β cell function and mirror as much as possible endogenous pancreatic functions.
Collapse
Affiliation(s)
- Francesco Antonio Mazzotta
- Department of Endocrinology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Lorenzo Lucaccini Paoli
- Department of Endocrinology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| | - Alessandro Rizzi
- Diabetes Care Unit, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Linda Tartaglione
- Diabetes Care Unit, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Laura Leo
- Department of Endocrinology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Valentina Popolla
- Diabetes Care Unit, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Annarita Barberio
- Department of Internal Medicine, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Luca Viti
- Diabetes Care Unit, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Mauro Di Leo
- Diabetes Care Unit, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alfredo Pontecorvi
- Department of Endocrinology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Dario Pitocco
- Diabetes Care Unit, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
4
|
Chu J, Wang K, Lu L, Zhao H, Hu J, Xiao W, Wu Q. Advances of Iron and Ferroptosis in Diabetic Kidney Disease. Kidney Int Rep 2024; 9:1972-1985. [PMID: 39081773 PMCID: PMC11284386 DOI: 10.1016/j.ekir.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 08/02/2024] Open
Abstract
Diabetes mellitus presents a significant threat to human health because it disrupts energy metabolism and gives rise to various complications, including diabetic kidney disease (DKD). Metabolic adaptations occurring in the kidney in response to diabetes contribute to the pathogenesis of DKD. Iron metabolism and ferroptosis, a recently defined form of cell death resulting from iron-dependent excessive accumulation of lipid peroxides, have emerged as crucial players in the progression of DKD. In this comprehensive review, we highlight the profound impact of adaptive and maladaptive responses regulating iron metabolism on the progression of kidney damage in diabetes. We summarize the current understanding of iron homeostasis and ferroptosis in DKD. Finally, we propose that precise manipulation of iron metabolism and ferroptosis may serve as potential strategies for kidney management in diabetes.
Collapse
Affiliation(s)
- Jiayi Chu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Kewu Wang
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Lulu Lu
- Department of Nutrition and Toxicology, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Hui Zhao
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Jibo Hu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Wenbo Xiao
- Department of Radiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Qian Wu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
5
|
Li RY, Guo L. Exercise in Diabetic Nephropathy: Protective Effects and Molecular Mechanism. Int J Mol Sci 2024; 25:3605. [PMID: 38612417 PMCID: PMC11012151 DOI: 10.3390/ijms25073605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes, and its progression is influenced by factors like oxidative stress, inflammation, cell death, and fibrosis. Compared to drug treatment, exercise offers a cost-effective and low-risk approach to slowing down DN progression. Through multiple ways and mechanisms, exercise helps to control blood sugar and blood pressure and reduce serum creatinine and albuminuria, thereby alleviating kidney damage. This review explores the beneficial effects of exercise on DN improvement and highlights its potential mechanisms for ameliorating DN. In-depth understanding of the role and mechanism of exercise in improving DN would pave the way for formulating safe and effective exercise programs for the treatment and prevention of DN.
Collapse
Affiliation(s)
- Ruo-Ying Li
- School of Exercise and Health, Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China;
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Liang Guo
- School of Exercise and Health, Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China;
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
6
|
Kim DG, Hwang S, Kim JM, Ryu JH, You YK, Choi D, Kim BW, Kim DS, Nah YW, Kim TS, Cho JY, Hong G, Yang JD, Han J, Suh SW, Kim KW, Jung YK, Moon JI, Lee JY, Kim SH, Lee JG, Kim MS, Lee KW, Joo DJ. Non-Renal Risk Factors for Chronic Kidney Disease in Liver Recipients with Functionally Intact Kidneys at 1 Month. J Clin Med 2022; 11:jcm11144203. [PMID: 35887972 PMCID: PMC9315935 DOI: 10.3390/jcm11144203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
Chronic kidney disease (CKD) is a critical complication of liver transplants, of which non-renal risk factors are not fully understood yet. This study aimed to reveal pre- and post-transplant risk factors for CKD (<60 mL/min/1.73 m2), examining liver recipients with functionally intact kidneys one month after grafting using nationwide cohort data. Baseline risk factors were analyzed with multivariable Cox regression analyses and post-transplant risk factors were investigated with the time-dependent Cox model and matched analyses of time-conditional propensity scores. Of the 2274 recipients with a one-month eGFR ≥ 60 mL/min/1.73 m2, 494 (22.3%) developed CKD during a mean follow-up of 36.6 ± 14.4 months. Age, female sex, lower body mass index, pre-transplant diabetes mellitus, and lower performance status emerged as baseline risk factors for CKD. Time-dependent Cox analyses revealed that recurrent hepatocellular carcinoma (HR = 1.93, 95% CI 1.06−3.53) and infection (HR = 1.44, 95% CI 1.12−1.60) were significant post-transplant risk factors for CKD. Patients who experienced one of those factors showed a significantly higher risk of subsequent CKD compared with the matched controls who lacked these features (p = 0.013 for recurrent hepatocellular carcinoma, and p = 0.003 for infection, respectively). This study clarifies pre- and post-transplant non-renal risk factors, which lead to renal impairment after LT independently from patients’ renal functional reserve.
Collapse
Affiliation(s)
- Deok-Gie Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Korea; (D.-G.K.); (J.G.L.); (M.S.K.)
| | - Shin Hwang
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Jong Man Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Je Ho Ryu
- Department of Surgery, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Busan 49241, Korea;
| | - Young Kyoung You
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Donglak Choi
- Department of Surgery, Catholic University of Daegu, Daegu 42472, Korea;
| | - Bong-Wan Kim
- Department of Liver Transplantation and Hepatobiliary Surgery, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Dong-Sik Kim
- Department of Surgery, Korea University College of Medicine, Seoul 02841, Korea;
| | - Yang Won Nah
- Department of Surgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Korea;
| | - Tae-Seok Kim
- Department of Surgery, Dongsan Medical Center, Keimyung University School of Medicine, Daegu 42601, Korea;
| | - Jai Young Cho
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea;
| | - Geun Hong
- Department of Surgery, EWHA Womans University College of Medicine, Seoul 07804, Korea;
| | - Jae Do Yang
- Department of Surgery, Jeonbuk National University Hospital, Jeonju 54896, Korea;
| | - Jaryung Han
- Department of Surgery, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Suk-Won Suh
- Department of Surgery, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
| | - Kwan Woo Kim
- Department of Surgery, Dong-A University Hospital, Busan 49201, Korea;
| | - Yun Kyung Jung
- Department of Surgery, Hanyang University, Seoul 04764, Korea;
| | - Ju Ik Moon
- Department of Surgery, Konyang University Hospital, Daejeon 35365, Korea;
| | - Jun Young Lee
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea;
| | - Sung Hwa Kim
- Department of Biostatistics, Yonsei University Wonju College of Medicine, Wonju 26426, Korea;
| | - Jae Geun Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Korea; (D.-G.K.); (J.G.L.); (M.S.K.)
| | - Myoung Soo Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Korea; (D.-G.K.); (J.G.L.); (M.S.K.)
| | - Kwang-Woong Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul 03087, Korea
- Correspondence: (K.-W.L.); (D.J.J.)
| | - Dong Jin Joo
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Korea; (D.-G.K.); (J.G.L.); (M.S.K.)
- Correspondence: (K.-W.L.); (D.J.J.)
| |
Collapse
|
7
|
Wake AD. Protective effects of physical activity against health risks associated with type 1 diabetes: "Health benefits outweigh the risks". World J Diabetes 2022; 13:161-184. [PMID: 35432757 PMCID: PMC8984568 DOI: 10.4239/wjd.v13.i3.161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/08/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
The magnitude of diabetes mellitus (DM) has increased in recent decades, where the number of cases and the proportion of the disease have been gradually increasing over the past few decades. The chronic complications of DM affect many organ systems and account for the majority of morbidity and mortality associated with the disease. The prevalence of type 1 DM (T1DM) is increasing globally, and it has a very significant burden on countries and at an individual level. T1DM is a chronic illness that requires ongoing medical care and patient self-management to prevent complications. This study aims to discuss the health benefits of physical activity (PA) in T1DM patients. The present review article was performed following a comprehensive literature search. The search was conducted using the following electronic databases: "Cochrane Library", Web of Science, PubMed, HINARI, EMBASE, Google for grey literature, Scopus, African journals Online, and Google Scholar for articles published up to June 21, 2021. The present review focused on the effects of PA on many outcomes such as blood glucose (BG) control, physical fitness, endothelial function, insulin sensitivity, well-being, the body defense system, blood lipid profile, insulin resistance, cardiovascular diseases (CVDs), insulin requirements, blood pressure (BP), and mortality. It was found that many studies recommended the use of PA for the effective management of T1DM. PA is a component of comprehensive lifestyle modifications, which is a significant approach for the management of T1DM. It provides several health benefits, such as improving BG control, physical fitness, endothelial function, insulin sensitivity, well-being, and the body defense system. Besides this, it reduces the blood lipid profile, insulin resistance, CVDs, insulin requirements, BP, and mortality. Overall, PA has significant and essential protective effects against the health risks associated with T1DM. Even though PA has several health benefits for patients with T1DM, these patients are not well engaged in PA due to barriers such as a fear of exercise-induced hypoglycemia in particular. However, several effective strategies have been identified to control exercise-induced hypoglycemia in these patients. Finally, the present review concludes that PA should be recommended for the management of patients with T1DM due to its significant health benefits and protective effects against associated health risks. It also provides suggestions for the future direction of research in this field.
Collapse
Affiliation(s)
- Addisu Dabi Wake
- Department of Nursing, College of Health Sciences, Arsi University, Asella 193/4, Ethiopia
| |
Collapse
|
8
|
Prasathkumar M, Becky R, Anisha S, Dhrisya C, Sadhasivam S. Evaluation of hypoglycemic therapeutics and nutritional supplementation for type 2 diabetes mellitus management: An insight on molecular approaches. Biotechnol Lett 2022; 44:203-238. [PMID: 35119572 DOI: 10.1007/s10529-022-03232-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This review aims to summarize the current management of type 2 diabetes principles, including oral hypoglycemic agents, types of insulin administration, diet maintenance, and various molecular approaches. METHODS A literature search was conducted in different databases such as Scopus, ScienceDirect, Google Scholar, and Web of Science by using the following keywords: type-2 diabetes mellitus (T2DM), first-line and second-line treatment, oral hypoglycemic agents, insulin administration, diet/nutritional therapy, gene and stem cell therapy, and diabetic complications. RESULTS The first-line treatment of T2DM includes administering oral hypoglycemic agents (OHAs) and second-line treatment by insulin therapy and some OHAs like Sulfonylurea's (SU). The oral hypoglycemic or oral antidiabetic drugs have the function of lowering glucose in the blood. Insulin therapy is recommended for people with A1C levels > 7.0, and insulin administration is evolved drastically from the syringe, pump, pen, inhalation, insulin jet, and patch. The use of OHAs and insulin therapy during glycemic control has a severe effect on weight gain and other side effects. Hence, diet maintenance (macro and micronutrients) and nutritional therapy guidelines were also reviewed/recommended for safe T2DM management. Besides, the recent progress in molecular approaches that focuses on identifying new targets for T2DM (i.e.) consisting of gene therapy, stem cell therapy, and the modulation of insulin signaling pathways for the regulation of glucose storage and uptake also discussed. CONCLUSION The analysis of all these key factors is necessary to develop a potential agent to cure T2DM and suggest that a combination of therapies will pave the way for advanced management of T2DM.
Collapse
Affiliation(s)
- Murugan Prasathkumar
- Bioprocess and Biomaterials Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Robert Becky
- Bioprocess and Biomaterials Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Salim Anisha
- Bioprocess and Biomaterials Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Chenthamara Dhrisya
- Bioprocess and Biomaterials Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Subramaniam Sadhasivam
- Bioprocess and Biomaterials Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, India.
- Department of Extension and Career Guidance, Bharathiar University, Coimbatore, 641046, India.
| |
Collapse
|
9
|
Pongrac Barlovic D, Harjutsalo V, Groop PH. Exercise and nutrition in type 1 diabetes: Insights from the FinnDiane cohort. Front Endocrinol (Lausanne) 2022; 13:1064185. [PMID: 36619534 PMCID: PMC9813408 DOI: 10.3389/fendo.2022.1064185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Type 1 diabetes is a challenging disease, characterized by dynamic changes in the insulin need during life periods, seasons of the year, but also by everyday situations. In particular, changes in insulin need are evident before, during and after exercise and having meals. In the midst of different life demands, it can be very burdensome to achieve tight glycemic control to prevent late diabetes complications, and at the same time, to avoid hypoglycemia. Consequently, many individuals with type 1 diabetes are faced with diabetes distress, decreasing profoundly their quality of life. Today, the nationwide Finnish Diabetic Nephropathy (FinnDiane) Study, launched in 1997, has gathered data from more than 8,000 well-characterized individuals with type 1 diabetes, recruited from 93 centers all over Finland and has established its position as the world's leading project on studying complications in individuals with type 1 diabetes. Studying risk factors and mechanisms of diabetes complications is inconceivable without trying to understand the effects of exercise and nutrition on glycemic control and the development of diabetes complications. Therefore, in this paper we provide findings regarding food and exercise, accumulated during the 25 years of studying lives of Finnish people with type 1 diabetes.
Collapse
Affiliation(s)
- Drazenka Pongrac Barlovic
- University Medical Center Ljubljana, Department of Endocrinology, Diabetes and Metabolic Diseases, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Valma Harjutsalo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Faculty of Medicine, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- *Correspondence: Per-Henrik Groop,
| |
Collapse
|
10
|
Yang L, Li DX, Cao BQ, Liu SJ, Xu DH, Zhu XY, Liu YJ. Exercise training ameliorates early diabetic kidney injury by regulating the H 2 S/SIRT1/p53 pathway. FASEB J 2021; 35:e21823. [PMID: 34396581 DOI: 10.1096/fj.202100219r] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 12/29/2022]
Abstract
Exercise training exerts protective effects against diabetic nephropathy. This study aimed to investigate whether exercise training could attenuate diabetic renal injury via regulating endogenous hydrogen sulfide (H2 S) production. First, C57BL/6 mice were allocated into the control, diabetes, exercise, and diabetes + exercise groups. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ). Treadmill exercise continued for four weeks. Second, mice was allocated into the control, diabetes, H2 S and diabetes + H2 S groups. H2 S donor sodium hydrosulfide (NaHS) was intraperitoneally injected once daily for four weeks. STZ-induced diabetic mice exhibited glomerular hypertrophy, tissue fibrosis and increased urine albumin levels, urine protein- and albumin-to-creatinine ratios, which were relieved by exercise training. Diabetic renal injury was associated with apoptotic cell death, as evidenced by the enhanced caspase-3 activity, the increased TdT-mediated dUTP nick-end labeling -positive cells and the reduced expression of anti-apoptotic proteins, all of which were attenuated by exercise training. Exercise training enhanced renal sirtuin 1 (SIRT1) expression in diabetic mice, accompanied by an inhibition of the p53-#ediated pro-apoptotic pathway. Furthermore, exercise training restored the STZ-mediated downregulation of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) and the reduced renal H2 S production. NaHS treatment restored SIRT1 expression, inhibited the p53-mediated pro-apoptotic pathway and attenuated diabetes-associated apoptosis and renal injury. In high glucose-treated MPC5 podocytes, NaHS treatment inhibited the p53-mediated pro-apoptotic pathway and podocyte apoptosis in a SIRT1-dependent manner. Collectively, exercise training upregulated CBS/CSE expression and enhanced the endogenous H2 S production in renal tissues, thereby contributing to the modulation of the SIRT1/p53 apoptosis pathway and improvement of diabetic nephropathy.
Collapse
Affiliation(s)
- Lu Yang
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Dong-Xia Li
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Bu-Qing Cao
- Department of Physiology, Navy Medical University, Shanghai, China.,Department of Laboratory Medicine, Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Shu-Juan Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dan-Hong Xu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Xiao-Yan Zhu
- Department of Physiology, Navy Medical University, Shanghai, China
| | - Yu-Jian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
11
|
Hassabi M, Esteghamati A, Halabchi F, Abedi-Yekta AH, Mahdaviani B, Hassanmirzaie B, Hosseinpanah F, Valizadeh M. Iranian National Clinical Practice Guideline for Exercise in Patients with Diabetes. Int J Endocrinol Metab 2021; 19:e109021. [PMID: 34567134 PMCID: PMC8453655 DOI: 10.5812/ijem.109021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/04/2021] [Accepted: 04/10/2021] [Indexed: 11/23/2022] Open
Abstract
CONTEXT Growing evidence highlights the importance of physical activity as a critical element for the prevention and control of diabetes. However, there is no clinical practice guideline focusing on the different aspects of exercise in patients with diabetes, especially for the Iranian population. OBJECTIVE We aimed to prepare and adopt a clinical practice guideline to provide well-defined, simple, and concise responses to certain questions related to physical activity and exercise in all patients with diabetes, including type 1, 2, and gestational diabetes mellitus (GDM). EVIDENCE ACQUISITION A multidisciplinary team of experts in various fields (sports medicine specialists, endocrinologists, and cardiologists) developed the guideline. This group did the task in four stages: (1) identifying and refining the subject area using 17 clinical questions; (2) appraising evidence through a systematic review of the literature; (3) extracting recommendations from evidence and grading them as A, B, C, or D based on the quality, quantity, and consistency of existing evidence; and (4) subjecting the guideline to external review and finally selecting the recommendations with high scores of appropriateness and agreement. The final version was evaluated and approved by the National Deputy for Curative Affairs - Ministry of Health and Medical Education and has also been endorsed by the Iran Endocrine Society (IES) and Iranian Association of Sports and Exercise Medicine (IASEM). RESULTS The guideline consists of 52 recommendations addressing 17 important questions concerning different aspects of exercise prescription in Iranian patients with diabetes. CONCLUSIONS The guideline provides evidence-based information that may help physicians to prescribe exercise for Iranian patients with diabetes safely and effectively.
Collapse
Affiliation(s)
- Mohammad Hassabi
- Department of Sports and Exercise Medicine, Taleghani Hospital Research Development Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Esteghamati
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzin Halabchi
- Department of Sports and Exercise Medicine, Imam Khomeini Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Sports and Exercise Medicine, Imam Khomeini Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir Hosein Abedi-Yekta
- Department of Sports and Exercise Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Mahdaviani
- Department of Sports and Exercise Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahar Hassanmirzaie
- Sports Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Hosseinpanah
- Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Valizadeh
- Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Sanfilippo C, Musumeci G, Castrogiovanni P, Fazio F, Li Volti G, Barbagallo I, Maugeri G, Ravalli S, Imbesi R, Di Rosa M. Hippocampal transcriptome deconvolution reveals differences in cell architecture of not demented elderly subjects underwent late-life physical activity. J Chem Neuroanat 2021; 113:101934. [PMID: 33582252 DOI: 10.1016/j.jchemneu.2021.101934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 01/24/2023]
Abstract
Recent findings demonstrated that physical exercise has a powerful role in improving cognitive function and delaying age-associated neurological decline. However, to date, there is a lack of information regarding the effect of physical activity (PA) on brain cells architecture. In this paper, we hypothesized that PA could play a role in the transcriptional changes of genes that enrich the main cells of central nervous system (CNS). From NCBI, we selected a microarray dataset composed of the human hippocampi (GSE110298) from 23 cognitively intact clinical cases (NDHSs) (aged 87.4 ± 6.3 years) selected to from the Rush Memory and Aging Project (MAP). The significantly expressed genes, obtained comparing hippocampi from subjects who underwent Low Physical Activity (LPA) vs those who performed High Physical Activity (HPA), were overlapped with the main genes enriching the CNS cells, obtained from the public human brain single-cell RNA-sequencing dataset (GSE67835), in order to determine the respective weighted percentages of significantly expression genes modulation (WPSEG). In NDHSs underwent HPA, the WPSEG was higher for Neurons, Dendritic Development, Synaptic transmission genes and Axon Development. In addition, in NDHSs underwent LPA we observed high expression of genes enriching Oligodendrocytes, Microglia, and Endothelial cells. Furthermore, neurogenesis and the decreasing of the T cell-mediated inflammatory process were the two main molecular mechanisms activated in the brains of NDHSs underwent HPA. From our results, it is possible to conclude that, in elderly subjects, the transcriptional profile of CNS cells changes as a function of the PA conducted during life. Performing PA periodically supports the maintenance of the physiological balance of neuronal cells and, consequently, improves the quality of life of the elderly.
Collapse
Affiliation(s)
- Cristina Sanfilippo
- IRCCS Centro Neurolesi Bonino Pulejo, Strada Statale 113, C.da Casazza, 98124 Messina, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy; Research Center on Motor Activities (CRAM), University of Catania, Via S. Sofia no 97, 95123 Catania, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy
| | - Francesco Fazio
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY, USA
| | - Giovanni Li Volti
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Ignazio Barbagallo
- Department of Drug Sciences, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy
| | - Silvia Ravalli
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
13
|
Nakagawa N, Shimizu N, Sugawara T, Sakai S. The relationship between habitual physical activity and skin mechanical properties. Skin Res Technol 2020; 27:353-357. [PMID: 33085833 DOI: 10.1111/srt.12950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/07/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND Physical activity (PA) is important for body health. A few reports suggested that PA also influenced skin structure and components. Little data are available on the influence of PA on skin mechanical properties (SMP). Here, we investigated the relationship between PA and SMP. METHODS Twenty-five healthy Japanese female subjects (31.0 ± 3.3 years) were enrolled in the study. To monitor the 24-hr pulse rate, a wrist watch-type pulse monitor was used. PA intensity was divided into five PA intensity zones (max, anaerobic, aerobic, fat combustion, and warm-up) by the pulse monitor. The average values of the time spent on each intensity for 70 days were calculated. To measure SMP, a Cutometer was used at the end of the monitoring. R0 indicated the height of the maximal skin deformation, and R6 was the ratio between viscoelastic and elastic deformation. RESULTS R0 was positively correlated with the time spent in four of the five PA intensity zones (max, anaerobic, aerobic, and fat combustion), whereas R6 was negatively correlated with the time spent in these four PA intensity zones. The time of warm-up did not correlate with SMP. CONCLUSION These results suggest that habitual moderate-to-vigorous PA influences SMP.
Collapse
Affiliation(s)
| | - Norio Shimizu
- Skin Care Products Research, Kao Corporation, Odawara, Japan
| | - Tomoko Sugawara
- Skin Care Products Research, Kao Corporation, Odawara, Japan
| | - Shingo Sakai
- Skin Care Products Research, Kao Corporation, Odawara, Japan
| |
Collapse
|
14
|
Choi NG, DiNitto DM, Sullivan JE, Choi BY. Physical Activity Frequency Among Older Adults With Diabetes or Prediabetes: Associations With Sociodemographics, Comorbidity, and Medical Advice. J Aging Phys Act 2020; 28:641-651. [PMID: 31952046 DOI: 10.1123/japa.2019-0338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/22/2019] [Accepted: 12/07/2019] [Indexed: 11/18/2022]
Abstract
To examine the differences in physical activity (PA) between older adults with and without diabetes/prediabetes and the correlates of PA frequency and associations between medical advice on PA and/or diet/weight loss and increasing PA among those with diabetes/prediabetes. Multinomial and binary logistic regression models using 2016-2017 National Health Interview Survey data (N = 4,860 aged 65+ years with diabetes/prediabetes). About 44.2% of those with diabetes/prediabetes, compared with 48.1% of a matched sample without, engaged in any PA three plus times a week. The low PA group (PA frequency was zero to two times a week) was more socioeconomically disadvantaged and had more chronic illnesses than the medium (three to four times a week) or high (five plus times a week) PA groups. Any PA and/or diet/weight loss medical advice was associated with two to three times higher odds of increasing PA. Health care providers should consider prescribing PA and/or diet/weight loss for patients with diabetes/prediabetes.
Collapse
|
15
|
Sokolovska J, Ostrovska K, Pahirko L, Varblane G, Krilatiha K, Cirulnieks A, Folkmane I, Pirags V, Valeinis J, Klavina A, Selavo L. Impact of interval walking training managed through smart mobile devices on albuminuria and leptin/adiponectin ratio in patients with type 2 diabetes. Physiol Rep 2020; 8:e14506. [PMID: 32652863 PMCID: PMC7354089 DOI: 10.14814/phy2.14506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background Interval walking training has demonstrated more pronounced positive effects on physical fitness and metabolism in type 2 diabetes (T2D), compared to continuous walking. One of the pathogenic mechanisms of T2D is associated with derangements in leptin/adiponectin axis, which might predispose affected individuals to vascular inflammation and albuminuria. The aim of this study was to investigate the effects of interval walking training delivered through smart mobile devices upon albuminuria and leptin/adiponectin ratio in patients with T2D. Methods Patients with T2D aged 35–75 were randomized into control (n = 26) and interval training (IT, n = 14) groups. Patients in IT group had to perform three 60‐min interval walking sessions (3 min intervals of slow and fast walking with the intensity of 40% and 70% of the peak energy expenditure) per week delivered by smartphone application for four months. The adherence to training was monitored remotely. Outcome measures were albuminuria, leptin/adiponectin ratio, obesity indicators, and glycaemic control. Leptin and adiponectin concentration was measured in serum samples by Luminex technology. Results In the IT group compared to control group, we observed a statistically significant decrease in albuminuria (p = .002) and leptin/adiponectin ratio (p = .01), as well as a decrease in HbA1c close to statistical significance (p = .09). In IT group, changes in leptin/adiponectin ratio correlated significantly with changes in hip circumference (p = .024). Conclusion Interval walking training is beneficial for vascular health in T2D via impact on albuminuria and leptin/adiponectin ratio.
Collapse
Affiliation(s)
| | | | - Leonora Pahirko
- Faculty of Physics, Mathematics and Optometry, University of Latvia, Riga, Latvia
| | | | | | | | - Inese Folkmane
- Faculty of Medicine, University of Latvia, Riga, Latvia.,Centre of Nephrology, Pauls Stradins University Hospital, Riga, Latvia
| | - Valdis Pirags
- Faculty of Medicine, University of Latvia, Riga, Latvia.,Department of Internal Medicine, Pauls Stradins University Hospital, Riga, Latvia
| | - Janis Valeinis
- Faculty of Physics, Mathematics and Optometry, University of Latvia, Riga, Latvia
| | - Aija Klavina
- Latvian Academy of Sport Education, Riga, Latvia
| | - Leo Selavo
- Faculty of Computing, University of Latvia, Riga, Latvia
| |
Collapse
|
16
|
Amaral LSDB, Souza CS, Lima HN, Soares TDJ. Influence of exercise training on diabetic kidney disease: A brief physiological approach. Exp Biol Med (Maywood) 2020; 245:1142-1154. [PMID: 32486850 PMCID: PMC7400720 DOI: 10.1177/1535370220928986] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IMPACT STATEMENT Diabetic kidney disease (DKD) is associated with increased mortality in diabetic patients and has a negative impact on public health. The identification of potential therapies that help the management of DKD can contribute to the improvement of health and quality of life of patients. Thus, this paper is timely and relevant because, in addition to presenting a concise review of the pathogenesis and major pathophysiological mechanisms of DKD, it addresses the most recent findings on the impact of exercise training on this disease. Thus, since non-pharmacological interventions have gained increasing attention in the fight against chronic diseases, this paper appears as an important tool to increase knowledge and stimulate innovative research on the impact of exercise on kidney disease.
Collapse
Affiliation(s)
| | - Cláudia Silva Souza
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo 14049-900, Brazil
| | | | - Telma de Jesus Soares
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia 45029-094, Brazil
| |
Collapse
|
17
|
Chen S, Lv L, Liu B, Tang R. Crosstalk between tubular epithelial cells and glomerular endothelial cells in diabetic kidney disease. Cell Prolif 2020; 53:e12763. [PMID: 31925859 PMCID: PMC7106959 DOI: 10.1111/cpr.12763] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/26/2019] [Accepted: 12/21/2019] [Indexed: 12/21/2022] Open
Abstract
In recent years, although the development of clinical therapy for diabetic kidney disease (DKD) has made great progress, the progression of DKD still cannot be controlled. Therefore, further study of the pathogenesis of DKD and improvements in DKD treatment are crucial for prognosis. Traditional studies have shown that podocyte injury plays an important role in this process. Recently, it has been found that glomerulotubular balance and tubuloglomerular feedback (TGF) may be involved in the progression of DKD. Glomerulotubular balance is the specific gravity absorption of the glomerular ultrafiltrate by the proximal tubules, which absorbs only 65% to 70% of the ultrafiltrate. This ensures that the urine volume will not change much regardless of whether the glomerular filtration rate (GFR) increases or decreases. TGF is one of the significant mechanisms of renal blood flow and self-regulation of GFR, but how they participate in the development of DKD in the pathological state and the specific mechanism is not clear. Injury to tubular epithelial cells (TECs) is the key link in DKD. Additionally, injury to glomerular endothelial cells (GECs) plays a key role in the early occurrence and development of DKD. However, TECs and GECs are close to each other in anatomical position and can crosstalk with each other, which may affect the development of DKD. Therefore, the purpose of this review was to summarize the current knowledge on the crosstalk between TECs and GECs in the pathogenesis of DKD and to highlight specific clinical and potential therapeutic strategies.
Collapse
Affiliation(s)
- Si‐Jie Chen
- Institute of NephrologyZhongda HospitalNanjing Lishui People's HospitalNanjingChina
- Institute of NephrologyZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Lin‐Li Lv
- Institute of NephrologyZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Bi‐Cheng Liu
- Institute of NephrologyZhongda HospitalNanjing Lishui People's HospitalNanjingChina
- Institute of NephrologyZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Ri‐Ning Tang
- Institute of NephrologyZhongda HospitalNanjing Lishui People's HospitalNanjingChina
- Institute of NephrologyZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| |
Collapse
|
18
|
Yardley JE. The Athlete with Type 1 Diabetes: Transition from Case Reports to General Therapy Recommendations. Open Access J Sports Med 2019; 10:199-207. [PMID: 31827338 PMCID: PMC6902845 DOI: 10.2147/oajsm.s149257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/27/2019] [Indexed: 12/03/2022] Open
Abstract
Fear of hypoglycemia is a common barrier to exercise and physical activity for individuals with type 1 diabetes. While some of the earliest studies in this area involved only one or two participants, the link between exercise, exogenous insulin, and hypoglycemia was already clear, with the only suggested management strategies being to decrease insulin dosage and/or consume carbohydrates before and after exercise. Over the past 50 years, a great deal of knowledge has been developed around the impact of different types and intensities of exercise on blood glucose levels in this population. Recent decades have also seen the development of technologies such as continuous glucose monitors, faster-acting insulins and commercially available insulin pumps to allow for the real-time observation of interstitial glucose levels, and more precise adjustments to insulin dosage before, during and after activity. As such, there are now evidence-based exercise and physical activity guidelines for individuals with type 1 diabetes. While the risk of hypoglycemia has not been completely eliminated, therapy recommendations have evolved considerably. This review discusses the evolution of the knowledge and the technology related to type 1 diabetes and exercise that have allowed this evolution to take place.
Collapse
Affiliation(s)
- Jane E Yardley
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada.,Alberta Diabetes Institute, Edmonton, Canada.,Augustana Faculty, University of Alberta, Camrose, Canada.,Women's and Children's Research Institute, Edmonton, Canada
| |
Collapse
|