1
|
Okamoto N, Yagi K, Imawaka S, Takaoka M, Aizawa F, Niimura T, Goda M, Miyata K, Kawada K, Izawa‐Ishizawa Y, Sakaguchi S, Ishizawa K. Asciminib, a novel allosteric inhibitor of BCR-ABL1, shows synergistic effects when used in combination with imatinib with or without drug resistance. Pharmacol Res Perspect 2024; 12:e1214. [PMID: 39031848 PMCID: PMC11191601 DOI: 10.1002/prp2.1214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 07/22/2024] Open
Abstract
In the treatment of chronic myeloid leukemia (CML), resistance to BCR-ABL inhibitors makes it difficult to continue treatment and is directly related to life expectancy. Therefore, asciminib was introduced to the market as a useful drug for overcoming drug resistance. While combining molecular targeted drugs is useful to avoid drug resistance, the new BCR-ABL inhibitor asciminib and conventional BCR-ABL inhibitors should be used as monotherapy in principle. Therefore, we investigated the synergistic effect and mechanism of the combination of asciminib and imatinib. We generated imatinib-resistant cells using the human CML cell line K562, examined the effects of imatinib and asciminib exposure on cell survival using the WST-8 assay, and comprehensively analyzed genetic variation related to drug resistance using RNA-seq and real-time PCR. A synergistic effect was observed when imatinib and asciminib were combined with or without imatinib resistance. Three genes, GRRP1, ESPN, and NOXA1, were extracted as the sites of action of asciminib. Asciminib in combination with BCR-ABL inhibitors may improve the therapeutic efficacy of conventional BCR-ABL inhibitors and prevent the development of resistance. Its dosage may be effective even at minimal doses that do not cause side effects. Further verification of this mechanism of action is needed. Additionally, cross-resistance between BCR-ABL inhibitors and asciminib may occur, which needs to be clarified through further validation as soon as possible.
Collapse
MESH Headings
- Imatinib Mesylate/pharmacology
- Humans
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Drug Synergism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Protein Kinase Inhibitors/pharmacology
- Cell Survival/drug effects
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Agents/pharmacology
- Niacinamide/analogs & derivatives
- Pyrazoles
Collapse
Affiliation(s)
- Naoki Okamoto
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Department of PharmacyTokushima University HospitalTokushimaJapan
| | - Kenta Yagi
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Clinical Research Center for Developmental TherapeuticsTokushima University HospitalTokushimaJapan
| | - Sayaka Imawaka
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Mayu Takaoka
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Fuka Aizawa
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Department of PharmacyTokushima University HospitalTokushimaJapan
| | - Takahiro Niimura
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Clinical Research Center for Developmental TherapeuticsTokushima University HospitalTokushimaJapan
| | - Mitsuhiro Goda
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Department of PharmacyTokushima University HospitalTokushimaJapan
| | - Koji Miyata
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Kei Kawada
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Department of Clinical Pharmacy Practice PedagogyTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Yuki Izawa‐Ishizawa
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Department of General MedicineTaoka HospitalTokushimaJapan
| | - Satoshi Sakaguchi
- Clinical Research Center for Developmental TherapeuticsTokushima University HospitalTokushimaJapan
- Department of Respiratory Medicine and RheumatologyTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Department of PharmacyTokushima University HospitalTokushimaJapan
- Clinical Research Center for Developmental TherapeuticsTokushima University HospitalTokushimaJapan
| |
Collapse
|
2
|
Cayssials E, Guilhot F. Chronic Myeloid Leukemia: Immunobiology and Novel Immunotherapeutic Approaches. BioDrugs 2018; 31:143-149. [PMID: 28501913 DOI: 10.1007/s40259-017-0225-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Imatinib has revolutionized the treatment and prognosis of chronic myeloid leukemia (CML) with survival rates now approaching those of the age-matched healthy population. To be able to discontinue tyrosine kinase inhibitor (TKI) treatment, it is necessary to develop complementary therapies to target minimal residual disease. Recent findings by a number of investigators in both CML mouse models and CML patients offer evidence that many factors in the leukemic microenvironment can collectively contribute to immune escape, including expansion of myeloid-derived suppressor cells, programmed death-1/programmed death-1 ligand interactions resulting in T-cell impairment, expression of soluble suppressive factors such as soluble CD25, and down-regulation of MHC molecules by CML cells. Other investigators have studied the role of cytokines on the resistance to TKIs by leukemic stem cells (LSCs) and have highlighted the implication of the JAK/STAT pathway as well as the interleukin 1 (IL-1) signaling pathway. Distinct immunologic strategies have been considered to harness the immune system or trigger LSC death to allow more CML patients to discontinue TKI treatment (so-called functional cure). Successful immunotherapy and TKI combination and the optimal timing of immunotherapy determination represent major challenges for the future.
Collapse
|
3
|
Kim YM, Gang EJ, Kahn M. CBP/Catenin antagonists: Targeting LSCs' Achilles heel. Exp Hematol 2017; 52:1-11. [PMID: 28479420 PMCID: PMC5526056 DOI: 10.1016/j.exphem.2017.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/07/2017] [Accepted: 04/20/2017] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs), including leukemia stem cells (LSCs), exhibit self-renewal capacity and differentiation potential and have the capacity to maintain or renew and propagate a tumor/leukemia. The initial isolation of CSCs/LSCs was in adult myelogenous leukemia, although more recently, the existence of CSCs in a wide variety of other cancers has been reported. CSCs, in general, and LSCs, specifically with respect to this review, are responsible for initiation of disease, therapeutic resistance and ultimately disease relapse. One key focus in cancer research over the past decade has been the development of therapies that safely eliminate the LSC/CSC population. One major obstacle to this goal is the identification of key mechanisms that distinguish LSCs from normal endogenous hematopoietic stem cells. An additional daunting feature that has recently come to light with advances in next-generation sequencing and single-cell sequencing is the heterogeneity within leukemias/tumors, with multiple combinations of mutations, gain and loss of function of genes, and so on being capable of driving disease, even within the CSC/LSC population. The focus of this review/perspective is on our work in identifying and validating, in both chronic myelogenous leukemia and acute lymphoblastic leukemia, a safe and efficacious mechanism to target an evolutionarily conserved signaling nexus, which constitutes a common "Achilles heel" for LSCs/CSCs, using small molecule-specific CBP/catenin antagonists.
Collapse
Affiliation(s)
- Yong-Mi Kim
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Blood and Bone Marrow Transplantation, University of Southern California, Los Angeles, CA
| | - Eun-Ji Gang
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Blood and Bone Marrow Transplantation, University of Southern California, Los Angeles, CA
| | - Michael Kahn
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA; Department of Molecular Pharmacology and Toxicology, University of Southern California, Los Angeles, CA; Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA.
| |
Collapse
|
4
|
Tushir-Singh J. Antibody-siRNA conjugates: drugging the undruggable for anti-leukemic therapy. Expert Opin Biol Ther 2016; 17:325-338. [PMID: 27977315 DOI: 10.1080/14712598.2017.1273344] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Generating effective RNAi-based therapies with the potential to achieve leukemia remission remains critical unmet need. Despite a growing number of leukemia clinical trials, tissue specific delivery of therapeutic siRNA is a major roadblock in translating its clinical potential. The most recent reports in the antibody-siRNA-conjugates (ARCs) field add new dimensions to leukemic therapy, where a covalently ligated therapeutic antisense-RNA with the potential to repress the oncogenic transcript is selectively delivered into the cancer cells. Despite ARC localization to leukemic cells due to high affinity antigen-antibody interactions, multiple challenges exist to unlock the therapeutic potential of siRNA targeting. Areas covered: This review focuses on antibody and siRNA-based therapies for leukemia as well as potential antibody engineering-based strategies to generate an optimal ARC platform. Expert opinion: In vitro and clinical results have revealed that non-targeted delivery and inefficient cellular internalization of therapeutic siRNA are major contributing factors for the lack of efficacy in leukemia patients. Rational antibody design and selective protein engineering with the potential to neutralize siRNA charge, stabilize ARC complex, restrict off-targeted delivery, optimize endosomal escape, and extend serum half-life will generate clinically relevant leukemic therapies that are safe, selective, and effective.
Collapse
Affiliation(s)
- Jogender Tushir-Singh
- a Laboratory of Novel Biologics, Department of Biochemistry & Molecular Genetics , University of Virginia Cancer Center, University of Virginia School of Medicine , Charlottesville , VA , USA
| |
Collapse
|
5
|
Hu J, Feng M, Liu ZL, Liu Y, Huang ZL, Li H, Feng WL. Potential role of Wnt/β-catenin signaling in blastic transformation of chronic myeloid leukemia: cross talk between β-catenin and BCR-ABL. Tumour Biol 2016; 37:10.1007/s13277-016-5413-3. [PMID: 27817074 DOI: 10.1007/s13277-016-5413-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/13/2016] [Indexed: 12/25/2022] Open
Abstract
Chronic myeloid leukemia (CML) results from malignant transformation of hematopoietic stem cells induced by the BCR-ABL oncogene. Transformation from chronic to blastic phase is the lethal step in CML. Leukemic stem cells (LSCs) are the basic reason for blastic transformation. It has been shown that Wnt/β-catenin signaling contributes to the self-renewal capacity and proliferation of LSCs in CML. However, the role of Wnt/β-catenin signaling in blastic transformation of CML is still obscure. Here, we explored the relationship between BCR-ABL and β-catenin signaling in vitro and in vivo. We found that BCR-ABL stimulated β-catenin via activation of PI3K/AKT signaling in blastic phase CML cells. Inhibition of the kinase activity of BCR-ABL, PI3K, or AKT decreased the level of β-catenin in both K562 cells and a CML mouse model and suppressed the transcription of downstream target genes (c-myc and cyclin D1). In addition, inhibition of the BCR-ABL/PI3K/AKT pathway delayed the disease progression in the CML mouse model. To further explore the role of β-catenin in the self-renewal and survival of CML LSCs, we established a secondary transplantation CML mouse model. Our data revealed that inhibition of the BCR-ABL/PI3K/AKT pathway reduced the tumor-initiating ability of K562 cells, decreased leukemia cell infiltration into peripheral blood and bone marrow, and prolonged the survival of mice. In conclusion, our data indicate a close relationship between β-catenin and BCR-ABL/PI3K/AKT in blastic phase CML. β-Catenin inhibition may be of therapeutic value by targeting LSCs in combination with a tyrosine kinase inhibitor, which may delay blastic transformation of CML.
Collapse
Affiliation(s)
- Jing Hu
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Min Feng
- Institute of Neuroscience, Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Zhang-Ling Liu
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yi Liu
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Zheng-Lan Huang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hui Li
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wen-Li Feng
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Potential role of Notch signalling in CD34+ chronic myeloid leukaemia cells: cross-talk between Notch and BCR-ABL. PLoS One 2015; 10:e0123016. [PMID: 25849484 PMCID: PMC4388554 DOI: 10.1371/journal.pone.0123016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/26/2015] [Indexed: 11/19/2022] Open
Abstract
Notch signalling is critical for haemopoietic stem cell (HSC) self-renewal and survival. The role of Notch signalling has been reported recently in chronic myeloid leukaemia (CML) – a stem cell disease characterized by BCR-ABL tyrosine kinase activation. Therefore, we studied the relationship between BCR-ABL and Notch signalling and assessed the expression patterns of Notch and its downstream target Hes1 in CD34+ stem and progenitor cells from chronic-phase CML patients and bone marrow (BM) from normal subjects (NBM). We found significant upregulation (p<0.05) of Notch1, Notch2 and Hes1 on the most primitive CD34+Thy+ subset of CML CD34+ cells suggesting that active Notch signalling in CML primitive progenitors. In addition, Notch1 was also expressed in distinct lymphoid and myeloid progenitors within the CD34+ population of primary CML cells. To further delineate the possible role and interactions of Notch with BCR-ABL in CD34+ primary cells from chronic-phase CML, we used P-crkl detection as a surrogate assay of BCR-ABL tyrosine kinase activity. Our data revealed that Imatinib (IM) induced BCR-ABL inhibition results in significant (p<0.05) upregulation of Notch activity, assessed by Hes1 expression. Similarly, inhibition of Notch leads to hyperactivation of BCR-ABL. This antagonistic relationship between Notch and BCR-ABL signalling was confirmed in K562 and ALL-SIL cell lines. In K562, we further validated this antagonistic relationship by inhibiting histone deacetylase (HDAC) - an effector pathway of Hes1, using valproic acid (VPA) - a HDAC inhibitor. Finally, we also confirmed the potential antagonism between Notch and BCR/ABL in In Vivo, using publically available GSE-database, by analysing gene expression profile of paired samples from chronic-phase CML patients pre- and post-Imatinib therapy. Thus, we have demonstrated an antagonistic relationship between Notch and BCR-ABL in CML. A combined inhibition of Notch and BCR-ABL may therefore provide superior clinical response over tyrosine-kinase inhibitor monotherapy by targeting both quiescent leukaemic stem cells and differentiated leukaemic cells and hence must be explored.
Collapse
|
7
|
Hijiya N, Millot F, Suttorp M. Chronic myeloid leukemia in children: clinical findings, management, and unanswered questions. Pediatr Clin North Am 2015; 62:107-19. [PMID: 25435115 DOI: 10.1016/j.pcl.2014.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic myelogenous leukemia (CML) is a rare disease in children. There is little evidence of biological differences between CML in children and adults, although host factors are different. Children develop distinct morbidities related to the off-target effects of tyrosine kinase inhibitors. The goal of treatment in children should be cure rather than suppression of disease, which can be the treatment goal for many older adults. This article reviews data from the literature on the treatment of CML, discusses the issues that are unique to CML in children, and recommends management that takes these issues into consideration.
Collapse
Affiliation(s)
- Nobuko Hijiya
- Division of Hematology, Oncology, and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Box #30, Chicago, IL 60611, USA; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Frederic Millot
- Centre d'Investigation Clinique 1402, Institut National de la Santé et de la Recherche Médicale (INSERM), University Hospital of Poitiers, 2 rue de la Milétrie, 86000 Poitiers, France
| | - Meinolf Suttorp
- Department of Pediatrics, University Hospital "Carl Gustav Carus", Fetscherstrasse 74, D-01307 Dresden, Germany
| |
Collapse
|
8
|
Abstract
The BCR-ABL1 oncoprotein is the cause of chronic myeloid leukemia and occurs as a consequence of the translocation t(9;22), a well-defined genetic event that results in the formation of the Philadelphia chromosome. While this genomic aberration is recognized to be the main culprit of the chronic phase of chronic myeloid leukemia, the natural clonal evolution of this myeloproliferative neoplasm involves the accumulation of secondary alterations through genomic instability. Thus, efforts to dissect the frequency and nature of the genomic events at diagnosis and at later stages are producing valuable insights into understanding the mechanisms of blastic transformation and development of resistance in chronic myeloid leukemia. The identification of alternative BCR-ABL1-dependent and BCR-ABL1-independent targets that sustain the survival of leukemic blasts and/or leukemia-initiating cells will facilitate the development of novel viable therapeutic options for patients who become resistant or intolerant to the currently available therapeutic options based on tyrosine kinase inhibitors.
Collapse
|
9
|
Deeren D. Unravelling survival pathways: the road to next-generation chronic myeloid leukaemia drugs? Leuk Res 2013; 37:1438-9. [PMID: 24075533 DOI: 10.1016/j.leukres.2013.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Dries Deeren
- Department of Hematology-Medical Oncology, H.-Hartziekenhuis Roeselare-Menen vzw, Roeselare, Belgium.
| |
Collapse
|