1
|
Gervasoni C, Cattaneo D, Filice C, Galli M. Drug-induced liver steatosis in patients with HIV infection. Pharmacol Res 2019; 145:104267. [PMID: 31077811 DOI: 10.1016/j.phrs.2019.104267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/22/2022]
Abstract
Drug-induced liver injury (DILI) due to the use of prescription and non-prescription medication by HIV-positive and HIV-negative patients is one of the main causes of acute liver failure and transplantation in Western countries and, although rare, has to be considered a serious problem because of its unforeseeable nature and possibly fatal course. Drug-induced steatosis (DIS) and steatohepatitis (DISH) are infrequent but well-documented types of DILI. Although a number of commonly used drugs are associated with steatosis, it is not always easy to identify them as causative agents because of the weak temporal relationship between the administration of the drug and the clinical event, the lack of a confirmatory re-challenge, and the high prevalence of non-alcoholic fatty liver disease (NAFLD) in the general population, which often makes it difficult to make a differential diagnosis of DIS and DISH. The scenario is even more complex in HIV-positive patients not only because of the underlying disease, but also because the various anti-retroviral regimens have different effects on liver steatosis. Given the high prevalence of liver steatosis in HIV-positive patients and the increasing use of drugs associated with a potential steatotic risk, the identification of clinical signs suggesting liver damage should help to avoid the possible misdiagnosis of "primary" NAFLD in a patient with DIS or DISH. This review will therefore initially concentrate on the current diagnostic criteria for DIS/DISH and their differential diagnosis from NAFLD. Subsequently, it will consider the different clinical manifestations of iatrogenic liver steatosis in detail, with specific reference to HIV-positive patients. Finally, the last part of the review will be dedicated to the possible effects of liver steatosis on the bioavailability of antiretroviral and other drugs.
Collapse
Affiliation(s)
- Cristina Gervasoni
- Gestione Ambulatoriale Politerapie (GAP) Outpatient Clinic, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy; Department of Infectious Diseases, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy.
| | - Dario Cattaneo
- Gestione Ambulatoriale Politerapie (GAP) Outpatient Clinic, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy; Unit of Clinical Pharmacology, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy
| | - Carlo Filice
- Infectious Diseases Department, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Massimo Galli
- Department of Infectious Diseases, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
2
|
Cusato J, Allegra S, Nicolò AD, Calcagno A, D'Avolio A. Precision medicine for HIV: where are we? Pharmacogenomics 2018; 19:145-165. [DOI: 10.2217/pgs-2017-0123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To date, antiretroviral therapy is highly effective in HIV-affected patients, but the individualization of such a life-long therapy may be advised. This review briefly summarizes the main factors involved in the potential personalization of antiretroviral treatment. Relevant articles in English were identified by PubMed and recent congresses’ abstracts. Foremost influences concerning pharmacodynamics, therapeutic drug monitoring, pharmacogenetics, comorbidities, immune recovery and viral characteristics affecting the healthcare of HIV-positive patients are listed here. Furthermore, pharmacoeconomic aspects are mentioned. Applying pharmacokinetic and pharmacogenetic knowledge may be informative and guide the better choice of treatment in order to achieve long-term efficacy and avoid adverse events. Randomized investigations of the clinical relevance of tailored antiretroviral regimens are needed in order to obtain a better management of HIV/AIDS-affected patients.
Collapse
Affiliation(s)
- Jessica Cusato
- Department of Medical Sciences; University of Turin – ASL ‘Città di Torino’ Laboratory of Clinical Pharmacology and Pharmacogenetics; Amedeo di Savoia Hospital, Turin, Italy
| | - Sarah Allegra
- Department of Medical Sciences; University of Turin – ASL ‘Città di Torino’ Laboratory of Clinical Pharmacology and Pharmacogenetics; Amedeo di Savoia Hospital, Turin, Italy
| | - Amedeo De Nicolò
- Department of Medical Sciences; University of Turin – ASL ‘Città di Torino’ Laboratory of Clinical Pharmacology and Pharmacogenetics; Amedeo di Savoia Hospital, Turin, Italy
| | - Andrea Calcagno
- Department of Medical Sciences; University of Turin – ASL ‘Città di Torino’ Laboratory of Clinical Pharmacology and Pharmacogenetics; Amedeo di Savoia Hospital, Turin, Italy
| | - Antonio D'Avolio
- Department of Medical Sciences; University of Turin – ASL ‘Città di Torino’ Laboratory of Clinical Pharmacology and Pharmacogenetics; Amedeo di Savoia Hospital, Turin, Italy
| |
Collapse
|
3
|
Therapeutic drug monitoring of protease inhibitors and efavirenz in HIV-infected individuals with active substance-related disorders. Ther Drug Monit 2011; 33:309-14. [PMID: 21544014 DOI: 10.1097/ftd.0b013e31821d3adb] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Achieving targeted antiretroviral (ARV) plasma concentrations during long-term treatment in human immunodeficiency virus (HIV)-infected patients with substance-related disorders (SRDs) may be challenging due to a number of factors, including medication adherence, coinfection with hepatitis B or C virus, medication intolerance, and drug interactions. One approach to investigate these factors is to conduct therapeutic drug monitoring to measure ARV exposure during treatment. The objective of this study was to utilize therapeutic drug monitoring to compare efavirenz (EFV) and protease inhibitor pharmacokinetics in patients with and without SRDs. METHODS This was a multicenter, cross-sectional open-label study in patients with HIV-1 infection receiving antiretroviral therapy (ART), with active (n=129) or without (n=146) SRD according to National Institute on Drug Abuse criteria. Two hundred seventy-five subjects who were receiving either protease inhibitor-based or EFV-based ART regimens for >6 months were enrolled at 4 HIV treatment centers with an equal distribution of SRD and non-SRD at each site. The patients were instructed during enrollment visits with regard to the importance of adherence before and after study visits. Demographics and routine clinical laboratory tests were recorded. RESULTS Among the 275 patients, 47% had SRD with at least 1 substance. There were no significant differences between SRD and non-SRD groups for race, gender, age, or CD4 count at entry. A significantly higher proportion of patients with SRD had an entry HIV RNA plasma concentration>75 copies per milliliter compared with patients without SRD (40% vs 28%, P=0.044). Logistic regression modeling revealed an association between HIV RNA plasma concentration and African American race (P=0.017). A significantly higher proportion of SRDs also had an EFV or protease inhibitor trough concentration below the desired range (23% vs 9%, P=0.048). Significantly lower trough concentrations were noted in patients with SRDs receiving atazanavir (0.290 vs 0.976 μg/mL) or lopinavir (3.75 vs 5.30 μg/mL). CONCLUSIONS The pharmacokinetic data indicate differences between HIV-infected patients with and without SRDs that may influence viral load suppression during long-term ART. These findings require additional investigation in a randomized design with more intensive pharmacokinetic assessment to identify individual factors that are contributing to suboptimal ARV exposure in patients with SRDs.
Collapse
|
4
|
Lim HC, Curlin ME, Mittler JE. HIV Therapy Simulator: a graphical user interface for comparing the effectiveness of novel therapy regimens. ACTA ACUST UNITED AC 2011; 27:3065-6. [PMID: 21908542 DOI: 10.1093/bioinformatics/btr515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
UNLABELLED Computer simulation models can be useful in exploring the efficacy of HIV therapy regimens in preventing the evolution of drug-resistant viruses. Current modeling programs, however, were designed by researchers with expertise in computational biology, limiting their accessibility to those who might lack such a background. We have developed a user-friendly graphical program, HIV Therapy Simulator (HIVSIM), that is accessible to non-technical users. The program allows clinicians and researchers to explore the effectiveness of various therapeutic strategies, such as structured treatment interruptions, booster therapies and induction-maintenance therapies. We anticipate that HIVSIM will be useful for evaluating novel drug-based treatment concepts in clinical research, and as an educational tool. AVAILABILITY HIV Therapy Simulator is freely available for Mac OS and Windows at http://sites.google.com/site/hivsimulator/. CONTACT jmittler@uw.edu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Huat Chye Lim
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
5
|
HIV quasispecies dynamics during pro-active treatment switching: impact on multi-drug resistance and resistance archiving in latent reservoirs. PLoS One 2011; 6:e18204. [PMID: 21455303 PMCID: PMC3063788 DOI: 10.1371/journal.pone.0018204] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 02/27/2011] [Indexed: 12/02/2022] Open
Abstract
The human immunodeficiency virus (HIV) can be suppressed by highly active anti-retroviral therapy (HAART) in the majority of infected patients. Nevertheless, treatment interruptions inevitably result in viral rebounds from persistent, latently infected cells, necessitating lifelong treatment. Virological failure due to resistance development is a frequent event and the major threat to treatment success. Currently, it is recommended to change treatment after the confirmation of virological failure. However, at the moment virological failure is detected, drug resistant mutants already replicate in great numbers. They infect numerous cells, many of which will turn into latently infected cells. This pool of cells represents an archive of resistance, which has the potential of limiting future treatment options. The objective of this study was to design a treatment strategy for treatment-naive patients that decreases the likelihood of early treatment failure and preserves future treatment options. We propose to apply a single, pro-active treatment switch, following a period of treatment with an induction regimen. The main goal of the induction regimen is to decrease the abundance of randomly generated mutants that confer resistance to the maintenance regimen, thereby increasing subsequent treatment success. Treatment is switched before the overgrowth and archiving of mutant strains that carry resistance against the induction regimen and would limit its future re-use. In silico modelling shows that an optimal trade-off is achieved by switching treatment at days after the initiation of antiviral therapy. Evaluation of the proposed treatment strategy demonstrated significant improvements in terms of resistance archiving and virological response, as compared to conventional HAART. While continuous pro-active treatment alternation improved the clinical outcome in a randomized trial, our results indicate that a similar improvement might also be reached after a single pro-active treatment switch. The clinical validity of this finding, however, remains to be shown by a corresponding trial.
Collapse
|
6
|
Lakhman SS, Ma Q, Morse GD. Pharmacogenomics of CYP3A: considerations for HIV treatment. Pharmacogenomics 2010; 10:1323-39. [PMID: 19663676 DOI: 10.2217/pgs.09.53] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The understanding of the cytochrome P450 3A SNP in antiretroviral therapy is important, because it is highly inducible, extremely polymorphic and metabolizes many of the drugs that are key components of highly active antiretroviral therapy regimens. This enzyme is prolific and promiscuous towards drug and xenobiotic substrate selection and it is also unpredictable among individuals, having a 5- to 20-fold variability in its ability to contribute to drug clearance. The importance of human CYP3A pharmacogenetics is also gaining attention in other established areas of pharmacotherapy as it may contribute to the goal of predicting efficacy and/or toxicity, specifically with the discovery of null allele CYP3A4*20. This review summarizes the current understanding, implications of genetic variation in the CYP3A enzymes, the central role of CYP3A in linking human genetics, the pharmacokinetics and resulting pharmacodynamic responses to certain antiretroviral drugs, and their eventual place in applied clinical pharmacotherapy.
Collapse
Affiliation(s)
- Sukhwinder S Lakhman
- Department of Pharmaceutical Sciences, DYC School of Pharmacy, Buffalo, NY 14201 USA
| | | | | |
Collapse
|
7
|
Curlin ME, Iyer S, Mittler JE. Optimal timing and duration of induction therapy for HIV-1 infection. PLoS Comput Biol 2008; 3:e133. [PMID: 17630827 PMCID: PMC1914372 DOI: 10.1371/journal.pcbi.0030133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 05/29/2007] [Indexed: 01/28/2023] Open
Abstract
The tradeoff between the need to suppress drug-resistant viruses and the problem of treatment toxicity has led to the development of various drug-sparing HIV-1 treatment strategies. Here we use a stochastic simulation model for viral dynamics to investigate how the timing and duration of the induction phase of induction–maintenance therapies might be optimized. Our model suggests that under a variety of biologically plausible conditions, 6–10 mo of induction therapy are needed to achieve durable suppression and maximize the probability of eradicating viruses resistant to the maintenance regimen. For induction regimens of more limited duration, a delayed-induction or -intensification period initiated sometime after the start of maintenance therapy appears to be optimal. The optimal delay length depends on the fitness of resistant viruses and the rate at which target-cell populations recover after therapy is initiated. These observations have implications for both the timing and the kinds of drugs selected for induction–maintenance and therapy-intensification strategies. Clinicians treating HIV infection must balance the need to suppress viral replication against the harmful side effects and significant cost of antiretroviral therapy. Inadequate therapy often results in the emergence of resistant viruses and treatment failure. These difficulties are especially acute in resource-poor settings, where antiretroviral agents are limited. This has prompted an interest in induction–maintenance (IM) treatment strategies, in which brief intensive therapy is used to reduce host viral levels. Induction is followed by a simplified and more easily tolerated maintenance regimen. IM approaches remain an unproven concept in HIV therapy. We have developed a mathematical model to simulate clinical responses to antiretroviral drug therapy. We account for latent infection, partial drug efficacy, cross-resistance, viral recombination, and other factors. This model accurately reflects expected outcomes under single, double, and standard three-drug antiretroviral therapy. When applied to IM therapy, we find that (1) IM is expected to be successful beyond 3 y under a variety of conditions; (2) short-term induction therapy is optimally started several days to weeks after the start of maintenance; and (3) IM therapy may eradicate some preexisting drug-resistant viral strains from the host. Our simulations may help develop new treatment strategies and optimize future clinical trials.
Collapse
Affiliation(s)
- Marcel E Curlin
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Shyamala Iyer
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - John E Mittler
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
8
|
Murphy E, Jimenez HR, Smith SM. Current Clinical Treatments of AIDS. HIV-1: MOLECULAR BIOLOGY AND PATHOGENESIS 2008; 56:27-73. [DOI: 10.1016/s1054-3589(07)56002-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Ma Q, Okusanya OO, Smith PF, Dicenzo R, Slish JC, Catanzaro LM, Forrest A, Morse GD. Pharmacokinetic drug interactions with non-nucleoside reverse transcriptase inhibitors. Expert Opin Drug Metab Toxicol 2006; 1:473-85. [PMID: 16863456 DOI: 10.1517/17425255.1.3.473] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are a diverse group of compounds that inhibit HIV Type 1 reverse transcriptase. Although possessing a common mechanism of action, the approved NNRTIs, delavirdine, efavirenz and nevirapine, differ in structural and pharmacokinetic characteristics. Each of the NNRTIs undergoes biotransformation by the cytochrome P450 (CYP) enzyme system, thus making them prone to clinically significant drug interactions when combined with other antiretrovirals. In addition, they interact with other concurrent medications and complementary/alternative medicines, acting as either inducers or inhibitors of drug-metabolising CYP enzymes. These drug interactions become an important consideration in the clinical use of these agents when designing combination regimens, as recommended by current guidelines. This review provides an updated summary of pharmacokinetic interactions with NNRTIs.
Collapse
Affiliation(s)
- Qing Ma
- University at Buffalo, Pharmacotherapy Research Center, Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, 317 Hochstetter Hall, Buffalo, NY 14260, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Sahi J, Sinz MW, Campbell S, Mireles R, Zheng X, Rose KA, Raeissi S, Hashim MF, Ye Y, de Morais SM, Black C, Tugnait M, Keller LH. Metabolism and transporter-mediated drug–drug interactions of the endothelin-A receptor antagonist CI-1034. Chem Biol Interact 2006; 159:156-68. [PMID: 16356485 DOI: 10.1016/j.cbi.2005.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 11/07/2005] [Accepted: 11/08/2005] [Indexed: 11/18/2022]
Abstract
CI-1034, an endothelin-A receptor antagonist was being developed for pulmonary hypertension. Drug-drug interaction studies using human hepatic microsomes were conducted to assess CYP1A2, CYP2C9, CYP2C19, CYP3A4 and CYP2D6 inhibition potential; CYP3A4 induction potential was evaluated using primary human hepatocytes. CI-1034 moderately inhibited CYP2C9 (IC(50) 39.6 microM) and CYP3A4 activity (IC(50) 21.6 microM); CYP3A4 inhibition was metabolism-dependent. In human hepatocytes, no increase in CYP3A4 activity was observed in vitro, while mRNA was induced 15-fold, similar to rifampin, indicating that CI-1034 is both an inhibitor and inducer of CYP3A4. A 2-week clinical study was conducted to assess pharmacokinetics, pharmacodynamics and safety. No significant changes were observed in [formula: see text] between days 1 and 14. However, reversible elevations of serum liver enzymes were observed with a 50mg BID dose and the program was terminated. To further understand the interactions of CI-1034 in the liver and possible mechanisms of the observed hepatotoxicity, we evaluated the effect of CI-1034 on bile acid transport and previously reported that CI-1034 inhibited biliary efflux of taurocholate by 60%, in vitro. This indicated that inhibition of major hepatic transporters could be involved in the observed hepatotoxicity. We next evaluated the in vitro inhibition potential of CI-1034 with the major hepatic transporters OATP1B1, OATP1B3, OATP2B1, MDR1, MRP2 and OCT. CI-1034 inhibited OATP1B1 (K(i) 2 microM), OATP1B3 (K(i) 1.8 microM) and OATP2B1 activity (K(i) 3.3 microM) but not OCT, MDR1 or MRP2 mediated transport. Our data indicates that CI-1034 is an inhibitor of major hepatic transporters and inhibition of bile efflux may have contributed to the observed clinical hepatotoxicity. We recommend that in vitro drug-drug interaction panels include inhibition and induction studies with transporters and drug metabolizing enzymes, to more completely assess potential in vivo interactions or toxicity.
Collapse
Affiliation(s)
- Jasminder Sahi
- Department of Pharmacokinetics Pharmacodynamics and Metabolism, Pfizer Global Research and Development, Ann Arbor, MI 48105, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|