1
|
Souza-Pereira A, Hernandez MDS, Guerra JMDS, Nieswald BH, Bianchini MC, Godinho DB, Nascimento AS, Puntel RL, Royes LFF, Rambo LM. Swimming training and caffeine supplementation protects against metabolic syndrome-induced nuclear factor-κB activation and cognitive deficits in rats. Nutr Res 2024; 122:19-32. [PMID: 38070463 DOI: 10.1016/j.nutres.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 03/08/2024]
Abstract
Metabolic syndrome (MS) is a disorder that increasingly affects the world population, mainly because of changes in lifestyle and dietary habits. In this regard, both physical exercise and caffeine are low-cost and easily accessible therapies that separately have shown positive effects against metabolic disorders. Therefore, we hypothesized that physical exercise combined with caffeine could have a synergistic effect in the treatment of MS, risk factors, and cognitive deficits. Animals were divided into 8 groups and received fructose (15% w/v) or vehicle for 10 weeks. Swimming training and caffeine (6 mg/kg) started 4 weeks after fructose administration. Trained animals presented decreased body weight and visceral fat mass and increased soleus weight compared with untrained fructose-treated animals. Caffeine supplementation also prevented the gain of visceral fat mass induced by fructose. Furthermore, both treatments reversed fructose-induced decrease in glucose clearance over time and fructose-induced increase in 4-hydroxynonenal and nuclear factor-κB immunoreactivity. Physical training also improved the lipidic profile in fructose-treated animals (high-density lipoprotein, low-density lipoprotein, and triglycerides), improved short-term, long-term, and localization memory, and reversed the fructose-induced deficit in short-term memory. Physical training also increased nuclear factor erythroid 2-related factor 2 immunoreactivity per se. Considering that physical training and caffeine reversed some of the damages induced by fructose it is plausible to consider these treatments as alternative, nonpharmacological, and low-cost therapies to help reduce MS-associated risk factors; however, combined treatments did not show additive effects as hypothesized.
Collapse
Affiliation(s)
- Adson Souza-Pereira
- Biochemistry Graduate Program, Federal University of Pampa, Uruguaiana, RS, Brazil
| | | | | | | | | | - Douglas Buchmann Godinho
- Department of Methods and Sportive Techniques, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Robson Luiz Puntel
- Biochemistry Graduate Program, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Luiz Fernando Freire Royes
- Department of Methods and Sportive Techniques, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Leonardo Magno Rambo
- Biochemistry Graduate Program, Federal University of Pampa, Uruguaiana, RS, Brazil.
| |
Collapse
|
2
|
Differential Effect of Fructose in the Presence or Absence of Fatty Acids on Circadian Metabolism in Hepatocytes. Metabolites 2023; 13:metabo13020138. [PMID: 36837757 PMCID: PMC9961817 DOI: 10.3390/metabo13020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
We aimed to explore whether fructose in the absence or presence of fatty acids modulates circadian metabolism in AML-12 hepatocytes. Fructose treatment under steatosis conditions (FruFA) led to fat synthesis resulting in increased triglycerides and cholesterol content. Fructose led to reduced activity of the AMPK and mTOR-signaling pathway. However, FruFA treatment led to inhibition of the AMPK signaling pathway but activation of the mTOR pathway. Fructose also increased the expression of inflammatory markers, whereas the addition of fatty acids dampened their circadian expression. At the clock level, fructose or FruFA altered the expression of the core clock. More specifically, fructose led to altered expression of the BMAL1-RORα-REV-ERBα axis, together with reduced phosphorylated BMAL1 levels. In conclusion, our results show that hepatocytes treated with fructose respond differently if fatty acids are present, leading to a differential effect on metabolism and circadian rhythms. This is achieved by modulating BMAL1 activity and expression.
Collapse
|
3
|
Cheng PW, Liang HL, Lin HL, Hao CL, Tseng YH, Tu YC, Yeh BC, Shen KP. Pre-germinated brown rice alleviates non-alcoholic fatty liver disease induced by high fructose and high fat intake in rat. J Clin Biochem Nutr 2022; 70:248-255. [PMID: 35692676 PMCID: PMC9130058 DOI: 10.3164/jcbn.21-158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022] Open
Abstract
In past researches, we had been proved the action mechanism of pre-germinated brown rice (PGBR) to treat metabolic syndrome and diabetes mellitus. This study was to investigate the protective effect of PGBR in high fructose and high fat-induced non-alcoholic fatty liver disease (NAFLD) in rodents. WKY rats were divided into: Control group was fed normal drinking water and diet; FLD group was fed 10% high-fructose-water (HFW) and high-fat-diet (HFD); PGBR group was given HFW, and HFD mixed PGBR. After four weeks, the body, hepatic and cardiac weight gains of FLD group had significant increases than that of Control group. The enhanced blood pressure and heart rate, hypertriglyceridemia, hyperuricemia, and higher liver function index (GPT levels) were observed; meanwhile, the IL-6 and TNF-α levels of serum, and TG level of liver were also elevated in FLD group. The related protein expressions of lipid synthesis, inflammation, cardiac fibrosis, and hypertrophy were deteriorated by HFW/HFD. However, in treatment group, PGBR decreased all above influenced parameters, additionally GOT; and related protein expressions. PGBR treated HFW/HFD-induced NAFLD and cardiac complications might be via improving lipid homeostasis, and inhibiting inflammation. Together, PGBR could be used as a healthy food for controlling NAFLD and its' cardiac dysfunction.
Collapse
Affiliation(s)
- Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, No. 386, Dazhong 1st Rd., Zuoying Dist., Kaohsiung City 813414, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, No. 70, Lien-hai Rd., Kaohsiung City 804, Taiwan
| | - Hsin-Li Liang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, No. 386, Dazhong 1st Rd., Zuoying Dist., Kaohsiung City 813414, Taiwan
| | - Hui-Li Lin
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung City 812301, Taiwan
| | - Chi-Long Hao
- Division of Cardiology, Department of Internal Medicine, Pingtung Christian Hospital, Pingtung 900, Taiwan
| | - Yu-Hsiu Tseng
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung City 812301, Taiwan
| | - Yi-Chen Tu
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung City 812301, Taiwan
| | - Bor-Chun Yeh
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung City 812301, Taiwan
| | - Kuo-Ping Shen
- Department of Nursing, Meiho University, No. 23, Pingkuang Rd., Neipu, Pingtung 912, Taiwan
| |
Collapse
|
4
|
Vasques-Monteiro IML, Silva-Veiga FM, Miranda CS, de Andrade Gonçalves ÉCB, Daleprane JB, Souza-Mello V. A rise in Proteobacteria is an indicator of gut-liver axis-mediated nonalcoholic fatty liver disease in high-fructose-fed adult mice. Nutr Res 2021; 91:26-35. [PMID: 34130208 DOI: 10.1016/j.nutres.2021.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 04/17/2021] [Accepted: 04/30/2021] [Indexed: 01/12/2023]
Abstract
Current evidence suggests that high fructose intake results in gut dysbiosis, leading to endotoxemia and NAFLD onset. Thus, the hypothesis of the study was that an enhanced Proteobacteria proportion in the cecal microbiota could be the most prominent trigger of NAFLD through enhanced endotoxin (LPS) in adult high-fructose-fed C57BL/6 mice. Male C57BL/6 mice received a control diet (n = 10, C: 76% of energy as carbohydrates, 0% as fructose) or high-fructose diet (n = 10, HFRU: 76% of energy as carbohydrate, 50% as fructose) for 12 weeks. Outcomes included biochemical analyses, 16S rDNA PCR amplification, hepatic stereology, and RT-qPCR. The groups showed similar body masses during the whole experiment. However, the HFRU group showed greater water intake and blood pressure than the C group. The HFRU group showed a significantly lower amount of Bacteroidetes and a predominant rise in Proteobacteria, implying increased LPS. The HFRU group also showed enhanced de novo lipogenesis (Chrebp expression), while beta-oxidation was decreased (Ppar-alpha expression). These results agree with the deposition of fat droplets within hepatocytes and the enhanced hepatic triacylglycerol concentrations, as observed in the photomicrographs, where the HFRU group had a higher volume density of steatosis than the C group. Thus, we confirmed that a rise in the Proteobacteria phylum proportion was the most prominent alteration in gut-liver axis-induced hepatic steatosis in HFRU-fed C57BL/6 mice. Gut dysbiosis and fatty liver were observed even in the absence of overweight in this dietary adult mouse model.
Collapse
Affiliation(s)
- Isabela Macedo Lopes Vasques-Monteiro
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil; Laboratory of bioactive compounds, LABBIO, School of Nutrition, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Carolline Santos Miranda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Genovesi S, Giussani M, Orlando A, Orgiu F, Parati G. Salt and Sugar: Two Enemies of Healthy Blood Pressure in Children. Nutrients 2021; 13:697. [PMID: 33671538 PMCID: PMC7927006 DOI: 10.3390/nu13020697] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/07/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of essential arterial hypertension in children and adolescents has grown considerably in the last few decades, making this disease a major clinical problem in the pediatric age. The pathogenesis of arterial hypertension is multifactorial, with one of the components being represented by incorrect eating habits. In particular, excessive salt and sugar intake can contribute to the onset of hypertension in children, particularly in subjects with excess weight. Babies have an innate predisposition for sweet taste, while that for salty taste manifests after a few weeks. The recent modification of dietary styles and the current very wide availability of salt and sugar has led to an exponential increase in the consumption of these two nutrients. The dietary intake of salt and sugar in children is in fact much higher than that recommended by health agencies. The purpose of this review is to explore the mechanisms via which an excessive dietary intake of salt and sugar can contribute to the onset of arterial hypertension in children and to show the most important clinical studies that demonstrate the association between these two nutrients and arterial hypertension in pediatric age. Correct eating habits are essential for the prevention and nondrug treatment of essential hypertension in children and adolescents.
Collapse
Affiliation(s)
- Simonetta Genovesi
- School of Medicine and Surgery, University of Milano-Bicocca, 20100 Milan, Italy; (F.O.); (G.P.)
- Istituto Auxologico Italiano, IRCCS, Cardiology Unit, 20100 Milan, Italy;
| | - Marco Giussani
- Family Pediatrician, Agenzia Tutela Salute, 20100 Milan, Italy;
| | - Antonina Orlando
- Istituto Auxologico Italiano, IRCCS, Cardiology Unit, 20100 Milan, Italy;
| | - Francesca Orgiu
- School of Medicine and Surgery, University of Milano-Bicocca, 20100 Milan, Italy; (F.O.); (G.P.)
| | - Gianfranco Parati
- School of Medicine and Surgery, University of Milano-Bicocca, 20100 Milan, Italy; (F.O.); (G.P.)
- Istituto Auxologico Italiano, IRCCS, Cardiology Unit, 20100 Milan, Italy;
| |
Collapse
|
6
|
Wölnerhanssen BK, Meyer-Gerspach AC, Beglinger C, Islam MS. Metabolic effects of the natural sweeteners xylitol and erythritol: A comprehensive review. Crit Rev Food Sci Nutr 2019; 60:1986-1998. [PMID: 31204494 DOI: 10.1080/10408398.2019.1623757] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Xylitol and erythritol are widely used in a variety of food and oral care products as sugar substitutes. Although a number of studies have been conducted on the health benefits of xylitol since the 1960s, erythritol only attracted the attention of researchers during the early 1990s. Historically, researchers mainly focused on the effects of xylitol and other sugar alcohols on oral and dental healthcare while the anti-diabetic or antihyperglycemic effects have only been revealed recently. Though a few reviews have been published on the health benefits of sugar alcohols in the last few decades, none of them closely evaluated the antihyperglycemic potential and underlying mechanisms, particularly with a focus on xylitol and erythritol. The current review thoroughly analyzes the anti-diabetic and antihyperglycemic effects as well as other metabolic effects of xylitol and erythritol using articles published in PubMed since the 1960s, containing research done on experimental animals and humans. This review will help researchers ascertain the controversies surrounding sugar alcohols, investigate further beneficial effects of them as well as aid food industries in exploring the possibilities of using sugar alcohols as anti-diabetic supplements in diabetic foods and food products.
Collapse
Affiliation(s)
- Bettina K Wölnerhanssen
- St. Clara Research Ltd., St. Clara Hospital, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | | | | | - Md Shahidul Islam
- St. Clara Research Ltd., St. Clara Hospital, Basel, Switzerland.,Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| |
Collapse
|
7
|
Taylor LE, Gillis EE, Musall JB, Baban B, Sullivan JC. High-fat diet-induced hypertension is associated with a proinflammatory T cell profile in male and female Dahl salt-sensitive rats. Am J Physiol Heart Circ Physiol 2018; 315:H1713-H1723. [PMID: 30239234 PMCID: PMC6336972 DOI: 10.1152/ajpheart.00389.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evidence supports a sex difference in the impact of a high-fat diet (HFD) on cardiovascular outcomes, with male experimental animals exhibiting greater increases in blood pressure (BP) than female experimental animals. The immune system has been implicated in HFD-induced increases in BP, and there is a sex difference in T-cell activation in hypertension. The goal of this study was to determine the impact of HFD on BP and aortic and renal T cell profiles in male and female Dahl salt-sensitive (DSS) rats. We hypothesized that male DSS rats would have greater increases in BP and T cell infiltration in response to a HFD compared with female DSS rats. BP was measured by tail-cuff plethysmography, and aortic and renal T cells were assessed by flow cytometric analysis in male and female DSS rats on a normal-fat diet (NFD) or HFD from 12 to 16 wk of age. Four weeks of HFD increased BP in male and female DSS rats to a similar degree. Increases in BP were accompanied by increased percentages of CD4+ T cells and T helper (Th)17 cells in both sexes, although male rats had more proinflammatory T cells. Percentages of renal CD3+ and CD4+ T cells as well as Th17 cells were increased in both sexes by the HFD, although the increase in CD3+ T cells was greater in male rats. HFD also decreased the percentage of aortic and renal regulatory T cells in both sexes, although female rats maintained more regulatory T cells than male rats regardless of diet. In conclusion, both male and female DSS rats exhibit BP sensitivity to a HFD; however, the mechanisms mediating HFD-induced increases in BP may be distinct as male rats exhibit greater increases in the percentage of proinflammatory T cells than female rats. NEW & NOTEWORTHY Our study demonstrates that male and female Dahl salt-sensitive rats exhibit similar increases in blood pressure to a high-fat diet and an increase in aortic and renal T cells. These results are in contrast to studies showing that female rats remain normotensive and/or upregulate regulatory T cells in response to hypertensive stimuli compared with male rats. Our data suggest that a 4-wk high-fat diet has sex-specific effects on the T cell profile in Dahl salt-sensitive rats.
Collapse
Affiliation(s)
- Lia E Taylor
- Department of Physiology, Augusta University , Augusta, Georgia
| | - Ellen E Gillis
- Department of Physiology, Augusta University , Augusta, Georgia
| | | | - Babak Baban
- Department of Oral Biology, Augusta University , Augusta, Georgia
| | | |
Collapse
|
8
|
Yurkovich JT, Bordbar A, Sigurjónsson ÓE, Palsson BO. Systems biology as an emerging paradigm in transfusion medicine. BMC SYSTEMS BIOLOGY 2018. [PMID: 29514691 PMCID: PMC5842607 DOI: 10.1186/s12918-018-0558-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Blood transfusions are an important part of modern medicine, delivering approximately 85 million blood units to patients annually. Recently, the field of transfusion medicine has started to benefit from the “omic” data revolution and corresponding systems biology analytics. The red blood cell is the simplest human cell, making it an accessible starting point for the application of systems biology approaches. In this review, we discuss how the use of systems biology has led to significant contributions in transfusion medicine, including the identification of three distinct metabolic states that define the baseline decay process of red blood cells during storage. We then describe how a series of perturbations to the standard storage conditions characterized the underlying metabolic phenotypes. Finally, we show how the analysis of high-dimensional data led to the identification of predictive biomarkers. The transfusion medicine community is in the early stages of a paradigm shift, moving away from the measurement of a handful of chosen variables to embracing systems biology and a cell-scale point of view.
Collapse
Affiliation(s)
- James T Yurkovich
- Department Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093, USA.,Bioinformatics and Systems Biology Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093, USA
| | - Aarash Bordbar
- Sinopia Biosciences, 600 W Broadway Suite 700, San Diego, 92101, USA
| | - Ólafur E Sigurjónsson
- School of Science and Engineering, Reykjavík University, Hringbraut 101, Reykjavík, 101, Iceland.,The Blood Bank, Landspítali-University Hospital, 9500 Gilman Drive, Reykjavík, 101, Iceland
| | - Bernhard O Palsson
- Department Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093, USA. .,Bioinformatics and Systems Biology Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093, USA. .,Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093, USA.
| |
Collapse
|
9
|
Ibrahim M, Bonfiglio S, Schlögl M, Vinales KL, Piaggi P, Venti C, Walter M, Krakoff J, Thearle MS. Energy Expenditure and Hormone Responses in Humans After Overeating High-Fructose Corn Syrup Versus Whole-Wheat Foods. Obesity (Silver Spring) 2018; 26:141-149. [PMID: 29193741 PMCID: PMC5739953 DOI: 10.1002/oby.22068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/25/2022]
Abstract
OBJECTIVE This study sought to understand how the dietary source of carbohydrates, either high-fructose corn syrup (HFCS) or complex carbohydrates, affects energy expenditure (EE) measures, appetitive sensations, and hormones during 24 hours of overfeeding. METHODS Seventeen healthy participants with normal glucose regulation had 24-hour EE measures and fasting blood and 24-hour urine collection during four different 1-day diets, including an energy-balanced diet, fasting, and two 75% carbohydrate diets (5% fat) given at 200% of energy requirements with either HFCS or whole-wheat foods as the carbohydrate source. In eight volunteers, hunger was assessed with visual analog scales the morning after the diets. RESULTS Compared with energy balance, 24-hour EE increased 12.8% ± 6.9% with carbohydrate overfeeding (P < 0.0001). No differences in 24-hour EE or macronutrient utilization were observed between the two high-carbohydrate diets; however, sleeping metabolic rate was higher after the HFCS diet (Δ = 35 ± 48 kcal [146 ± 200 kJ]; P = 0.01). Insulin, ghrelin, and triglycerides increased the morning after both overfeeding diets. Urinary cortisol concentrations (82.8 ± 35.9 vs. 107.6 ± 46.9 nmol/24 h; P = 0.01) and morning-after hunger scores (Δ = 2.4 ± 2.0 cm; P = 0.01) were higher with HFCS overfeeding. CONCLUSIONS The dietary carbohydrate source while overeating did not affect 24-hour EE, but HFCS overconsumption may predispose individuals to further overeating due to increased glucocorticoid release and increased hunger the following morning.
Collapse
Affiliation(s)
- Mostafa Ibrahim
- Phoenix Epidemiology and Clinical Research Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Susan Bonfiglio
- Phoenix Epidemiology and Clinical Research Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Mathias Schlögl
- Phoenix Epidemiology and Clinical Research Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
- Department of Geriatrics and Aging Research, University Hospital Zurich, Zurich, Switzerland
| | - Karyne L. Vinales
- Phoenix Epidemiology and Clinical Research Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Colleen Venti
- Phoenix Epidemiology and Clinical Research Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Mary Walter
- Clinical Laboratory Core, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Jonathan Krakoff
- Phoenix Epidemiology and Clinical Research Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Marie S. Thearle
- Phoenix Epidemiology and Clinical Research Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| |
Collapse
|
10
|
Kisioglu B, Nergiz-Unal R. The powerful story against cardiovascular diseases: Dietary factors. FOOD REVIEWS INTERNATIONAL 2017. [DOI: 10.1080/87559129.2017.1410172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Betul Kisioglu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Reyhan Nergiz-Unal
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
11
|
Rolfsson Ó, Johannsson F, Magnusdottir M, Paglia G, Sigurjonsson ÓE, Bordbar A, Palsson S, Brynjólfsson S, Guðmundsson S, Palsson B. Mannose and fructose metabolism in red blood cells during cold storage in SAGM. Transfusion 2017; 57:2665-2676. [DOI: 10.1111/trf.14266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Óttar Rolfsson
- Center for Systems Biology
- Medical Department; University of Iceland
| | - Freyr Johannsson
- Center for Systems Biology
- Medical Department; University of Iceland
| | | | - Giuseppe Paglia
- Center for Systems Biology
- Center for Biomedicine; European Academy of Bolzano/Bozen; Bolzano Italy
| | - Ólafur E. Sigurjonsson
- The Blood Bank, Landspitali-University Hospital
- School of Science and Engineering; Reykjavik University; Reykjavik Iceland
| | | | | | | | | | | |
Collapse
|
12
|
Legeza B, Marcolongo P, Gamberucci A, Varga V, Bánhegyi G, Benedetti A, Odermatt A. Fructose, Glucocorticoids and Adipose Tissue: Implications for the Metabolic Syndrome. Nutrients 2017; 9:nu9050426. [PMID: 28445389 PMCID: PMC5452156 DOI: 10.3390/nu9050426] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/16/2017] [Accepted: 04/20/2017] [Indexed: 12/13/2022] Open
Abstract
The modern Western society lifestyle is characterized by a hyperenergetic, high sugar containing food intake. Sugar intake increased dramatically during the last few decades, due to the excessive consumption of high-sugar drinks and high-fructose corn syrup. Current evidence suggests that high fructose intake when combined with overeating and adiposity promotes adverse metabolic health effects including dyslipidemia, insulin resistance, type II diabetes, and inflammation. Similarly, elevated glucocorticoid levels, especially the enhanced generation of active glucocorticoids in the adipose tissue due to increased 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity, have been associated with metabolic diseases. Moreover, recent evidence suggests that fructose stimulates the 11β-HSD1-mediated glucocorticoid activation by enhancing the availability of its cofactor NADPH. In adipocytes, fructose was found to stimulate 11β-HSD1 expression and activity, thereby promoting the adipogenic effects of glucocorticoids. This article aims to highlight the interconnections between overwhelmed fructose metabolism, intracellular glucocorticoid activation in adipose tissue, and their metabolic effects on the progression of the metabolic syndrome.
Collapse
Affiliation(s)
- Balázs Legeza
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest 1085, Hungary.
- First Department of Pediatrics, Semmelweis University, Budapest 1085, Hungary.
| | - Paola Marcolongo
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy.
| | - Alessandra Gamberucci
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy.
| | - Viola Varga
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest 1085, Hungary.
| | - Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest 1085, Hungary.
- Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest 1085, Hungary.
| | - Angiolo Benedetti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy.
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
13
|
Belkova J, Rozkot M, Danek P, Klein P, Matonohova J, Podhorna I. Sugar and nutritional extremism. Crit Rev Food Sci Nutr 2016; 57:933-936. [DOI: 10.1080/10408398.2014.940027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jaroslava Belkova
- Department of Pig Breeding, Institute of Animal Science Prague, Uhrineves, Komenskeho, Czech Republic
| | - Miroslav Rozkot
- Department of Pig Breeding, Institute of Animal Science Prague, Uhrineves, Komenskeho, Czech Republic
| | - Petr Danek
- Department of Pig Breeding, Institute of Animal Science Prague, Uhrineves, Komenskeho, Czech Republic
| | - Pavel Klein
- Department of Pig Breeding, Institute of Animal Science Prague, Uhrineves, Komenskeho, Czech Republic
| | - Jana Matonohova
- Department of Pig Breeding, Institute of Animal Science Prague, Uhrineves, Komenskeho, Czech Republic
| | - Iva Podhorna
- Contipro Pharma, A.S., Dolni Dobrouc, Czech Republic
- School of Agriculture Lanskroun, Lanskroun, Czech Republic
| |
Collapse
|
14
|
Dual effects of fructose on ChREBP and FoxO1/3α are responsible for AldoB up-regulation and vascular remodelling. Clin Sci (Lond) 2016; 131:309-325. [PMID: 28007970 DOI: 10.1042/cs20160251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 12/04/2016] [Accepted: 12/21/2016] [Indexed: 12/24/2022]
Abstract
Increased production of methylglyoxal (MG) in vascular tissues is one of the causative factors for vascular remodelling in different subtypes of metabolic syndrome, including hypertension and insulin resistance. Fructose-induced up-regulation of aldolase B (AldoB) contributes to increased vascular MG production but the underlying mechanisms are unclear. Serum levels of MG and fructose were determined in diabetic patients with hypertension. MG level had significant positive correlations with blood pressure and fructose level respectively. C57BL/6 mice were fed with control or fructose-enriched diet for 3 months and ultrasonographic and histologic analyses were performed to evaluate arterial structural changes. Fructose-fed mice exhibited hypertension and high levels of serum MG with normal glucose level. Fructose intake increased blood vessel wall thickness and vascular smooth muscle cell (VSMC) proliferation. Western blotting and real-time PCR analysis revealed that AldoB level was significantly increased in both the aorta of fructose-fed mice and the fructose-treated VSMCs, whereas aldolase A (AldoA) expression was not changed. The knockdown of AldoB expression prevented fructose-induced MG overproduction and VSMC proliferation. Moreover, fructose significantly increased carbohydrate-responsive element-binding protein (ChREBP), phosphorylated FoxO1/3α and Akt1 levels. Fructose induced translocation of ChREBP from the cytosol to nucleus and activated AldoB gene expression, which was inhibited by the knockdown of ChREBP. Meanwhile, fructose caused FoxO1/3α shuttling from the nucleus to cytosol and inhibited its binding to AldoB promoter region. Fructose-induced AldoB up-regulation was suppressed by Akt1 inhibitor but enhanced by FoxO1/3α siRNA. Collectively, fructose activates ChREBP and inactivates FoxO1/3α pathways to up-regulate AldoB expression and MG production, leading to vascular remodelling.
Collapse
|
15
|
Association between sucrose intake and acute coronary event risk and effect modification by lifestyle factors: Malmö Diet and Cancer Cohort Study. Br J Nutr 2016; 116:1611-1620. [PMID: 27774913 DOI: 10.1017/s0007114516003561] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previous studies have suggested that a high intake of sugar-sweetened beverages is positively associated with the risk of a coronary event. However, a few studies have examined the association between sucrose (the most common extrinsic sugar in Sweden) and incident coronary events. The objective of the present study was to examine the associations between sucrose intake and coronary event risk and to determine whether these associations are specific to certain subgroups of the population (i.e. according to physical activity, obesity status, educational level, alcohol consumption, smoking habits, intake of fat and intake of fruits and vegetables). We performed a prospective analysis on 26 190 individuals (62 % women) free from diabetes and without a history of CVD from the Swedish population-based Malmö Diet and Cancer cohort. Over an average of 17 years of follow-up (457 131 person-years), 2493 incident cases of coronary events were identified. Sucrose intake was obtained from an interview-based diet history method, including 7-d records of prepared meals and cold beverages and a 168-item diet questionnaire covering other foods. Participants who consumed >15 % of their energy intake (E%) from sucrose showed a 37 (95 % CI 13, 66) % increased risk of a coronary event compared with the lowest sucrose consumers (<5 E%) after adjusting for potential confounders. The association was not modified by the selected lifestyle factors. The results indicated that sucrose consumption higher than 15 E% (5 % of this population) is associated with an increased risk of a coronary event.
Collapse
|
16
|
Jamnik J, Rehman S, Blanco Mejia S, de Souza RJ, Khan TA, Leiter LA, Wolever TMS, Kendall CWC, Jenkins DJA, Sievenpiper JL. Fructose intake and risk of gout and hyperuricemia: a systematic review and meta-analysis of prospective cohort studies. BMJ Open 2016; 6:e013191. [PMID: 27697882 PMCID: PMC5073537 DOI: 10.1136/bmjopen-2016-013191] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The prevalence of hyperuricemia and gout has increased in recent decades. The role of dietary fructose in the development of these conditions remains unclear. OBJECTIVE To conduct a systematic review and meta-analysis of prospective cohort studies investigating the association fructose consumption with incident gout and hyperuricemia. DESIGN MEDLINE, EMBASE and the Cochrane Library were searched (through September 2015). We included prospective cohort studies that assessed fructose consumption and incident gout or hyperuricemia. 2 independent reviewers extracted relevant data and assessed study quality using the Newcastle-Ottawa Scale. We pooled natural-log transformed risk ratios (RRs) using the generic inverse variance method. Interstudy heterogeneity was assessed (Cochran Q statistic) and quantified (I2 statistic). The overall quality of the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. RESULTS 2 studies involving 125 299 participants and 1533 cases of incident gout assessed the association between fructose consumption and incident gout over an average of 17 years of follow-up. No eligible studies assessed incident hyperuricemia as an outcome. Fructose consumption was associated with an increase in the risk of gout (RR=1.62, 95% CI 1.28 to 2.03, p<0.0001) with no evidence of interstudy heterogeneity (I2=0%, p=0.33) when comparing the highest (>11.8% to >11.9% total energy) and lowest (<6.9% to <7.5% total energy) quantiles of consumption. LIMITATIONS Despite a dose-response gradient, the overall quality of evidence as assessed by GRADE was low, due to indirectness. There were only two prospective cohort studies involving predominantly white health professionals that assessed incident gout, and none assessed hyperuricemia. CONCLUSIONS Fructose consumption was associated with an increased risk of developing gout in predominantly white health professionals. More prospective studies are necessary to understand better the role of fructose and its food sources in the development of gout and hyperuricemia. PROTOCOL REGISTRATION NUMBER NCT01608620.
Collapse
Affiliation(s)
- Joseph Jamnik
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sara Rehman
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Russell J de Souza
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Clinical Epidemiology and Biostatistics, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Tauseef A Khan
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Lawrence A Leiter
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Thomas M S Wolever
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Cyril W C Kendall
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - David J A Jenkins
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - John L Sievenpiper
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Saad AF, Dickerson J, Kechichian TB, Yin H, Gamble P, Salazar A, Patrikeev I, Motamedi M, Saade GR, Costantine MM. High-fructose diet in pregnancy leads to fetal programming of hypertension, insulin resistance, and obesity in adult offspring. Am J Obstet Gynecol 2016; 215:378.e1-6. [PMID: 27060421 DOI: 10.1016/j.ajog.2016.03.038] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/21/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Consumption of fructose-rich diets in the United States is on the rise and thought to be associated with obesity and cardiometabolic diseases. OBJECTIVE We sought to determine the effects of antenatal exposure to high-fructose diet on offspring's development of metabolic syndrome-like phenotype and other cardiovascular disease risk factors later in life. STUDY DESIGN Pregnant C57BL/6J dams were randomly allocated to fructose solution (10% wt/vol, n = 10) or water (n = 10) as the only drinking fluid from day 1 of pregnancy until delivery. After weaning, pups were started on regular chow, and evaluated at 1 year of life. We measured percent visceral adipose tissue and liver fat infiltrates using computed tomography, and blood pressure using CODA nonivasive monitor. Intraperitoneal glucose tolerance testing with corresponding insulin concentrations were obtained. Serum concentrations of glucose, insulin, triglycerides, total cholesterol, leptin, and adiponectin were measured in duplicate using standardized assays. Fasting homeostatic model assessment was also calculated to assess insulin resistance. P values <.05 were considered statistically significant. RESULTS Maternal weight, pup number, and average weight at birth were similar between the 2 groups. Male and female fructose group offspring had higher peak glucose and area under the intraperitoneal glucose tolerance testing curve compared with control, and higher mean arterial pressure compared to control. Female fructose group offspring were heavier and had higher percent visceral adipose tissue, liver fat infiltrates, homeostatic model assessment of insulin resistance scores, insulin area under the intraperitoneal glucose tolerance testing curve, and serum concentrations of leptin, and lower concentrations of adiponectin compared to female control offspring. No significant differences in these parameters were noted in male offspring. Serum concentrations of triglycerides or total cholesterol were not different between the 2 groups for either gender. CONCLUSION Maternal intake of high fructose leads to fetal programming of adult obesity, hypertension, and metabolic dysfunction, all risk factors for cardiovascular disease. This fetal programming is more pronounced in female offspring. Limiting intake of high fructose-enriched diets in pregnancy may have significant impact on long-term health.
Collapse
|
18
|
Chapnik N, Rozenblit-Susan S, Genzer Y, Froy O. Differential effect of fructose on fat metabolism and clock gene expression in hepatocytes vs. myotubes. Int J Biochem Cell Biol 2016; 77:35-40. [PMID: 27240446 DOI: 10.1016/j.biocel.2016.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 02/04/2016] [Accepted: 05/26/2016] [Indexed: 11/17/2022]
Abstract
In the liver, fructose bypasses the main rate-limiting step of glycolysis at the level of phosphofructokinase, allowing it to act as an unregulated substrate for de novo lipogenesis. It has been reported that consumption of large amounts of fructose increases de novo lipogenesis in the liver. However, the effect of fructose on ectopic deposition of muscle fat has been under dispute. Our aim was to study the effect of fructose on levels of genes and proteins involved in fatty acid oxidation and synthesis in hepatocytes vs. muscle cells. In addition, as fat accumulation leads to disruption of daily rhythms, we tested the effect of fructose treatment on clock gene expression. AML-12 hepatocytes and C2C12 myotubes were treated with fructose or glucose for 2 consecutive 24-h cycles and harvested every 6h. In contrast to glucose, fructose disrupted clock gene rhythms in hepatocytes, but in myotubes, it led to more robust rhythms. Fructose led to low levels of phosphorylated AMP-activated protein kinase (pAMPK) and high levels of LIPIN1 in hepatocytes compared with glucose. In contrast, fructose led to high pAMPK and low LIPIN1 and microsomal triacylglycerol transfer protein (MTTP) levels in myotubes compared with glucose. Analysis of fat content revealed that fructose led to less fat accumulation in myotubes compared to hepatocytes. In summary, fructose shifts metabolism towards fatty acid synthesis and clock disruption in hepatocytes, but not in myotubes.
Collapse
Affiliation(s)
- Nava Chapnik
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Sigal Rozenblit-Susan
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yoni Genzer
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
19
|
Clemens RA, Jones JM, Kern M, Lee SY, Mayhew EJ, Slavin JL, Zivanovic S. Functionality of Sugars in Foods and Health. Compr Rev Food Sci Food Saf 2016; 15:433-470. [DOI: 10.1111/1541-4337.12194] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/21/2015] [Accepted: 12/31/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Roger A. Clemens
- USC School of Pharmacy; Intl. Center for Regulatory Science; 1540 Alcazar St., CHP 140 Los Angeles CA 90089 U.S.A
| | - Julie M. Jones
- St. Catherine Univ; 4030 Valentine Court; Arden Hills Minnesota 55112 U.S.A
| | - Mark Kern
- San Diego State Univ; School of Exercise and Nutritional Sciences; 5500 Campanile Dr. San Diego CA 92182-7251 U.S.A
| | - Soo-Yeun Lee
- Univ. of Illinois at Urbana Champaign; 351 Bevier Hall MC-182, 905 S Goodwin Ave. Urbana IL 61801 U.S.A
| | - Emily J. Mayhew
- Univ. of Illinois at Urbana Champaign; 399A Bevier Hall; 905 S Goodwin Ave. Urbana IL 61801 U.S.A
| | - Joanne L. Slavin
- Univ. of Minnesota; 166 Food Science & Nutrition; 1354 Eckles Ave. Saint Paul MN 55108-1038 U.S.A
| | - Svetlana Zivanovic
- Mars Petcare; Global Applied Science and Technology; 315 Cool Springs Boulevard Franklin TN 37067 U.S.A
| |
Collapse
|
20
|
McCarthy EM, Rinella ME. Nonalcoholic Fatty Liver Disease and Steatohepatitis. LIFESTYLE MEDICINE 2016. [DOI: 10.1007/978-3-319-24687-1_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
Baseline consumption and changes in sugar-sweetened beverage consumption and the incidence of hypertension: The SUN project. Clin Nutr 2015; 34:1133-40. [DOI: 10.1016/j.clnu.2014.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 11/04/2014] [Accepted: 11/15/2014] [Indexed: 01/09/2023]
|
22
|
Jayalath VH, de Souza RJ, Ha V, Mirrahimi A, Blanco-Mejia S, Di Buono M, Jenkins AL, Leiter LA, Wolever TM, Beyene J, Kendall CW, Jenkins DJ, Sievenpiper JL. Sugar-sweetened beverage consumption and incident hypertension: a systematic review and meta-analysis of prospective cohorts. Am J Clin Nutr 2015; 102:914-21. [PMID: 26269365 DOI: 10.3945/ajcn.115.107243] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 07/21/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The role of sugar-sweetened beverages (SSBs) that contain free or bound fructose in the pathogenesis of hypertension remains unclear. OBJECTIVE We conducted a systematic review and meta-analysis of prospective cohort studies to quantify the association between fructose-containing SSBs and risk of hypertension. DESIGN MEDLINE, Embase, Cumulative Index to Nursing and Allied Health Literature, and the Cochrane registry were searched from conception through 11 November 2014. Two independent reviewers extracted data and assessed the quality of studies (with the use of the Newcastle-Ottawa Scale). Risk estimates of extreme quantiles of SSB intake (lowest compared with highest) for hypertension incidence were generated with the use of generic inverse-variance methods with random-effects models and expressed as risk ratios with 95% CIs. Heterogeneity was assessed with the Cochran Q statistic and quantified with the I(2) statistic. RESULTS Six prospective cohort studies (n = 240,508) with 79,251 cases of hypertension observed over ≥3,197,528 person-years of follow-up were included. SSB consumption significantly increased the risk of developing hypertension by 12% (risk ratio: 1.12; 95% CI: 1.06, 1.17) with evidence of significant heterogeneity (I(2) = 62%, P = 0.02) when highest [≥1 serving (6.7, 8, or 12 oz)/d] and lowest (none) quantiles of intake were compared. With the use of a dose-response analysis, a significant 8.2% increase in risk of every additional SSB per day from none to ≥1 SSB/d (β = 0.0027, P < 0.001) was identified. Limitations include unexplained heterogeneity and residual confounding. The results may also have been subject to collinearity effects from aspects of a Western dietary pattern. CONCLUSIONS SSBs were associated with a modest risk of developing hypertension in 6 cohorts. There is a need for high-quality randomized trials to assess the role of SSBs in the development of hypertension and its complications. This study was registered at clinicaltrials.gov as NCT01608620.
Collapse
Affiliation(s)
- Viranda H Jayalath
- Toronto 3D Knowledge Synthesis & Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Center, Departments of Nutritional Sciences and
| | - Russell J de Souza
- Toronto 3D Knowledge Synthesis & Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Center, Departments of Clinical Epidemiology & Biostatistics and
| | - Vanessa Ha
- Toronto 3D Knowledge Synthesis & Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Center, Departments of Clinical Epidemiology & Biostatistics and
| | - Arash Mirrahimi
- Toronto 3D Knowledge Synthesis & Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Center, Departments of Nutritional Sciences and
| | - Sonia Blanco-Mejia
- Toronto 3D Knowledge Synthesis & Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Center, Departments of Nutritional Sciences and
| | - Marco Di Buono
- Departments of Nutritional Sciences and Heart and Stroke Foundation of Ontario, Toronto, Canada; and American Heart Association, Dallas, TX
| | - Alexandra L Jenkins
- Toronto 3D Knowledge Synthesis & Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Center
| | - Lawrence A Leiter
- Toronto 3D Knowledge Synthesis & Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Center, Division of Endocrinology and Metabolism, and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada; Departments of Nutritional Sciences and Medicine, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Thomas Ms Wolever
- Toronto 3D Knowledge Synthesis & Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Center, Division of Endocrinology and Metabolism, and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada; Departments of Nutritional Sciences and Medicine, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Joseph Beyene
- Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Cyril Wc Kendall
- Toronto 3D Knowledge Synthesis & Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Center, Departments of Nutritional Sciences and Medicine, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - David Ja Jenkins
- Toronto 3D Knowledge Synthesis & Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Center, Division of Endocrinology and Metabolism, and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada; Departments of Nutritional Sciences and Medicine, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - John L Sievenpiper
- Toronto 3D Knowledge Synthesis & Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Center, Division of Endocrinology and Metabolism, and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada; Departments of Nutritional Sciences and Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada;
| |
Collapse
|
23
|
Augustin LSA, Kendall CWC, Jenkins DJA, Willett WC, Astrup A, Barclay AW, Björck I, Brand-Miller JC, Brighenti F, Buyken AE, Ceriello A, La Vecchia C, Livesey G, Liu S, Riccardi G, Rizkalla SW, Sievenpiper JL, Trichopoulou A, Wolever TMS, Baer-Sinnott S, Poli A. Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr Metab Cardiovasc Dis 2015; 25:795-815. [PMID: 26160327 DOI: 10.1016/j.numecd.2015.05.005] [Citation(s) in RCA: 409] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 05/08/2015] [Accepted: 05/08/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIMS The positive and negative health effects of dietary carbohydrates are of interest to both researchers and consumers. METHODS International experts on carbohydrate research held a scientific summit in Stresa, Italy, in June 2013 to discuss controversies surrounding the utility of the glycemic index (GI), glycemic load (GL) and glycemic response (GR). RESULTS The outcome was a scientific consensus statement which recognized the importance of postprandial glycemia in overall health, and the GI as a valid and reproducible method of classifying carbohydrate foods for this purpose. There was consensus that diets low in GI and GL were relevant to the prevention and management of diabetes and coronary heart disease, and probably obesity. Moderate to weak associations were observed for selected cancers. The group affirmed that diets low in GI and GL should always be considered in the context of diets otherwise understood as healthy, complementing additional ways of characterizing carbohydrate foods, such as fiber and whole grain content. Diets of low GI and GL were considered particularly important in individuals with insulin resistance. CONCLUSIONS Given the high prevalence of diabetes and pre-diabetes worldwide and the consistency of the scientific evidence reviewed, the expert panel confirmed an urgent need to communicate information on GI and GL to the general public and health professionals, through channels such as national dietary guidelines, food composition tables and food labels.
Collapse
Affiliation(s)
- L S A Augustin
- Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Canada.
| | - C W C Kendall
- Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Canada; Department of Nutritional Science, University of Toronto, Toronto, Canada; University of Saskatchewan, Saskatoon, Canada
| | - D J A Jenkins
- Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Canada; Department of Nutritional Science, University of Toronto, Toronto, Canada
| | - W C Willett
- Department of Nutrition, Harvard School of Public Health, Boston, USA
| | - A Astrup
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - A W Barclay
- Glycemic Index Foundation, Sydney, Australia
| | - I Björck
- Food for Health Science Centre, Lund University, Lund, Sweden
| | - J C Brand-Miller
- Boden Institute of Obesity, Nutrition, Exercise and Eating Disorders, University of Sydney, Sydney, Australia
| | - F Brighenti
- Department of Food Sciences, University of Parma, Parma, Italy
| | - A E Buyken
- Department of Nutritional Epidemiology, University of Bonn, Bonn, Germany
| | - A Ceriello
- Institut d' Investigación Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Barcelona, Spain
| | - C La Vecchia
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - G Livesey
- Independent Nutrition Logic, Wymondham, UK
| | - S Liu
- Department of Epidemiology and Medicine, Brown University, Providence, USA
| | - G Riccardi
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - S W Rizkalla
- Institute Cardiometabolism and Nutrition (ICAN), University Pierre et Marie Curie, Pitié Salpêtrière Hospital, Paris, France; National Institute of Health and Medical Research (INSERM), University Pierre et Marie Curie and Pitié Salpêtrière Hospital, Paris, France
| | - J L Sievenpiper
- Department of Nutritional Science, University of Toronto, Toronto, Canada
| | - A Trichopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Athens, Greece
| | - T M S Wolever
- Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Canada; Department of Nutritional Science, University of Toronto, Toronto, Canada
| | | | - A Poli
- Nutrition Foundation of Italy, Milan, Italy
| |
Collapse
|
24
|
Abstract
A high intake of sugars has been linked to diet-induced health problems. The fructose content in sugars consumed may also affect health, although the extent to which fructose has a particularly significant negative impact on health remains controversial. The aim of this narrative review is to describe the body's fructose management and to discuss the role of fructose as a risk factor for atherosclerosis, type 2 diabetes, and obesity. Despite some positive effects of fructose, such as high relative sweetness, high thermogenic effect, and low glycaemic index, a high intake of fructose, particularly when combined with glucose, can, to a larger extent than a similar glucose intake, lead to metabolic changes in the liver. Increased de novo lipogenesis (DNL), and thus altered blood lipid profile, seems to be the most prominent change. More studies with realistic consumption levels of fructose are needed, but current literature does not indicate that a normal consumption of fructose (approximately 50–60 g/day) increases the risk of atherosclerosis, type 2 diabetes, or obesity more than consumption of other sugars. However, a high intake of fructose, particularly if combined with a high energy intake in the form of glucose/starch, may have negative health effects via DNL.
Collapse
|
25
|
Ha V, Chiavaroli L, de Souza RJ, Kendall CWC, Sievenpiper JL. Differential association of sugar-sweetened beverages in men and women: is it the sugar or calories? Am J Clin Nutr 2014; 100:1399-400. [PMID: 25332341 PMCID: PMC4196489 DOI: 10.3945/ajcn.114.094250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Vanessa Ha
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 6137-61 Queen Street East, Toronto, ON, M5C 2T2, Canada, E-mail:
| | - Laura Chiavaroli
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 6137-61 Queen Street East, Toronto, ON, M5C 2T2, Canada, E-mail:
| | - Russell J de Souza
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 6137-61 Queen Street East, Toronto, ON, M5C 2T2, Canada, E-mail:
| | - Cyril W C Kendall
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 6137-61 Queen Street East, Toronto, ON, M5C 2T2, Canada, E-mail:
| | - John L Sievenpiper
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 6137-61 Queen Street East, Toronto, ON, M5C 2T2, Canada, E-mail:
| |
Collapse
|
26
|
Rice Bran Oil and Pumpkin Seed Oil Alleviate Oxidative Injury and Fatty Liver in Rats Fed High Fructose Diet. POL J FOOD NUTR SCI 2014. [DOI: 10.2478/pjfns-2013-0002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
27
|
Laughlin MR, Bantle JP, Havel PJ, Parks E, Klurfeld DM, Teff K, Maruvada P. Clinical research strategies for fructose metabolism. Adv Nutr 2014; 5:248-59. [PMID: 24829471 PMCID: PMC4013177 DOI: 10.3945/an.113.005249] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fructose and simple sugars are a substantial part of the western diet, and their influence on human health remains controversial. Clinical studies in fructose nutrition have proven very difficult to conduct and interpret. NIH and USDA sponsored a workshop on 13-14 November 2012, "Research Strategies for Fructose Metabolism," to identify important scientific questions and parameters to be considered while designing clinical studies. Research is needed to ascertain whether there is an obesogenic role for fructose-containing sugars via effects on eating behavior and energy balance and whether there is a dose threshold beyond which these sugars promote progression toward diabetes and liver and cardiovascular disease, especially in susceptible populations. Studies tend to fall into 2 categories, and design criteria for each are described. Mechanistic studies are meant to validate observations made in animals or to elucidate the pathways of fructose metabolism in humans. These highly controlled studies often compare the pure monosaccharides glucose and fructose. Other studies are focused on clinically significant disease outcomes or health behaviors attributable to amounts of fructose-containing sugars typically found in the American diet. These are designed to test hypotheses generated from short-term mechanistic or epidemiologic studies and provide data for health policy. Discussion brought out the opinion that, although many mechanistic questions concerning the metabolism of monosaccharide sugars in humans remain to be addressed experimentally in small highly controlled studies, health outcomes research meant to inform health policy should use large, long-term studies using combinations of sugars found in the typical American diet rather than pure fructose or glucose.
Collapse
Affiliation(s)
- Maren R. Laughlin
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD,To whom correspondence should be addressed. E-mail:
| | - John P. Bantle
- Division of Endocrinology and Diabetes, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Peter J. Havel
- Department of Molecular Biosciences, Department of Nutrition, School of Veterinary Medicine, University of California, Davis, Davis, CA
| | - Elizabeth Parks
- Department of Nutrition and Exercise Physiology, Institute for Clinical Translational Science, University of Missouri, Columbia, MO; and
| | | | - Karen Teff
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD
| | - Padma Maruvada
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD
| |
Collapse
|
28
|
Ruane-O'Hora T, Edge D, Shortt CM, Markos F, Noble MIM. Responses of iliac conduit artery and hindlimb resistance vessels to luminal hyperfructosemia in the anaesthetized pig. Acta Physiol (Oxf) 2013; 209:254-61. [PMID: 24102866 DOI: 10.1111/apha.12167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/21/2013] [Accepted: 09/08/2013] [Indexed: 12/31/2022]
Abstract
AIMS High fructose levels are found in diabetes mellitus, associated with high corn syrup diets, and have been claimed to cause hypertension. As the direct effects on conduit and resistance arteries have not been previously reported, we measured these in vivo in the anaesthetized pig with instrumented iliac arteries. METHODS Experiments were performed on the iliac artery preparation in the anaesthetized pig: blood flow, diameter and pressure were measured in the iliac. RESULTS The change in diameter of an occluded iliac artery segment filled with hyperfructosemic (15 μm) blood was 89.5 ± 22.1 μm (mean ± SE), contrasted with 7.7 ± 13.06 μm control (P = 0.005, paired t-test, n = 6). There was no significant difference when compared with blood containing both hyperfructosemic blood and the nitric oxide synthesis inhibitor, N(G)-nitro-l-arginine methyl ester (250 μg mL(-1)). Step changes in pressure and flow were achieved by progressive arterial stenosis during control saline and 15 μm min(-1) fructose downstream intra-arterial infusions. Linear regression of the step changes in blood pressure versus the instantaneous step changes in blood flow showed a statistically significant decrease in slope of the conductance (P < 0.001, analysis of covariance), indicating an increase in instantaneous peripheral vascular resistance. Peripheral autoregulation and conduit artery shear-stress-mediated dilatation were not significantly altered. CONCLUSION An elevated level of fructose caused dilatation of a conduit artery but constriction of resistance vessels. The latter effect could account, if maintained long-term, for the hypertension claimed to be due to hyperfuctosemia.
Collapse
Affiliation(s)
- T. Ruane-O'Hora
- Department of Physiology; University College Cork; Cork Ireland
| | - D. Edge
- Department of Physiology; University College Cork; Cork Ireland
| | - C. M. Shortt
- Department of Physiology; University College Cork; Cork Ireland
| | - F. Markos
- Department of Physiology; University College Cork; Cork Ireland
| | - M. I. M. Noble
- Cardiovascular Medicine; University of Aberdeen; Scotland UK
| |
Collapse
|
29
|
Silbernagel G, Machann J, Häring HU, Fritsche A, Peter A. Plasminogen activator inhibitor-1, monocyte chemoattractant protein-1, e-selectin and C-reactive protein levels in response to 4-week very-high-fructose or -glucose diets. Eur J Clin Nutr 2013; 68:97-100. [DOI: 10.1038/ejcn.2013.228] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/14/2013] [Accepted: 09/10/2013] [Indexed: 12/27/2022]
|
30
|
Abstract
PURPOSE OF STUDY To discuss studies in humans and animals revealing the ability of foods to benefit the brain: new information with regards to mechanisms of action and the treatment of neurological and psychiatric disorders. RECENT FINDINGS Dietary factors exert their effects on the brain by affecting molecular events related to the management of energy metabolism and synaptic plasticity. Energy metabolism influences neuronal function, neuronal signaling, and synaptic plasticity, ultimately affecting mental health. Epigenetic regulation of neuronal plasticity appears as an important mechanism by which foods can prolong their effects on long-term neuronal plasticity. SUMMARY The prime focus of the discussion is to emphasize the role of cell metabolism as a mediator for the action of foods on the brain. Oxidative stress promotes damage to phospholipids present in the plasma membrane such as the omega-3 fatty acid docosahexenoic acid, disrupting neuronal signaling. Thus, dietary docosahexenoic acid seems crucial for supporting plasma membrane function, interneuronal signaling, and cognition. The dual action of brain-derived neurotrophic factor in neuronal metabolism and synaptic plasticity is crucial for activating signaling cascades under the action of diet and other environmental factors, using mechanisms of epigenetic regulation.
Collapse
Affiliation(s)
- Fernando Gomez-Pinilla
- Department of Integrative Biology & Physiology and Department of Neurosurgery, University of California, Los Angeles, California, USA
| | | |
Collapse
|
31
|
Regnault TRH, Gentili S, Sarr O, Toop CR, Sloboda DM. Fructose, pregnancy and later life impacts. Clin Exp Pharmacol Physiol 2013; 40:824-37. [DOI: 10.1111/1440-1681.12162] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/08/2013] [Accepted: 08/14/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Timothy RH Regnault
- Department of Obstetrics and Gynaecology; Children's Health Research Institute; Western University; London ON Canada
| | - Sheridan Gentili
- School of Pharmacy and Medical Sciences; Sansom Institute for Health Research; University of South Australia; Adelaide SA Australia
| | - Ousseynou Sarr
- Department of Obstetrics and Gynaecology; Children's Health Research Institute; Western University; London ON Canada
| | - Carla R Toop
- School of Pharmacy and Medical Sciences; Sansom Institute for Health Research; University of South Australia; Adelaide SA Australia
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences; Faculty of Health Sciences; McMaster University; Hamilton ON Canada
| |
Collapse
|