1
|
Sun Y, Shang Q. Research hotspots and trends regarding microRNAs in hypertension: a bibliometric analysis. Clin Exp Hypertens 2024; 46:2304017. [PMID: 38230680 DOI: 10.1080/10641963.2024.2304017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
To investigate the research levels, hotspots, and development trends regarding microRNAs in hypertension, this study conducted a visual analysis of studies on miRNA in hypertension based on the Web of Science core collection database using CiteSpace and VOSviewer analysis software along with literature from 2005-2023 as information data. Using citation frequency, centrality, and starting year as metrics, this study analyzed the research objects. It revealed the main research bodies and hotspots and evaluated the sources of literature and the distribution of knowledge from journals and authors. Finally, the potential research directions for miRNAs in hypertension are discussed. The results showed that the research field is in a period of vigorous development, and scholars worldwide have shown strong interest in this research field. A comprehensive summary and analysis of the current research status and application trends will prove beneficial for the advancement of this field.
Collapse
Affiliation(s)
- Yu Sun
- College of traditional Chinese medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingxin Shang
- College of traditional Chinese medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Luo H, Li Y, Song H, Zhao K, Li W, Hong H, Wang YT, Qi L, Zhang Y. Role of EZH2-mediated epigenetic modification on vascular smooth muscle in cardiovascular diseases: A mini-review. Front Pharmacol 2024; 15:1416992. [PMID: 38994197 PMCID: PMC11236572 DOI: 10.3389/fphar.2024.1416992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
Vascular smooth muscle cells (VSMCs) are integral to the pathophysiology of cardiovascular diseases (CVDs). Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, plays a crucial role in epigenetic regulation of VSMCs gene expression. Emerging researches suggest that EZH2 has a dual role in VSMCs, contingent on the pathological context of specific CVDs. This mini-review synthesizes the current knowledge on the mechanisms by which EZH2 regulates VSMC proliferation, migration and survival in the context of CVDs. The goal is to underscore the potential of EZH2 as a therapeutic target for CVDs treatment. Modulating EZH2 and its associated epigenetic pathways in VSMCs could potentially ameliorate vascular remodeling, a key factor in the progression of many CVDs. Despite the promising outlook, further investigation is warranted to elucidate the epigenetic mechanisms mediated by EZH2 in VSMCs, which may pave the way for novel epigenetic therapies for conditions such as atherosclerosis and hypertension.
Collapse
Affiliation(s)
- Haiyan Luo
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yao Li
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Nanchang, China
| | - Honghu Song
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Kui Zhao
- College of Material Science and Chemical Engineering, Southwest Forestry University, Kunming, Yunnan, China
| | - Wenlin Li
- Center for Quality Evaluation and Research in Higher Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hailan Hong
- Center for Quality Evaluation and Research in Higher Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun-Ting Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Luming Qi
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| |
Collapse
|
3
|
Svigkou A, Katsi V, Kordalis VG, Tsioufis K. The Molecular Basis of the Augmented Cardiovascular Risk in Offspring of Mothers with Hypertensive Disorders of Pregnancy. Int J Mol Sci 2024; 25:5455. [PMID: 38791492 PMCID: PMC11121482 DOI: 10.3390/ijms25105455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The review examines the impact of maternal preeclampsia (PE) on the cardiometabolic and cardiovascular health of offspring. PE, a hypertensive disorder of pregnancy, is responsible for 2 to 8% of pregnancy-related complications. It significantly contributes to adverse outcomes for their infants, affecting the time of birth, the birth weight, and cardiometabolic risk factors such as blood pressure, body mass index (BMI), abdominal obesity, lipid profiles, glucose, and insulin. Exposure to PE in utero predisposes offspring to an increased risk of cardiometabolic diseases (CMD) and cardiovascular diseases (CVD) through mechanisms that are not fully understood. The incidence of CMD and CVD is constantly increasing, whereas CVD is the main cause of morbidity and mortality globally. A complex interplay of genes, environment, and developmental programming is a plausible explanation for the development of endothelial dysfunction, which leads to atherosclerosis and CVD. The underlying molecular mechanisms are angiogenic imbalance, inflammation, alterations in the renin-angiotensin-aldosterone system (RAAS), endothelium-derived components, serotonin dysregulation, oxidative stress, and activation of both the hypothalamic-pituitary-adrenal axis and hypothalamic-pituitary-gonadal axis. Moreover, the potential role of epigenetic factors, such as DNA methylation and microRNAs as mediators of these effects is emphasized, suggesting avenues for future research and therapeutic interventions.
Collapse
Affiliation(s)
| | - Vasiliki Katsi
- Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 157 72 Athens, Greece;
| | - Vasilios G. Kordalis
- School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Konstantinos Tsioufis
- Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 157 72 Athens, Greece;
| |
Collapse
|
4
|
Pinto TS, Feltran GDS, Fernandes CJDC, de Camargo Andrade AF, Coque ADC, Silva SL, Abuderman AA, Zambuzzi WF, Foganholi da Silva RA. Epigenetic changes in shear-stressed endothelial cells. Cell Biol Int 2024; 48:665-681. [PMID: 38420868 DOI: 10.1002/cbin.12138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 03/02/2024]
Abstract
Epigenetic changes, particularly histone compaction modifications, have emerged as critical regulators in the epigenetic pathway driving endothelial cell phenotype under constant exposure to laminar forces induced by blood flow. However, the underlying epigenetic mechanisms governing endothelial cell behavior in this context remain poorly understood. To address this knowledge gap, we conducted in vitro experiments using human umbilical vein endothelial cells subjected to various tensional forces simulating pathophysiological blood flow shear stress conditions, ranging from normotensive to hypertensive forces. Our study uncovers a noteworthy observation wherein endothelial cells exposed to high shear stress demonstrate a decrease in the epigenetic marks H3K4ac and H3K27ac, accompanied by significant alterations in the levels of HDAC (histone deacetylase) proteins. Moreover, we demonstrate a negative regulatory effect of increased shear stress on HOXA13 gene expression and a concomitant increase in the expression of the long noncoding RNA, HOTTIP, suggesting a direct association with the suppression of HOXA13. Collectively, these findings represent the first evidence of the role of histone-related epigenetic modifications in modulating chromatin compaction during mechanosignaling of endothelial cells in response to elevated shear stress forces. Additionally, our results highlight the importance of understanding the physiological role of HOXA13 in vascular biology and hypertensive patients, emphasizing the potential for developing small molecules to modulate its activity. These findings warrant further preclinical investigations and open new avenues for therapeutic interventions targeting epigenetic mechanisms in hypertensive conditions.
Collapse
Affiliation(s)
- Thaís Silva Pinto
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Paulista State University-UNESP, Botucatu, São Paulo, Brazil
| | - Geórgia da Silva Feltran
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Paulista State University-UNESP, Botucatu, São Paulo, Brazil
| | - Célio Júnior da C Fernandes
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Paulista State University-UNESP, Botucatu, São Paulo, Brazil
| | - Amanda Fantini de Camargo Andrade
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Paulista State University-UNESP, Botucatu, São Paulo, Brazil
| | - Alex de Camargo Coque
- Epigenetic Study Center and Gene Regulation-CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil
| | - Simone L Silva
- School of Dentistry, University of Taubaté, Taubaté, São Paulo, Brazil
| | - Abdulwahab A Abuderman
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Riyadh, Saudi Arabia
| | - Willian F Zambuzzi
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Paulista State University-UNESP, Botucatu, São Paulo, Brazil
| | - Rodrigo A Foganholi da Silva
- Epigenetic Study Center and Gene Regulation-CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil
- School of Dentistry, University of Taubaté, Taubaté, São Paulo, Brazil
| |
Collapse
|
5
|
Sankrityayan H, Rao PD, Shelke V, Kulkarni YA, Mulay SR, Gaikwad AB. Endoplasmic Reticulum Stress and Renin-Angiotensin System Crosstalk in Endothelial Dysfunction. Curr Mol Pharmacol 2023; 16:139-146. [PMID: 35232343 DOI: 10.2174/1874467215666220301113833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Vascular endothelial dysfunction (VED) significantly results in catastrophic cardiovascular diseases with multiple aetiologies. Variations in vasoactive peptides, including angiotensin II and endothelin 1, and metabolic perturbations like hyperglycaemia, altered insulin signalling, and homocysteine levels result in pathogenic signalling cascades, which ultimately lead to VED. Endoplasmic reticulum (ER) stress reduces nitric oxide availability, causes aberrant angiogenesis, and enhances oxidative stress pathways, consequently promoting endothelial dysfunction. Moreover, the renin-angiotensin system (RAS) has widely been acknowledged to impact angiogenesis, endothelial repair and inflammation. Interestingly, experimental studies at the preclinical level indicate a possible pathological link between the two pathways in the development of VED. Furthermore, pharmacological modulation of ER stress ameliorates angiotensin-II mediated VED as well as RAS intervention either through inhibition of the pressor arm or enhancement of the depressor arm of RAS, mitigating ER stress-induced endothelial dysfunction and thus emphasizing a vital crosstalk. CONCLUSION Deciphering the pathway overlap between RAS and ER stress may open potential therapeutic avenues to combat endothelial dysfunction and associated diseases. Several studies suggest that alteration in a component of RAS may induce ER stress or induction of ER stress may modulate the RAS components. In this review, we intend to elaborate on the crosstalk of ER stress and RAS in the pathophysiology of VED.
Collapse
Affiliation(s)
- Himanshu Sankrityayan
- Department of Pharmacy, Laboratory of Molecular Pharmacology, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| | - Pooja Dhileepkumar Rao
- Department of Pharmacy, Laboratory of Molecular Pharmacology, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| | - Vishwadeep Shelke
- Department of Pharmacy, Laboratory of Molecular Pharmacology, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Shrikant R Mulay
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Laboratory of Molecular Pharmacology, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| |
Collapse
|
6
|
Epigenetic Mechanisms Involved in Inflammaging-Associated Hypertension. Curr Hypertens Rep 2022; 24:547-562. [PMID: 35796869 DOI: 10.1007/s11906-022-01214-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW This review summarizes the involvement of inflammaging in vascular damage with focus on the epigenetic mechanisms by which inflammaging-induced hypertension is triggered. RECENT FINDINGS Inflammaging in hypertension is a complex condition associated with the production of inflammatory mediators by the immune cells, enhancement of oxidative stress, and tissue remodeling in vascular smooth muscle cells and endothelial cells. Cellular processes are numerous, including inflammasome assembly and cell senescence which may involve mitochondrial dysfunction, autophagy, DNA damage response, dysbiosis, and many others. More recently, a series of noncoding RNAs, mainly microRNAs, have been described as possessing epigenetic actions on the regulation of inflammasome-related hypertension, emerging as a promising therapeutic strategy. Although there are a variety of pharmacological agents that effectively regulate inflammaging-related hypertension, a deeper understanding of the epigenetic events behind the control of vessel deterioration is needed for the treatment or even to prevent the disease onset.
Collapse
|
7
|
Neutrophil extracellular traps accelerate vascular smooth muscle cell proliferation via Akt/CDKN1b/TK1 accompanying with the occurrence of hypertension. J Hypertens 2022; 40:2045-2057. [PMID: 35950975 PMCID: PMC9451946 DOI: 10.1097/hjh.0000000000003231] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Neutrophil extracellular traps (NETs) can trigger pathological changes in vascular cells or vessel wall components, which are vascular pathological changes of hypertension. Therefore, we hypothesized that NETs would be associated with the occurrence of hypertension. METHODS To evaluate the relationship between NETs and hypertension, we evaluated both the NETs formation in spontaneously hypertensive rats (SHRs) and the blood pressure of mice injected phorbol-12-myristate-13-acetate (PMA) via the tail vein to induce NETs formation in arterial wall. Meanwhile, proliferation and cell cycle of vascular smooth muscle cells (VSMCs), which were co-cultured with NETs were assessed. In addition, the role of exosomes from VSMCs co-cultured with NETs on proliferation signaling delivery was assessed. RESULTS Formation of NETs increased in the arteries of SHR. PMA resulted in up-regulation expression of citrullinated Histone H3 (cit Histone H3, a NETs marker) in the arteries of mice accompanied with increasing of blood pressure. NET treatment significantly increased VSMCs count and accelerated G1/S transition in vitro . Cyclin-dependent kinase inhibitor 1b (CDKN1b) was down-regulated and Thymidine kinase 1 (TK1) was up-regulated in VSMCs. Exosomes from VSMCs co-cultured with NETs significantly accelerated the proliferation of VSMCs. TK1 was up-regulated in the exosomes from VSMCs co-cultured with NETs and in both the arterial wall and serum of mice with PMA. CONCLUSION NETs promote VSMCs proliferation via Akt/CDKN1b/TK1 and is related to hypertension development. Exosomes from VSMCs co-cultured with NETs participate in transferring the proliferation signal. These results support the role of NETs in the development of hypertension.
Collapse
|
8
|
Hu Q, Zhang X, Sun M, jiang B, Zhang Z, Sun D. Potential epigenetic molecular regulatory networks in ocular neovascularization. Front Genet 2022; 13:970224. [PMID: 36118885 PMCID: PMC9478661 DOI: 10.3389/fgene.2022.970224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Neovascularization is one of the many manifestations of ocular diseases, including corneal injury and vascular diseases of the retina and choroid. Although anti-VEGF drugs have been used to effectively treat neovascularization, long-term use of anti-angiogenic factors can cause a variety of neurological and developmental side effects. As a result, better drugs to treat ocular neovascularization are urgently required. There is mounting evidence that epigenetic regulation is important in ocular neovascularization. DNA methylation and histone modification, non-coding RNA, and mRNA modification are all examples of epigenetic mechanisms. In order to shed new light on epigenetic therapeutics in ocular neovascularization, this review focuses on recent advances in the epigenetic control of ocular neovascularization as well as discusses these new mechanisms.
Collapse
|
9
|
Chan F, Shen S, Huang P, He J, Wei X, Lu J, Zhang L, Xia X, Xia H, Cheng KK, Thangaratinam S, Mol BW, Qiu X. Blood pressure trajectories during pregnancy and preterm delivery: A prospective cohort study in China. J Clin Hypertens (Greenwich) 2022; 24:770-778. [PMID: 35651280 PMCID: PMC9180333 DOI: 10.1111/jch.14494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/24/2022] [Accepted: 04/18/2022] [Indexed: 11/26/2022]
Abstract
Women's blood pressure (BP) changes throughout pregnancy. The effect of BP trajectories on preterm delivery is not clear. The authors aim to evaluate the association between maternal BP trajectories during pregnancy and preterm delivery. The authors studied pregnant women included in the Born in Guangzhou Cohort Study in China between February 2012 and June 2016. Maternal BP was measured at antenatal visits between 13 and 40 gestational weeks, and gestational age of delivery data was collected. The authors used linear mixed models to capture the BP trajectories of women with term, and spontaneous and iatrogenic preterm delivery. BP trajectories of women with various gestational lengths (34, 35, 36, 37, 38, 39, 40 weeks) were compared. Of the 17 426 women included in the analysis, 618 (3.55%) had spontaneous preterm delivery; 158 (.91%) had iatrogenic preterm delivery; and 16 650 (95.55%) women delivered at term. The BP trajectories were all J‐shaped curves for different delivery types. Women with iatrogenic preterm delivery had the highest mean BP from 13 weeks till delivery, followed by those with spontaneous preterm delivery and term delivery (p < .001). Trajectory analysis stratified by maternal parity showed similar results for nulliparous and multiparous women. Excluding women with pre‐eclampsia and gestational hypertension (GH) significantly attenuated the aforementioned association. Also, women with shorter gestational length tend to have higher BP trajectories during pregnancy. In conclusion, Women with spontaneous preterm delivery have a higher BP from 13 weeks till delivery than women with term delivery, while women with iatrogenic preterm delivery have the highest BP.
Collapse
Affiliation(s)
- Fanfan Chan
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Provincial Key Clinical Specialty of Woman and Child Health, Guangdong, China
| | - Songying Shen
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Provincial Key Clinical Specialty of Woman and Child Health, Guangdong, China
| | - Peiyuan Huang
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Provincial Key Clinical Specialty of Woman and Child Health, Guangdong, China
| | - Jianrong He
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Provincial Key Clinical Specialty of Woman and Child Health, Guangdong, China
| | - Xueling Wei
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Provincial Key Clinical Specialty of Woman and Child Health, Guangdong, China
| | - Jinhua Lu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Provincial Key Clinical Specialty of Woman and Child Health, Guangdong, China
| | - Lifang Zhang
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Provincial Key Clinical Specialty of Woman and Child Health, Guangdong, China
| | - Xiaoyan Xia
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Provincial Key Clinical Specialty of Woman and Child Health, Guangdong, China
| | - Huimin Xia
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Provincial Clinical Research Center for Child Health, Guangdong, China
| | - Kar Keung Cheng
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Shakila Thangaratinam
- WHO Collaborating Centre for Women's Health, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Ben Willem Mol
- Department of Obstetrics and Gynecology, School of Medicine, Monash University, Melbourne, Australia
| | - Xiu Qiu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Provincial Key Clinical Specialty of Woman and Child Health, Guangdong, China.,Provincial Clinical Research Center for Child Health, Guangdong, China
| |
Collapse
|
10
|
Li M, Han B, Zhao H, Xu C, Xu D, Sieniawska E, Lin X, Kai G. Biological active ingredients of Astragali Radix and its mechanisms in treating cardiovascular and cerebrovascular diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153918. [PMID: 35104756 DOI: 10.1016/j.phymed.2021.153918] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/12/2021] [Accepted: 12/30/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND With the rising age of the global population, the incidence rate of cardiovascular and cerebrovascular diseases (CCVDs) is increasing, which causes serious public health burden. The efforts for new therapeutic approaches are still being sought since the treatment effects of existing therapies are not quite satisfactory. Chinese traditional medicine proved to be very efficient in the treatment of CCVDs. Well described and established in Chinese medicine, Astragali Radix, has been commonly administered in the prophylaxis and cure of CCVDs for thousands of years. PURPOSE This review summarized the action mode and mechanisms of Astragali Radix phytochemicals on CCVDs, hoping to provide valuable information for the future application, development and improvement of Astragali Radix as well as CCVDs treatment. METHODS A plenty of literature on biological active ingredients of Astragali Radix used for CCVDs treatment were retrieved from online electronic PubMed and Web of Science databases. RESULTS This review highlighted the effects of five main active components in Astragali Radix including astragaloside Ⅳ, cycloastragenol, astragalus polysaccharide, calycosin-7-O-β-d-glucoside, and calycosin on CCVDs. The mechanisms mainly involved anti-oxidative damage, anti-inflammatory, and antiapoptotic through signaling pathways such as PI3K/Akt, Nrf2/HO-1, and TLR4/NF-κB pathway. In addition, the majority active constituents in AR have no obvious toxic side effects. CONCLUSION The main active components of Astragali Radix, especially AS-IV, have been extensively summarized. It has been proved that Astragali Radix has obvious therapeutic effects on various CCVDs, including myocardial and cerebral ischemia, hypertension, atherosclerosis, cardiac hypertrophy, chronic heart failure. CAG possesses anti-ischemia activity without toxicity, indicating a worthy of further development. However, high-quality clinical and pharmacokinetic studies are required to validate the current studies.
Collapse
Affiliation(s)
- Man Li
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Bing Han
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Huan Zhao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Chongyi Xu
- Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou, Zhejiang, 317500, China
| | - Daokun Xu
- Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou, Zhejiang, 317500, China
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Xianming Lin
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
11
|
Pan HT, Shi XL, Fang M, Sun XM, Chen PP, Ding JL, Xia GY, Yu B, Zhang T, Zhu HD. Profiling of exosomal microRNAs expression in umbilical cord blood from normal and preeclampsia patients. BMC Pregnancy Childbirth 2022; 22:124. [PMID: 35152894 PMCID: PMC8842963 DOI: 10.1186/s12884-022-04449-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023] Open
Abstract
Background Epidemiological and experimental studies suggest that preeclampsia has a negative impact on maternity and offspring health. Previous studies report that dysregulation in utero-environment increases risk for elderly disease such as cardiovascular disease. However, the underlying mechanisms remain elusive. Specific microRNAs (miRNAs) are packaged in exosomes may regulate microvascular dysfunction in offspring of mothers with preeclampsia. The present study aimed to identify the differential expression profiles of microRNAs in the serum exosomes between patients with preeclampsia and normal pregnancies. Methods A comprehensive miRNA sequence-based approach was performed to compare exosomes carry miRNAs (Exo-miRNAs) expression levels in umbilical serum between normal and preeclampsia patients. Exosomes were isolated using the ExoQuick precipitation kit. Serum exosomes were then viewed under electron microscopy, and their characteristics determined by western blotting and nanoparticle-tracking analysis. Illumina platform was used to perform sequencing. Bioinformatics analysis was used to explore differentially expressed Exo-miRNAs in umbilical serum. Results Based on sequence similarity, 1733 known miRNAs were retrieved. Furthermore, 157 mature miRNAs in serum exosomes were significantly differential expressed between PE and those control groups (P<0.05, log2|FC| > 1). Out, of the 157 miRNAs, 96 were upregulated miRNAs whereas 61 miRNAs were downregulated. The 157 differentially expressed miRNAs targeted 51,424 differentially expressed genes. Functional analysis through KEGG pathway and Gene Ontology results uncovered that target genes of miRNAs with differential expression were significantly linked to several pathways and biological processes. Conclusion The findings of this study showed differential expression of umbilical serum Exo-miRNAs in normal compared with PE patients, implying that these Exo-miRNAs may associate with microvascular dysfunction in offspring of mothers with preeclampsia. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-022-04449-w.
Collapse
Affiliation(s)
- Hai-Tao Pan
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China.,The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiao-Liang Shi
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Min Fang
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Xiang-Mei Sun
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Pan-Pan Chen
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Jin-Long Ding
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Gui-Yu Xia
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Bin Yu
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Tao Zhang
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China. .,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China.
| | - Hong-Dan Zhu
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China. .,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China.
| |
Collapse
|
12
|
Xie T, Gorenjak V, Stathopoulou MG, Dadé S, Marouli E, Masson C, Murray H, Lamont J, Fitzgerald P, Deloukas P, Visvikis-Siest S. Epigenome-wide association study detects a novel loci associated with central obesity in healthy subjects. BMC Med Genomics 2021; 14:233. [PMID: 34556110 PMCID: PMC8459469 DOI: 10.1186/s12920-021-01077-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/06/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND AND AIMS Central obesity is a condition that poses a significant risk to global health and requires the employment of novel scientific methods for exploration. The objective of this study is to use DNA methylation analysis to detect DNA methylation loci linked to obesity phenotypes, i.e. waist circumference and waist-to-hip ratio adjusted for BMI. METHODS AND RESULTS Two-hundred and ten healthy European participants from the STANISLAS Family Study (SFS), comprising 73 nuclear families, were comprehensively assessed for methylation status using Illumina Infinium HumanMethylation450 BeadChip. An epigenome-wide association study was performed, which identified a CpG site cg16170243 located on chromosome 18q21.2 significantly associated with waist circumference, after adjusting for BMI (β = 2.32, SE = 0.41, Padj = 0.048). Cg16170243 corresponds to a 50 bp-length human methylation oligoprobe located within the AC090241.2 gene that overlaps ST8SIA5 gene. No significant association was observed with waist-to-hip ratio adjusted for BMI (Padj > 0.05). CONCLUSIONS A novel association between DNA methylation and WC was identified, which is demonstrating that epigenetic mechanisms may have a significant impact on waist circumference ratio in healthy individuals. Further studies are warranted to address the causal effects of this association.
Collapse
Affiliation(s)
- Ting Xie
- INSERM UMR U1122, IGE-PCV, Faculté de Pharmacie, Université de Lorraine, 30 Rue Lionnois, 54000, Nancy, France
- CRCT, INSERM U1037, 31037, Toulouse, France
- Université Paul Sabatier III', 31400, Toulouse, France
| | - Vesna Gorenjak
- INSERM UMR U1122, IGE-PCV, Faculté de Pharmacie, Université de Lorraine, 30 Rue Lionnois, 54000, Nancy, France
| | - Maria G Stathopoulou
- INSERM UMR U1122, IGE-PCV, Faculté de Pharmacie, Université de Lorraine, 30 Rue Lionnois, 54000, Nancy, France
- 'Université Côte d'Azur', INSERM U1065, C3M, 06204, Nice, France
| | - Sébastien Dadé
- INSERM UMR U1122, IGE-PCV, Faculté de Pharmacie, Université de Lorraine, 30 Rue Lionnois, 54000, Nancy, France
| | | | - Christine Masson
- INSERM UMR U1122, IGE-PCV, Faculté de Pharmacie, Université de Lorraine, 30 Rue Lionnois, 54000, Nancy, France
| | | | | | | | | | - Sophie Visvikis-Siest
- INSERM UMR U1122, IGE-PCV, Faculté de Pharmacie, Université de Lorraine, 30 Rue Lionnois, 54000, Nancy, France.
| |
Collapse
|
13
|
Joyce BT, Gao T, Zheng Y, Ma J, Hwang SJ, Liu L, Nannini D, Horvath S, Lu AT, Bai Allen N, Jacobs DR, Gross M, Krefman A, Ning H, Liu K, Lewis CE, Schreiner PJ, Sidney S, Shikany JM, Levy D, Greenland P, Hou L, Lloyd-Jones D. Epigenetic Age Acceleration Reflects Long-Term Cardiovascular Health. Circ Res 2021; 129:770-781. [PMID: 34428927 DOI: 10.1161/circresaha.121.318965] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Brian T Joyce
- Center for Global Oncology, Institute for Global Health (B.T.J., T.G., Y.Z., D.N., L.H.), Feinberg School of Medicine, Northwestern University, Chicago, IL.,Department of Preventive Medicine (B.T.J., T.G., Y.Z., D.N., N.B.A., A.K., H.N., K.L., P.G., L.H., D.L.-J.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Tao Gao
- Center for Global Oncology, Institute for Global Health (B.T.J., T.G., Y.Z., D.N., L.H.), Feinberg School of Medicine, Northwestern University, Chicago, IL.,Department of Preventive Medicine (B.T.J., T.G., Y.Z., D.N., N.B.A., A.K., H.N., K.L., P.G., L.H., D.L.-J.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yinan Zheng
- Center for Global Oncology, Institute for Global Health (B.T.J., T.G., Y.Z., D.N., L.H.), Feinberg School of Medicine, Northwestern University, Chicago, IL.,Department of Preventive Medicine (B.T.J., T.G., Y.Z., D.N., N.B.A., A.K., H.N., K.L., P.G., L.H., D.L.-J.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jiantao Ma
- The Framingham Heart Study, Framingham, MA; (J.M., S.-J.H., D.L.).,Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (J.M., S.-J.H., D.L.)
| | - Shih-Jen Hwang
- The Framingham Heart Study, Framingham, MA; (J.M., S.-J.H., D.L.).,Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (J.M., S.-J.H., D.L.)
| | - Lei Liu
- Division of Biostatistics, Washington University, St. Louis, MO (L.L.)
| | - Drew Nannini
- Center for Global Oncology, Institute for Global Health (B.T.J., T.G., Y.Z., D.N., L.H.), Feinberg School of Medicine, Northwestern University, Chicago, IL.,Department of Preventive Medicine (B.T.J., T.G., Y.Z., D.N., N.B.A., A.K., H.N., K.L., P.G., L.H., D.L.-J.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Steve Horvath
- Department of Human Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA (S.H., A.T.L.)
| | - Ake T Lu
- Department of Human Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA (S.H., A.T.L.)
| | - Norrina Bai Allen
- Department of Preventive Medicine (B.T.J., T.G., Y.Z., D.N., N.B.A., A.K., H.N., K.L., P.G., L.H., D.L.-J.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health (D.R.J., M.G.), University of Minnesota, Minneapolis
| | - Myron Gross
- Division of Epidemiology and Community Health, School of Public Health (D.R.J., M.G.), University of Minnesota, Minneapolis
| | - Amy Krefman
- Department of Preventive Medicine (B.T.J., T.G., Y.Z., D.N., N.B.A., A.K., H.N., K.L., P.G., L.H., D.L.-J.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Hongyan Ning
- Department of Preventive Medicine (B.T.J., T.G., Y.Z., D.N., N.B.A., A.K., H.N., K.L., P.G., L.H., D.L.-J.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Kiang Liu
- Department of Preventive Medicine (B.T.J., T.G., Y.Z., D.N., N.B.A., A.K., H.N., K.L., P.G., L.H., D.L.-J.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Cora E Lewis
- Division of Preventive Medicine, School of Medicine, University of Alabama at Birmingham (C.E.L., J.M.S.)
| | | | - Stephen Sidney
- Division of Research, Kaiser Permanente, Oakland, CA (S.S.)
| | - James M Shikany
- Division of Preventive Medicine, School of Medicine, University of Alabama at Birmingham (C.E.L., J.M.S.)
| | - Daniel Levy
- The Framingham Heart Study, Framingham, MA; (J.M., S.-J.H., D.L.).,Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (J.M., S.-J.H., D.L.)
| | - Philip Greenland
- Department of Preventive Medicine (B.T.J., T.G., Y.Z., D.N., N.B.A., A.K., H.N., K.L., P.G., L.H., D.L.-J.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Lifang Hou
- Center for Global Oncology, Institute for Global Health (B.T.J., T.G., Y.Z., D.N., L.H.), Feinberg School of Medicine, Northwestern University, Chicago, IL.,Department of Preventive Medicine (B.T.J., T.G., Y.Z., D.N., N.B.A., A.K., H.N., K.L., P.G., L.H., D.L.-J.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Donald Lloyd-Jones
- Department of Preventive Medicine (B.T.J., T.G., Y.Z., D.N., N.B.A., A.K., H.N., K.L., P.G., L.H., D.L.-J.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
14
|
Melton E, Qiu H. Interleukin-1β in Multifactorial Hypertension: Inflammation, Vascular Smooth Muscle Cell and Extracellular Matrix Remodeling, and Non-Coding RNA Regulation. Int J Mol Sci 2021; 22:8639. [PMID: 34445357 PMCID: PMC8395428 DOI: 10.3390/ijms22168639] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/31/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
The biological activities of interleukins, a group of circulating cytokines, are linked to the immuno-pathways involved in many diseases. Mounting evidence suggests that interleukin-1β (IL-1β) plays a significant role in the pathogenesis of various types of hypertension. In this review, we summarized recent findings linking IL-1β to systemic arterial hypertension, pulmonary hypertension, and gestational hypertension. We also outlined the new progress in elucidating the potential mechanisms of IL-1β in hypertension, focusing on it's regulation in inflammation, vascular smooth muscle cell function, and extracellular remodeling. In addition, we reviewed recent studies that highlight novel findings examining the function of non-coding RNAs in regulating the activity of IL-1β and its associated proteins in the setting of hypertension. The information collected in this review provides new insights into understanding the pathogenesis of hypertension and could lead to the discovery of new anti-hypertensive therapies to combat this highly prevalent disease.
Collapse
Affiliation(s)
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA;
| |
Collapse
|
15
|
Xu H, Li S, Liu YS. Roles and Mechanisms of DNA Methylation in Vascular Aging and Related Diseases. Front Cell Dev Biol 2021; 9:699374. [PMID: 34262910 PMCID: PMC8273304 DOI: 10.3389/fcell.2021.699374] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
Vascular aging is a pivotal risk factor promoting vascular dysfunction, the development and progression of vascular aging-related diseases. The structure and function of endothelial cells (ECs), vascular smooth muscle cells (VSMCs), fibroblasts, and macrophages are disrupted during the aging process, causing vascular cell senescence as well as vascular dysfunction. DNA methylation, an epigenetic mechanism, involves the alteration of gene transcription without changing the DNA sequence. It is a dynamically reversible process modulated by methyltransferases and demethyltransferases. Emerging evidence reveals that DNA methylation is implicated in the vascular aging process and plays a central role in regulating vascular aging-related diseases. In this review, we seek to clarify the mechanisms of DNA methylation in modulating ECs, VSMCs, fibroblasts, and macrophages functions and primarily focus on the connection between DNA methylation and vascular aging-related diseases. Therefore, we represent many vascular aging-related genes which are modulated by DNA methylation. Besides, we concentrate on the potential clinical application of DNA methylation to serve as a reliable diagnostic tool and DNA methylation-based therapeutic drugs for vascular aging-related diseases.
Collapse
Affiliation(s)
- Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| |
Collapse
|
16
|
Matshazi DM, Weale CJ, Erasmus RT, Kengne AP, Davids SFG, Raghubeer S, Hector S, Davison GM, Matsha TE. MicroRNA Profiles in Normotensive and Hypertensive South African Individuals. Front Cardiovasc Med 2021; 8:645541. [PMID: 33937359 PMCID: PMC8085261 DOI: 10.3389/fcvm.2021.645541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/23/2021] [Indexed: 12/18/2022] Open
Abstract
Hypertension has a complex pathogenesis and symptoms appear in advanced disease. Dysregulation of gene expression regulatory factors like microRNAs has been reported in disease development. Identifying biomarkers which could help understand the pathogenesis and prognosis of hypertension is essential. The study's objective was to investigate microRNA expression profiles according to participant blood pressure status. Next generation sequencing was used to identify microRNAs in the whole blood of 48 body mass index-, smoking- and age-matched normotensive (n = 12), screen-detected hypertensive (n = 16) and known hypertensive (n = 20) female participants. Quantitative reverse transcription polymerase chain reaction was used to validate the next generation sequencing findings in a larger, independent sample of 84 men and 179 women. Using next generation sequencing, 30 dysregulated microRNAs were identified and miR-1299 and miR-30a-5p were the most significantly differentially expressed. Both microRNAs were upregulated in known hypertensives or screen-detected hypertensives compared to the normotensives. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated possible involvement of platelet activation, calcium signaling and aldosterone synthesis pathways. Further validation of miR-1299 and miR-30a-5p using quantitative reverse transcription polymerase chain reaction confirmed sequencing results while yielding new findings. These findings demonstrate microRNA dysregulation in hypertension and their expression may be related to genes and biological pathways essential for blood pressure homeostasis.
Collapse
Affiliation(s)
- Don M Matshazi
- South African Medical Research Council/Cape Peninsula University of Technology Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Cecil J Weale
- South African Medical Research Council/Cape Peninsula University of Technology Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Rajiv T Erasmus
- Division of Chemical Pathology, Faculty of Health Sciences, National Health Laboratory Service and Stellenbosch University, Cape Town, South Africa
| | - Andre P Kengne
- Non-communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Saarah F G Davids
- South African Medical Research Council/Cape Peninsula University of Technology Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Shanel Raghubeer
- South African Medical Research Council/Cape Peninsula University of Technology Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Stanton Hector
- South African Medical Research Council/Cape Peninsula University of Technology Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Glenda M Davison
- South African Medical Research Council/Cape Peninsula University of Technology Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Tandi E Matsha
- South African Medical Research Council/Cape Peninsula University of Technology Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| |
Collapse
|
17
|
Screening and validation of differentially expressed microRNAs and target genes in hypertensive mice induced by cytomegalovirus infection. Biosci Rep 2021; 40:227064. [PMID: 33245094 PMCID: PMC7729292 DOI: 10.1042/bsr20202387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Introduction: Multiple studies have suggested an association between cytomegalovirus (CMV) infection and essential hypertension (EH). MicroRNAs (miRNAs) play a critical role in the development of EH by regulating the expression of specific target genes. However, little is known about the role of miRNAs in CMV-induced EH. In the present study, we compared the miRNA expression profiles of samples from normal and murine cytomegalovirus (MCMV)-infected C57BL/6 mice using high-throughput sequencing analysis. Methods: We collected the thoracic aorta, heart tissues, and peripheral blood from 20 normal mice and 20 MCMV-infected mice. We identified differentially expressed miRNAs in the peripheral blood samples and predicted their target genes using bioinformatics tools. We then experimentally validated them using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and the target genes with double luciferase reporter gene assay. Results: We found 118 differentially expressed miRNAs, among which 9 miRNAs were identified as potential MCMV infection-induced hypertension regulators. We then validated the expression of two candidate miRNAs, mmu-miR-1929-3p and mcmv-miR-m01-4-5p, using qRT-PCR. Furthermore, the dual-luciferase reporter gene assay revealed that the 3′-untranslated region (UTR) of endothelin A receptor (Ednra) messenger RNA (mRNA) contained a binding site for mmu-miR-1929-3p. Collectively, our data suggest that MCMV infection can raise the blood pressure and reduce mmu-miR-1929-3p expression in C57BL/6 mice. Moreover, we found that mmu-miR-1929-3p targets the 3′-UTR of the Ednra mRNA. Conclusion: This novel regulatory axis could aid the development of new approaches for the clinical prevention and control of EH.
Collapse
|
18
|
Dymkowska D. The involvement of autophagy in the maintenance of endothelial homeostasis: The role of mitochondria. Mitochondrion 2021; 57:131-147. [PMID: 33412335 DOI: 10.1016/j.mito.2020.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
Endothelial mitochondria play important signaling roles critical for the regulation of various cellular processes, including calcium signaling, ROS generation, NO synthesis or inflammatory response. Mitochondrial stress or disturbances in mitochondrial function may participate in the development and/or progression of endothelial dysfunction and could precede vascular diseases. Vascular functions are also strictly regulated by properly functioning degradation machinery, including autophagy and mitophagy, and tightly coordinated by mitochondrial and endoplasmic reticulum responses to stress. Within this review, current knowledge related to the development of cardiovascular disorders and the importance of mitochondria, endoplasmic reticulum and degradation mechanisms in vascular endothelial functions are summarized.
Collapse
Affiliation(s)
- Dorota Dymkowska
- The Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology PAS, 3 Pasteur str. 02-093 Warsaw, Poland.
| |
Collapse
|
19
|
Xu G, Wang Z, Li L, Li W, Hu J, Wang S, Deng H, Li B, Wang C, Shen Z, Han L. Hypermethylation of dihydrofolate reductase promoter increases the risk of hypertension in Chinese. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2020; 25:117. [PMID: 33912227 PMCID: PMC8067893 DOI: 10.4103/jrms.jrms_895_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/03/2020] [Accepted: 07/15/2020] [Indexed: 11/28/2022]
Abstract
Background: DNA methylation was considered to play an important role in hypertension. However, the direct association between dihydrofolate reductase (DHFR) promoter methylation and hypertension remains unclear. We thus aimed to investigate the relationship between DNA methylation of DHFR promoter and hypertension. Materials and Methods: A total of 371 hypertensive patients (diastolic blood pressure ≥90 mmHg and/or systolic blood pressure ≥140 mmHg or a history of antihypertensive treatment) and 320 age- and sex-matched healthy controls from the Hypertension Management Information System in Nanshan Community Health Service Centers were included in this case–control study. Quantitative methylation-specific polymerase chain reaction was used to measure the level of DHFR promoter methylation, which was presented as the percentage of methylated reference (PMR). A multivariate logistic regression model was used to explore the risk of DHFR promoter methylation. Results: Our results indicated that the level of DHFR promoter methylation was higher in hypertensive patients (median PMR, 34.32%; interquartile range, 11.34–119.60) than in healthy controls (median PMR, 18.45%; interquartile range, 8.16–35.40) (P < 0.001). Multivariable analysis showed that the risk of DHFR promoter hypermethylation was significantly higher in hypertensive patients than in healthy controls (odds ratio = 3.94, 95% confidence interval = 2.56–6.02, P < 0.001). Furthermore, hypermethylation was positively associated with sex, high blood homocysteine levels, and alcohol drinking. In particular, the area under the receiver operating characteristic curve was 0.688 (0.585–0.668) for the male hypertensive patients, suggesting the potential diagnostic value of DHFR promoter methylation in male hypertension. Conclusion: Our results demonstrated that DHFR promoter hypermethylation is positively associated with the risk of hypertension in Chinese.
Collapse
Affiliation(s)
- Guodong Xu
- Medical Record Statistics Room, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, PR China.,Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Zhiyi Wang
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Lian Li
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Wenxia Li
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jingcen Hu
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shuyu Wang
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Bo Li
- Department of Non-Communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, Guangdong, China
| | - Changyi Wang
- Department of Non-Communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, Guangdong, China
| | - Zhishen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Liyuan Han
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China.,Department of Global Health, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
| |
Collapse
|
20
|
Włodarski A, Strycharz J, Wróblewski A, Kasznicki J, Drzewoski J, Śliwińska A. The Role of microRNAs in Metabolic Syndrome-Related Oxidative Stress. Int J Mol Sci 2020; 21:ijms21186902. [PMID: 32962281 PMCID: PMC7555602 DOI: 10.3390/ijms21186902] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress (OxS) is the cause and the consequence of metabolic syndrome (MetS), the incidence and economic burden of which is increasing each year. OxS triggers the dysregulation of signaling pathways associated with metabolism and epigenetics, including microRNAs, which are biomarkers of metabolic disorders. In this review, we aimed to summarize the current knowledge regarding the interplay between microRNAs and OxS in MetS and its components. We searched PubMed and Google Scholar to summarize the most relevant studies. Collected data suggested that different sources of OxS (e.g., hyperglycemia, insulin resistance (IR), hyperlipidemia, obesity, proinflammatory cytokines) change the expression of numerous microRNAs in organs involved in the regulation of glucose and lipid metabolism and endothelium. Dysregulated microRNAs either directly or indirectly affect the expression and/or activity of molecules of antioxidative signaling pathways (SIRT1, FOXOs, Keap1/Nrf2) along with effector enzymes (e.g., GPx-1, SOD1/2, HO-1), ROS producers (e.g., NOX4/5), as well as genes of numerous signaling pathways connected with inflammation, insulin sensitivity, and lipid metabolism, thus promoting the progression of metabolic imbalance. MicroRNAs appear to be important epigenetic modifiers in managing the delicate redox balance, mediating either pro- or antioxidant biological impacts. Summarizing, microRNAs may be promising therapeutic targets in ameliorating the repercussions of OxS in MetS.
Collapse
Affiliation(s)
- Adam Włodarski
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| | - Adam Wróblewski
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Jacek Kasznicki
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| |
Collapse
|
21
|
Nobles CJ, Mendola P, Mumford SL, Silver RM, Kim K, Andriessen VC, Connell M, Sjaarda L, Perkins NJ, Schisterman EF. Preconception Blood Pressure and Its Change Into Early Pregnancy: Early Risk Factors for Preeclampsia and Gestational Hypertension. Hypertension 2020; 76:922-929. [PMID: 32755413 DOI: 10.1161/hypertensionaha.120.14875] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Preeclampsia and gestational hypertension are common complications of pregnancy associated with significant maternal and infant morbidity. Despite extensive research evaluating risk factors during pregnancy, most women who develop a hypertensive disorder of pregnancy are not considered high-risk and strategies for prevention remain elusive. We evaluated preconception blood pressure and its change into early pregnancy as novel risk markers for development of a hypertensive disorder of pregnancy. The EAGeR (Effects of Aspirin in Gestation and Reproduction) trial (2007-2011) randomized 1228 healthy women with a history of pregnancy loss to preconception-initiated low-dose aspirin versus placebo and followed participants for up to 6 menstrual cycles attempting pregnancy and throughout pregnancy if they became pregnant. Blood pressure was measured during preconception and throughout early gestation. The primary outcomes, preterm preeclampsia, term preeclampsia, and gestational hypertension, were abstracted from medical records. Among 586 women with a pregnancy >20 weeks' gestation, preconception blood pressure levels were higher for preterm preeclampsia (87.3±6.7 mm Hg mean arterial pressure), term preeclampsia (88.3±9.8 mm Hg), and gestational hypertension (87.9±9.1 mm Hg) as compared with no hypertensive disorder of pregnancy (83.9±8.6 mm Hg). Change in blood pressure from preconception into very early pregnancy was associated with development of preeclampsia (relative risk, 1.13 [95% CI, 1.02-1.25] per 2 mm Hg increase in mean arterial pressure at 4 weeks' gestation), particularly preterm preeclampsia (relative risk, 1.21 [95% CI, 1.01-1.45]). Randomization to aspirin did not alter blood pressure trajectory or risk of hypertension in pregnancy. Preconception blood pressure and longitudinal changes during early pregnancy are underexplored but crucial windows in the detection and prevention of hypertensive disorders of pregnancy. Registration- URL: http://www.clinicaltrials.gov. Unique identifier: NCT00467363.
Collapse
Affiliation(s)
- Carrie J Nobles
- From the Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.N., P.M., S.L.M., K.K., V.C.A., M.C., L.S., N.J.P., E.F.S.)
| | - Pauline Mendola
- From the Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.N., P.M., S.L.M., K.K., V.C.A., M.C., L.S., N.J.P., E.F.S.)
| | - Sunni L Mumford
- From the Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.N., P.M., S.L.M., K.K., V.C.A., M.C., L.S., N.J.P., E.F.S.)
| | - Robert M Silver
- Obstetrics and Gynecology, School of Medicine, University of Utah (R.M.S.)
| | - Keewan Kim
- From the Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.N., P.M., S.L.M., K.K., V.C.A., M.C., L.S., N.J.P., E.F.S.)
| | - Victoria C Andriessen
- From the Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.N., P.M., S.L.M., K.K., V.C.A., M.C., L.S., N.J.P., E.F.S.)
| | - Matthew Connell
- From the Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.N., P.M., S.L.M., K.K., V.C.A., M.C., L.S., N.J.P., E.F.S.)
| | - Lindsey Sjaarda
- From the Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.N., P.M., S.L.M., K.K., V.C.A., M.C., L.S., N.J.P., E.F.S.)
| | - Neil J Perkins
- From the Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.N., P.M., S.L.M., K.K., V.C.A., M.C., L.S., N.J.P., E.F.S.)
| | - Enrique F Schisterman
- From the Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.N., P.M., S.L.M., K.K., V.C.A., M.C., L.S., N.J.P., E.F.S.)
| |
Collapse
|
22
|
Oxidative Stress and New Pathogenetic Mechanisms in Endothelial Dysfunction: Potential Diagnostic Biomarkers and Therapeutic Targets. J Clin Med 2020; 9:jcm9061995. [PMID: 32630452 PMCID: PMC7355625 DOI: 10.3390/jcm9061995] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVD), including heart and pathological circulatory conditions, are the world's leading cause of mortality and morbidity. Endothelial dysfunction involved in CVD pathogenesis is a trigger, or consequence, of oxidative stress and inflammation. Endothelial dysfunction is defined as a diminished production/availability of nitric oxide, with or without an imbalance between endothelium-derived contracting, and relaxing factors associated with a pro-inflammatory and prothrombotic status. Endothelial dysfunction-induced phenotypic changes include up-regulated expression of adhesion molecules and increased chemokine secretion, leukocyte adherence, cell permeability, low-density lipoprotein oxidation, platelet activation, and vascular smooth muscle cell proliferation and migration. Inflammation-induced oxidative stress results in an increased accumulation of reactive oxygen species (ROS), mainly derived from mitochondria. Excessive ROS production causes oxidation of macromolecules inducing cell apoptosis mediated by cytochrome-c release. Oxidation of mitochondrial cardiolipin loosens cytochrome-c binding, thus, favoring its cytosolic release and activation of the apoptotic cascade. Oxidative stress increases vascular permeability, promotes leukocyte adhesion, and induces alterations in endothelial signal transduction and redox-regulated transcription factors. Identification of new endothelial dysfunction-related oxidative stress markers represents a research goal for better prevention and therapy of CVD. New-generation therapeutic approaches based on carriers, gene therapy, cardiolipin stabilizer, and enzyme inhibitors have proved useful in clinical practice to counteract endothelial dysfunction. Experimental studies are in continuous development to discover new personalized treatments. Gene regulatory mechanisms, implicated in endothelial dysfunction, represent potential new targets for developing drugs able to prevent and counteract CVD-related endothelial dysfunction. Nevertheless, many challenges remain to overcome before these technologies and personalized therapeutic strategies can be used in CVD management.
Collapse
|
23
|
Silveira-Nunes G, Durso DF, Jr LRADO, Cunha EHM, Maioli TU, Vieira AT, Speziali E, Corrêa-Oliveira R, Martins-Filho OA, Teixeira-Carvalho A, Franceschi C, Rampelli S, Turroni S, Brigidi P, Faria AMC. Hypertension Is Associated With Intestinal Microbiota Dysbiosis and Inflammation in a Brazilian Population. Front Pharmacol 2020; 11:258. [PMID: 32226382 PMCID: PMC7080704 DOI: 10.3389/fphar.2020.00258] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Hypertension is a major global health challenge, as it represents the main risk factor for stroke and cardiovascular disease. It is a multifactorial clinical condition characterized by high and sustained levels of blood pressure, likely resulting from a complex interplay of endogenous and environmental factors. The gut microbiota has been strongly supposed to be involved but its role in hypertension is still poorly understood. In an attempt to fill this gap, here we characterized the microbial composition of fecal samples from 48 hypertensive and 32 normotensive Brazilian individuals by next-generation sequencing of the 16S rRNA gene. In addition, the cytokine production of peripheral blood samples was investigated to build an immunological profile of these individuals. We identified a dysbiosis of the intestinal microbiota in hypertensive subjects, featured by reduced biodiversity and distinct bacterial signatures compared with the normotensive counterpart. Along with a reduction in Bacteroidetes members, hypertensive individuals were indeed mainly characterized by increased proportions of Lactobacillus and Akkermansia while decreased relative abundances of well-known butyrate-producing commensals, including Roseburia and Faecalibacterium within the Lachnospiraceae and Ruminococcaceae families. We also observed an inflamed immune profile in hypertensive individuals with an increase in TNF/IFN-γ ratio, and in TNF and IL-6 production when compared to normotensive ones. Our work provides the first evidence of association of hypertension with altered gut microbiota and inflammation in a Brazilian population. While lending support to the existence of potential microbial signatures of hypertension, likely to be robust to age and geography, our findings point to largely neglected bacteria as potential contributors to intestinal homeostasis loss and emphasize the high vulnerability of hypertensive individuals to inflammation-related disorders.
Collapse
Affiliation(s)
- Gabriela Silveira-Nunes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Medicina, Instituto de Ciências da Vida, Universidade Federal de Juiz de Fora - Campus Avançado de Governador Valadares, Governador Valadares, Brazil
| | - Danielle Fernandes Durso
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz Roberto Alves de Oliveira Jr
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Tatiani Uceli Maioli
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Angélica Thomaz Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elaine Speziali
- Fundação Oswaldo Cruz-FIOCRUZ, Instituto René Rachou, Grupo Integrado de Pesquisas em Biomarcadores, Belo Horizonte, Brazil
| | - Rodrigo Corrêa-Oliveira
- Fundação Oswaldo Cruz-FIOCRUZ, Instituto René Rachou, Grupo Integrado de Pesquisas em Biomarcadores, Belo Horizonte, Brazil
| | - Olindo Assis Martins-Filho
- Fundação Oswaldo Cruz-FIOCRUZ, Instituto René Rachou, Grupo Integrado de Pesquisas em Biomarcadores, Belo Horizonte, Brazil
| | - Andrea Teixeira-Carvalho
- Fundação Oswaldo Cruz-FIOCRUZ, Instituto René Rachou, Grupo Integrado de Pesquisas em Biomarcadores, Belo Horizonte, Brazil
| | - Claudio Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Applied Mathematics, Institute of Information Technology, Mathematics and Mechanics (ITMM), Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Simone Rampelli
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Patrizia Brigidi
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Ana Maria Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
24
|
Namino F, Yamakuchi M, Iriki Y, Okui H, Ichiki H, Maenosono R, Oketani N, Masamoto I, Miyata M, Horiuchi M, Hashiguchi T, Ohishi M, Maruyama I. Dynamics of Soluble Thrombomodulin and Circulating miRNAs in Patients with Atrial Fibrillation Undergoing Radiofrequency Catheter Ablation. Clin Appl Thromb Hemost 2019; 25:1076029619851570. [PMID: 31140290 PMCID: PMC6714917 DOI: 10.1177/1076029619851570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia in the world and has a high risk of thromboembolism. The most effective approach, catheter ablation, requires evaluation by electrocardiography. The aim of our study was to investigate novel clinical markers that predict restoration of sinus rhythm (SR) after catheter ablation. Seventy-eight consecutive patients with AF underwent catheter ablation and were separated into 2 groups: restored SR and recurrent AF. The levels of 4 blood proteins (serum or plasma) and 3 mature microRNAs (miRNAs) and their primary miRNAs (pri-miRNAs) in serum were measured before and after ablation, and the associations between each parameter were analyzed statistically. Soluble thrombomodulin (s-TM) and plasminogen activator inhibitor-1 (PAI-1) levels increased above baseline after ablation in both the restored SR (s-TM 11.55 [2.92] vs 13.75 [3.38], P < .001; PAI-1 25.74 [15.25] vs 37.79 [19.56], P < .001) and recurrent AF (s-TM 10.28 [2.78] vs 11.67 [3.37], P < .001; PAI-1 26.16 [15.70] vs 40.74 [22.55], P < .001) groups. Levels of C-reactive protein and asymmetric dimethylarginine were not significantly changed. Pri-miR-126 levels significantly decreased after ablation in the recurrent AF group, but the other miRNAs and pri-miRNAs did not. The measurement of s-TM and pri-miR-126 in blood was a useful tool to reflect the condition of AF patients with catheter ablation.
Collapse
Affiliation(s)
- Fuminori Namino
- 1 Clinical Laboratory Unit, Kagoshima University Hospital, Kagoshima, Japan.,2 Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Munekazu Yamakuchi
- 1 Clinical Laboratory Unit, Kagoshima University Hospital, Kagoshima, Japan.,2 Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yasuhisa Iriki
- 3 Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hideki Okui
- 3 Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hitoshi Ichiki
- 3 Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ryuichi Maenosono
- 1 Clinical Laboratory Unit, Kagoshima University Hospital, Kagoshima, Japan
| | - Naoya Oketani
- 3 Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Izumi Masamoto
- 1 Clinical Laboratory Unit, Kagoshima University Hospital, Kagoshima, Japan
| | - Masaaki Miyata
- 3 Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masahisa Horiuchi
- 4 Department of Hygiene and Health Promotion Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Teruto Hashiguchi
- 1 Clinical Laboratory Unit, Kagoshima University Hospital, Kagoshima, Japan.,2 Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Mitsuru Ohishi
- 3 Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ikuro Maruyama
- 5 Department of Systems Biology in Thromboregulation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
25
|
Affiliation(s)
- Amela Jusic
- From the Department of Biology, Faculty of Natural Sciences and Mathematics, University of Tuzla, Bosnia and Herzegovina (A.J.)
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health (Y.D.)
| | | |
Collapse
|
26
|
Badawy HK, Abo-Elmatty DM, Mesbah NM. Differential expression of MicroRNA let-7e and 296-5p in plasma of Egyptian patients with essential hypertension. Heliyon 2018; 4:e00969. [PMID: 30519661 PMCID: PMC6260250 DOI: 10.1016/j.heliyon.2018.e00969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/18/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022] Open
Abstract
Essential hypertension is a chronic medical condition affecting thousands of people worldwide. Hypertension results from interplay of genetic and environmental factors. MicroRNAs regulate gene expression and can be biomarkers for disease. MicroRNA let-7e and microRNA 296-5p have been linked to different cardiovascular diseases. This study aimed to determine association of serum miRNA let-7e and miRNA 296-5p with essential hypertension in Egyptian patients. MicroRNA let-7e and miRNA-296-5p expression was determined in sera of 25 hypertensive patients and 25 normotensive controls by quantitative real-time polymerase chain reaction. Hypertensive patients showed significantly higher expression of miRNA let-7e (3.23-fold increase, p = 0.036) in comparison with normotensive controls. In hypertensive patients, miRNA let-7e expression was positively correlated with increased systolic and diastolic blood pressure. Furthermore, miRNA 296-5p expression was negatively correlated with serum total cholesterol and low-density lipoprotein. Results from this study indicate that miRNA let-7e can potentially be a biomarker for essential hypertension.
Collapse
Affiliation(s)
- Heba K Badawy
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, Arish, Sinai, Egypt
| | - Dina M Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Noha M Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
27
|
Stoll S, Wang C, Qiu H. DNA Methylation and Histone Modification in Hypertension. Int J Mol Sci 2018; 19:ijms19041174. [PMID: 29649151 PMCID: PMC5979462 DOI: 10.3390/ijms19041174] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/23/2018] [Accepted: 04/09/2018] [Indexed: 12/22/2022] Open
Abstract
Systemic hypertension, which eventually results in heart failure, renal failure or stroke, is a common chronic human disorder that particularly affects elders. Although many signaling pathways involved in the development of hypertension have been reported over the past decades, which has led to the implementation of a wide variety of anti-hypertensive therapies, one half of all hypertensive patients still do not have their blood pressure controlled. The frontier in understanding the molecular mechanisms underlying hypertension has now advanced to the level of epigenomics. Particularly, increasing evidence is emerging that DNA methylation and histone modifications play an important role in gene regulation and are involved in alteration of the phenotype and function of vascular cells in response to environmental stresses. This review seeks to highlight the recent advances in our knowledge of the epigenetic regulations and mechanisms of hypertension, focusing on the role of DNA methylation and histone modification in the vascular wall. A better understanding of the epigenomic regulation in the hypertensive vessel may lead to the identification of novel target molecules that, in turn, may lead to novel drug discoveries for the treatment of hypertension.
Collapse
Affiliation(s)
- Shaunrick Stoll
- Division of Pharmacology and Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Charles Wang
- Center for Genomics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Hongyu Qiu
- Division of Pharmacology and Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| |
Collapse
|
28
|
Dib A, Payen C, Bourreau J, Munier M, Grimaud L, Fajloun Z, Loufrani L, Henrion D, Fassot C. In Utero Exposure to Maternal Diabetes Is Associated With Early Abnormal Vascular Structure in Offspring. Front Physiol 2018; 9:350. [PMID: 29670546 PMCID: PMC5893798 DOI: 10.3389/fphys.2018.00350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/20/2018] [Indexed: 11/13/2022] Open
Abstract
Aim/hypothesis:In utero exposure to maternal diabetes increases the risk of developing hypertension and cardiovascular disorders during adulthood. We have previously shown that this is associated with changes in vascular tone in favor of a vasoconstrictor profile, which is involved in the development of hypertension. This excessive constrictor tone has also a strong impact on vascular structure. Our objective was to study the impact of in utero exposure to maternal diabetes on vascular structure and remodeling induced by chronic changes in hemodynamic parameters. Methods and Results: We used an animal model of rats exposed in utero to maternal hyperglycemia (DMO), which developed hypertension at 6 months of age. At a pre-hypertensive stage (3 months of age), we observed deep structural modifications of the vascular wall without any hemodynamic perturbations. Indeed, in basal conditions, resistance arteries of DMO rats are smaller than those of control mother offspring (CMO) rats; in addition, large arteries like thoracic aorta of DMO rats have an increase of smooth muscle cell attachments to elastic lamellae. In an isolated perfused kidney, we also observed a leftward shift of the flow/pressure relationship, suggesting a rise in renal peripheral vascular resistance in DMO compared to CMO rats. In this context, we studied vascular remodeling in response to reduced blood flow by in vivo mesenteric arteries ligation. In DMO rats, inward remodeling induced by a chronic reduction in blood flow (1 or 3 weeks after ligation) did not occur by contrast to CMO rats in which arterial diameter decreased from 428 ± 17 μm to 331 ± 20 μm (at 125 mmHg, p = 0.001). In these animals, the transglutaminase 2 (TG2) pathway, essential for inward remodeling development in case of flow perturbations, was not activated in low-flow (LF) mesenteric arteries. Finally, in old hypertensive DMO rats (18 months of age), we were not able to detect a pressure-induced remodeling in thoracic aorta. Conclusions: Our results demonstrate for the first time that in utero exposure to maternal diabetes induces deep changes in the vascular structure. Indeed, the early narrowing of the microvasculature and the structural modifications of conductance arteries could be a pre-emptive adaptation to fetal programming of hypertension.
Collapse
Affiliation(s)
- Abdallah Dib
- UMR Centre National de la Recherche Scientifique 6015, INSERM U1083, MITOVASC, University of Angers, Angers, France
| | - Cyrielle Payen
- UMR Centre National de la Recherche Scientifique 6015, INSERM U1083, MITOVASC, University of Angers, Angers, France
| | - Jennifer Bourreau
- UMR Centre National de la Recherche Scientifique 6015, INSERM U1083, MITOVASC, University of Angers, Angers, France
| | - Mathilde Munier
- UMR Centre National de la Recherche Scientifique 6015, INSERM U1083, MITOVASC, University of Angers, Angers, France.,University Hospital of Angers, Angers, France.,Reference Center for Rare Disease of Thyroid and Hormone Receptors, University Hospital Angers, Angers, France
| | - Linda Grimaud
- UMR Centre National de la Recherche Scientifique 6015, INSERM U1083, MITOVASC, University of Angers, Angers, France
| | - Ziad Fajloun
- Faculty of Sciences III, Azm Center for Research in Biotechnology and Its Applications, Doctoral School of Science and Technology, Lebanese University, Tripoli, Lebanon
| | - Laurent Loufrani
- UMR Centre National de la Recherche Scientifique 6015, INSERM U1083, MITOVASC, University of Angers, Angers, France.,University Hospital of Angers, Angers, France
| | - Daniel Henrion
- UMR Centre National de la Recherche Scientifique 6015, INSERM U1083, MITOVASC, University of Angers, Angers, France.,University Hospital of Angers, Angers, France
| | - Céline Fassot
- UMR Centre National de la Recherche Scientifique 6015, INSERM U1083, MITOVASC, University of Angers, Angers, France
| |
Collapse
|