1
|
Han X, Xue J, Gao S, Li Y, Duo Y, Gao F. Identification of potential diagnostic biomarkers for hypertension via integrated analysis of gene expression and DNA methylation. Blood Press 2024; 33:2387025. [PMID: 39216506 DOI: 10.1080/08037051.2024.2387025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Hypertension refers to the elevated blood pressure (BP) in arteries, with a BP reading of 140/90 mm Hg or higher in adults. Over 40% of >25-year-old population have suffered from hypertension. Thus, this study aimed to find novel diagnostic biomarkers for hypertension. METHODS All hypertension-related mRNA and methylation datasets were downloaded from the GEO database. Liner model method was used to identify differentially expressed genes (DEGs) between hypertension and control groups. Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes enrichment analysis was employed to obtain functional information. CpG sites and the corresponding genes associated with hypertension were screened using epigenome-wide association study (EWAS) analysis. RESULTS There were 37 DEGs between the hypertension group and control group, which were significantly enriched in 84 Biological Process terms, 31 Cellular Component terms, 18 Molecular Function terms and 9 signalling pathways. EWAS results indicated that 1072 CpG sites were associated with hypertension occurrence, corresponding to 1029 genes. After cross-analysis, complement factor D (CFD) and OTU deubiquitinase, ubiquitin aldehyde binding 2 (OTUB2) with methylation modification were identified as diagnostic markers for hypertension. CONCLUSION In conclusion, CFD and OTUB2 were potential biomarkers of hypertension occurrence. Our results will provide more information for hypertension diagnosis and would be more reliable combined with multiple biomarkers.
Collapse
Affiliation(s)
- Xiujiang Han
- Department of Emergency Medicine, Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, China
| | - Jing Xue
- Department of Endocrinology and Metabolic Diseases, Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, China
| | - Sheng Gao
- Department of Endocrinology and Metabolic Diseases, Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, China
| | - Yongjian Li
- First Department of Cardiovascular Medicine, Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, China
| | - Yuehe Duo
- Department of Neurology, Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, China
| | - Feifei Gao
- EICU, Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Chen J, Luo C, Tan D, Li Y. J-shaped associations of pan-immune-inflammation value and systemic inflammation response index with stroke among American adults with hypertension: evidence from NHANES 1999-2020. Front Neurol 2024; 15:1417863. [PMID: 39144717 PMCID: PMC11322096 DOI: 10.3389/fneur.2024.1417863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Stroke, a leading cause of death and disability worldwide, is primarily ischemic and linked to hypertension. Hypertension, characterized by systemic chronic inflammation, significantly increases stroke risk. This study explores the association of novel systemic inflammatory markers (SII, PIV, SIRI) with stroke prevalence in hypertensive U.S. adults using NHANES data. Methods We analyzed data from hypertensive participants in the NHANES 1999-2020 survey, excluding those under 20, pregnant, or with missing data, resulting in 18,360 subjects. Systemic inflammatory markers (SII, PIV, SIRI) were calculated from blood counts. Hypertension and stroke status were determined by self-report and clinical measurements. Covariates included sociodemographic, lifestyle, and medical history factors. Weighted statistical analyses and multivariate logistic regression models were used to explore associations, with adjustments for various covariates. Ethical approval was obtained from the NCHS Ethics Review Board. Results In a cohort of 18,360 hypertensive individuals (mean age 56.652 years), 7.25% had a stroke. Stroke patients were older, had lower PIR, and were more likely to be female, single, less educated, smokers, non-drinkers, physically inactive, and have diabetes and CHD. Multivariate logistic regression showed that SII was not significantly associated with stroke. However, PIV and SIRI were positively associated with stroke prevalence. Each unit increase in lnPIV increased stroke odds by 14% (OR = 1.140, p = 0.0022), and lnSIRI by 20.6% (OR = 1.206, p = 0.0144). RCS analyses confirmed J-shaped associations for lnPIV and lnSIRI with stroke. Stratified analyses identified gender and smoking as significant effect modifiers. Smoking was significantly associated with elevated PIV, SIRI, and SII levels, especially in current smokers. Conclusion Elevated PIV and SIRI levels significantly increase stroke prevalence in hypertensive individuals, notably among males and smokers. A predictive model with PIV, SIRI, and sociodemographic factors offers strong clinical utility.
Collapse
Affiliation(s)
| | | | - Dianhui Tan
- Department of Neurosurgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | | |
Collapse
|
3
|
Ressler A, Hinchey LM, Mast J, Zucconi BE, Bratchuk A, Parfenukt N, Roth D, Javanbakht A. Alone on the frontline: The first report of PTSD prevalence and risk in de-occupied Ukrainian villages. Int J Soc Psychiatry 2024:207640241242030. [PMID: 38605592 DOI: 10.1177/00207640241242030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
IMPORTANCE The ongoing Russian invasion of Ukraine marks a critical juncture in a series of events posing severe threat to the health of Ukrainian citizens. While recent reports reveal higher rates of PTSD in Ukrainian refugees following Russia's invasion - data for Ukrainians remaining at the warfront is inherently difficult to access. A primarily elderly demographic, Ukrainians in previously Russian-occupied areas near the front (UPROANF) are at particular risk. DESIGN Data was sourced from screening questionnaires administered between March 2022 and July 2023 by mobile health clinics providing services to UPROANF. SETTING Previously occupied villages in Eastern and Southern Ukraine. PARTICIPANTS UPROANF attending clinics completed voluntary self-report surveys reporting demographics, prior health diagnoses, and PTSD symptom severity (n = 450; Meanage = 53.66; 72.0% female). EXPOSURE Participants were exposed to Russian occupation of Ukrainian villages. MAIN OUTCOME AND MEASURES The PTSD Checklist for the DSM-V (PCL-5) with recommended diagnostic threshold (i.e. 31) was utilized to assess PTSD prevalence and symptom severity. ANCOVA was used to examine hypothesized positive associations between (1) HTN and (2) loneliness and PTSD symptoms (cumulative and by symptom cluster). RESULTS Between 47.8% and 51.33% screened positive for PTSD. Though cumulative PTSD symptoms did not differ based on HTN diagnostic status, those with HTN reported significantly higher PTSD re-experiencing symptoms (b = 1.25, SE = 0.60, p = .046). Loneliness was significantly associated with more severe cumulative PTSD symptoms (b = 1.29, SE = 0.31, p < .001), re-experiencing (b = 0.47, SE = 0.12, p < .001), avoidance (b = .18, SE = 0.08, p = .038), and hypervigilance (b = 0.29, SE = 0.13, p = .036). CONCLUSIONS AND RELEVANCE PTSD prevalence was higher than other war-exposed populations. Findings highlight the urgent mental health burden among UPROANF, emphasizing the need for integrated care models addressing both trauma and physical health. Given the significance of loneliness as a risk factor, findings suggest the potential for group-based, mind-body interventions to holistically address the physical, mental, and social needs of this highly traumatized, underserved population.
Collapse
Affiliation(s)
- Austin Ressler
- Department of Human Biology, Sattler College, Boston, MA, USA
| | - Liza M Hinchey
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jonathan Mast
- Department of Human Biology, Sattler College, Boston, MA, USA
| | - Beth E Zucconi
- Department of Human Biology, Sattler College, Boston, MA, USA
| | - Anatoliy Bratchuk
- Department of General Medicine, National Pirogov Memorial Medical University, Vinnytsia, Vinnytsia Oblast, Ukraine
| | - Nadia Parfenukt
- Department of Nursing, The First Kyiv Medical College, Ukraine
| | - Dianne Roth
- College Of Nurses of Ontario, Toronto, Canada
| | - Arash Javanbakht
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
4
|
He Y, Zou P, Lu J, Lu Y, Yuan S, Zheng X, Liu J, Zeng C, Liu L, Tang L, Fang Z, Hu X, Liu Q, Zhou S. CD4+ T-Cell Legumain Deficiency Attenuates Hypertensive Damage via Preservation of TRAF6. Circ Res 2024; 134:9-29. [PMID: 38047378 DOI: 10.1161/circresaha.123.322835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND T cells are central to the immune responses contributing to hypertension. LGMN (legumain) is highly expressed in T cells; however, its role in the pathogenesis of hypertension remains unclear. METHODS Peripheral blood samples were collected from patients with hypertension, and cluster of differentiation (CD)4+ T cells were sorted for gene expression and Western blotting analysis. TLGMNKO (T cell-specific LGMN-knockout) mice (Lgmnf/f/CD4Cre), regulatory T cell (Treg)-specific LGMN-knockout mice (Lgmnf/f/Foxp3YFP Cre), and RR-11a (LGMN inhibitor)-treated C57BL/6 mice were infused with Ang II (angiotensin II) or deoxycorticosterone acetate/salt to establish hypertensive animal models. Flow cytometry, 4-dimensional label-free proteomics, coimmunoprecipitation, Treg suppression, and in vivo Treg depletion or adoptive transfer were used to delineate the functional importance of T-cell LGMN in hypertension development. RESULTS LGMN mRNA expression was increased in CD4+ T cells isolated from hypertensive patients and mice, was positively correlated with both systolic and diastolic blood pressure, and was negatively correlated with serum IL (interleukin)-10 levels. TLGMNKO mice exhibited reduced Ang II-induced or deoxycorticosterone acetate/salt-induced hypertension and target organ damage relative to wild-type (WT) mice. Genetic and pharmacological inhibition of LGMN blocked Ang II-induced or deoxycorticosterone acetate/salt-induced immunoinhibitory Treg reduction in the kidneys and blood. Anti-CD25 antibody depletion of Tregs abolished the protective effects against Ang II-induced hypertension in TLGMNKO mice, and LGMN deletion in Tregs prevented Ang II-induced hypertension in mice. Mechanistically, endogenous LGMN impaired Treg differentiation and function by directly interacting with and facilitating the degradation of TRAF6 (tumor necrosis factor receptor-associated factor 6) via chaperone-mediated autophagy, thereby inhibiting NF-κB (nuclear factor kappa B) activation. Adoptive transfer of LGMN-deficient Tregs reversed Ang II-induced hypertension, whereas depletion of TRAF6 in LGMN-deficient Tregs blocked the protective effects. CONCLUSIONS LGMN deficiency in T cells prevents hypertension and its complications by promoting Treg differentiation and function. Specifically targeting LGMN in Tregs may be an innovative approach for hypertension treatment.
Collapse
Affiliation(s)
- Yuhu He
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Pu Zou
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Junmi Lu
- Pathology (J. Lu), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yufei Lu
- Division of Physical Therapy Education, College of Allied Health Professions, University of Nebraska Medical Center, Omaha (Y.L.)
| | - Shuguang Yuan
- Nephrology (S.Y.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xialei Zheng
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jing Liu
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Cheng Zeng
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ling Liu
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liang Tang
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhenfei Fang
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinqun Hu
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qiming Liu
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shenghua Zhou
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Kringeland E, Gerdts E, Ulvik A, Tell GS, Igland J, Haugsgjerd TR, Ueland PM, Midtbø H. Inflammation, sex, blood pressure changes and hypertension in midlife: the Hordaland Health Study. J Hum Hypertens 2023; 37:718-725. [PMID: 36400946 PMCID: PMC10403349 DOI: 10.1038/s41371-022-00772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/09/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022]
Abstract
Our aim was to test sex-specific associations of circulating markers of inflammation with blood pressure (BP) and incident hypertension in midlife. Participants in the Hordaland Health study (n = 3280, 56% women, mean age 48 years) were examined at baseline and followed for 6 years. Circulating levels of inflammatory markers including high-sensitive C-reactive protein (hs-CRP), neopterin, and pyridoxic acid ratio (PAr) index were measured at follow-up. The associations with systolic/diastolic BP and incident hypertension were tested in sex-specific linear- or logistic-regression analyses adjusted for body mass index, serum triglycerides, creatinine, physical activity, smoking and diabetes. At follow-up, women had lower mean BP than men (124/72 vs. 130/78 mmHg, p < 0.001). Higher hs-CRP was significantly associated with greater systolic and diastolic BP (standardized β = 0.07 and β = 0.09, both p < 0.01) in women, but not in men. Higher neopterin was associated with higher diastolic BP in women and higher PAr index was associated with higher diastolic BP in women and higher systolic and diastolic BP in men (all p < 0.01). Compared to hs-CRP < 1 mg/l, higher levels of hs-CRP 1-<3 mg/l and hs-CRP ≥ 3 mg/l were associated with new-onset hypertension only in women (odds ratio (OR) 1.74, 95% CI 1.20-2.53 and OR 1.87, 95% CI 1.20-2.90). Sex-interactions were found for hs-CRP and neopterin in models on incident hypertension and diastolic BP, respectively (both p < 0.05). Higher levels of circulating markers of inflammation were associated with higher BP and incident hypertension in a sex-specific manner. Our results suggest a sex-specific interaction between cardiovascular inflammation and BP in midlife.
Collapse
Affiliation(s)
- Ester Kringeland
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Eva Gerdts
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Grethe S Tell
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Jannicke Igland
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | | | | | - Helga Midtbø
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
6
|
Colvert CA, Hawkins KP, Semenikhina M, Stefanenko M, Pavlykivska O, Oates JC, DeLeon-Pennell KY, Palygin O, Van Beusecum JP. Endothelial mechanical stretch regulates the immunological synapse interface of renal endothelial cells in a sex-dependent manner. Am J Physiol Renal Physiol 2023; 325:F22-F37. [PMID: 37167273 PMCID: PMC10292970 DOI: 10.1152/ajprenal.00258.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
Increased mechanical endothelial cell stretch contributes to the development of numerous cardiovascular and renal pathologies. Recent studies have shone a light on the importance of sex-dependent inflammation in the pathogenesis of renal disease states. The endothelium plays an intimate and critical role in the orchestration of immune cell activation through upregulation of adhesion molecules and secretion of cytokines and chemokines. While endothelial cells are not recognized as professional antigen-presenting cells, in response to cytokine stimulation, endothelial cells can express both major histocompatibility complex (MHC) I and MHC II. MHCs are essential to forming a part of the immunological synapse interface during antigen presentation to adaptive immune cells. Whether MHC I and II are increased under increased mechanical stretch is unknown. Due to hypertension being multifactorial, we hypothesized that increased mechanical endothelial stretch promotes the regulation of MHCs and key costimulatory proteins on mouse renal endothelial cells (MRECs) in a stretch-dependent manner. MRECs derived from both sexes underwent 5%, 10%, or 15% uniaxial cyclical stretch, and immunological synapse interface proteins were determined by immunofluorescence microscopy, immunoblot analysis, and RNA sequencing. We found that increased endothelial mechanical stretch conditions promoted downregulation of MHC I in male MRECs but upregulation in female MRECs. Moreover, MHC II was upregulated by mechanical stretch in both male and female MRECs, whereas CD86 and CD70 were regulated in a sex-dependent manner. By bulk RNA sequencing, we found that increased mechanical endothelial cell stretch promoted differential gene expression of key antigen processing and presentation genes in female MRECs, demonstrating that females have upregulation of key antigen presentation pathways. Taken together, our data demonstrate that mechanical endothelial stretch regulates endothelial activation and immunological synapse interface formation in renal endothelial cells in a sex-dependent manner.NEW & NOTEWORTHY Endothelial cells contribute to the development of renal inflammation and have the unique ability to express antigen presentation proteins. Whether increased endothelial mechanical stretch regulates immunological synapse interface proteins remains unknown. We found that antigen presentation proteins and costimulatory proteins on renal endothelial cells are modulated by mechanical stretch in a sex-dependent manner. Our data provide novel insights into the sex-dependent ability of renal endothelial cells to present antigens in response to endothelial mechanical stimuli.
Collapse
Affiliation(s)
- C Alex Colvert
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Kennedy P Hawkins
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Marharyta Semenikhina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Mariia Stefanenko
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Olesia Pavlykivska
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Jim C Oates
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
| | - Kristine Y DeLeon-Pennell
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Justin P Van Beusecum
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
| |
Collapse
|
7
|
Della Peruta C, Lozanoska-Ochser B, Renzini A, Moresi V, Sanchez Riera C, Bouché M, Coletti D. Sex Differences in Inflammation and Muscle Wasting in Aging and Disease. Int J Mol Sci 2023; 24:ijms24054651. [PMID: 36902081 PMCID: PMC10003083 DOI: 10.3390/ijms24054651] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Only in recent years, thanks to a precision medicine-based approach, have treatments tailored to the sex of each patient emerged in clinical trials. In this regard, both striated muscle tissues present significant differences between the two sexes, which may have important consequences for diagnosis and therapy in aging and chronic illness. In fact, preservation of muscle mass in disease conditions correlates with survival; however, sex should be considered when protocols for the maintenance of muscle mass are designed. One obvious difference is that men have more muscle than women. Moreover, the two sexes differ in inflammation parameters, particularly in response to infection and disease. Therefore, unsurprisingly, men and women respond differently to therapies. In this review, we present an up-to-date overview on what is known about sex differences in skeletal muscle physiology and disfunction, such as disuse atrophy, age-related sarcopenia, and cachexia. In addition, we summarize sex differences in inflammation which may underly the aforementioned conditions because pro-inflammatory cytokines deeply affect muscle homeostasis. The comparison of these three conditions and their sex-related bases is interesting because different forms of muscle atrophy share common mechanisms; for instance, those responsible for protein dismantling are similar although differing in terms of kinetics, severity, and regulatory mechanisms. In pre-clinical research, exploring sexual dimorphism in disease conditions could highlight new efficacious treatments or recommend implementation of an existing one. Any protective factors discovered in one sex could be exploited to achieve lower morbidity, reduce the severity of the disease, or avoid mortality in the opposite sex. Thus, the understanding of sex-dependent responses to different forms of muscle atrophy and inflammation is of pivotal importance to design innovative, tailored, and efficient interventions.
Collapse
Affiliation(s)
- Chiara Della Peruta
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
| | - Biliana Lozanoska-Ochser
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
- Department of Medicine and Surgery, LUM University, 70010 Bari, Italy
| | - Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
| | - Viviana Moresi
- Institute of Nanotechnology (Nanotec), National Research Council (CNR), c/o Sapienza University of Rome, 00185 Roma, Italy
| | - Carles Sanchez Riera
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
| | - Marina Bouché
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
- Correspondence:
| | - Dario Coletti
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
- Biological Adaptation and Ageing (B2A), Institut de Biologie Paris-Seine, Sorbonne Université, CNRS UMR 8256, Inserm U1164, 75005 Paris, France
| |
Collapse
|
8
|
Zhao S, Dong S, Qin Y, Wang Y, Zhang B, Liu A. Inflammation index SIRI is associated with increased all-cause and cardiovascular mortality among patients with hypertension. Front Cardiovasc Med 2023; 9:1066219. [PMID: 36712259 PMCID: PMC9874155 DOI: 10.3389/fcvm.2022.1066219] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
Background Inflammation plays an essential role in the pathogenesis of hypertension. A novel inflammatory biomarker systemic inflammatory response index (SIRI) is related with all-cause and cardiovascular (CVD) mortality, while the role of SIRI in hypertension patients is unclear. Methods A total of 21,506 participants with hypertension were recruited in the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018. SIRI was calculated as the neutrophil count * monocyte count/lymphocyte count. Hypertension was defined according to the examination of blood pressure, prescription, and self-reported physician diagnosis. Survival status was followed through 31 December 2019. The non-linear relationship was assessed using restricted cubic spline analysis. The association of all-cause mortality with SIRI was evaluated using the Kaplan-Meier curve and the weighted Cox regression analysis. The predictive abilities were assessed with Receiver operating curve. Results During 189,063 person-years of follow-up, 5,680 (26.41%) death events were documented, including 1,967 (9.15%) CVD related deaths. A J-shaped association was observed between SIRI and all-cause and CVD mortality. The Kaplan-Meier curve indicated the all-cause and CVD mortality risks were higher in high SIRI quartiles compared with lower SIRI quartiles. After adjusting for all covariates, the SIRI was positively associated with the all-mortality risk with HR = 1.19 (1.15, 1.22), and CVD mortality with HR = 1.19 (1.15, 1.24). The result was robust in subgroup analysis and sensitivity analysis. Conclusion Elevated SIRI level is associated with increased all-cause and CVD mortality among patients with hypertension. SIRI is considered as a potential inflammatory biomarker in the clinical practice. Further large-scale cohort studies are required to confirm our findings.
Collapse
Affiliation(s)
- Songfeng Zhao
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Siyuan Dong
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yongkai Qin
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yutong Wang
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Baorui Zhang
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China,*Correspondence: Baorui Zhang ✉
| | - Aihua Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China,Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,Aihua Liu ✉
| |
Collapse
|
9
|
Garcia JN, Wanjalla CN, Mashayekhi M, Hasty AH. Immune Cell Activation in Obesity and Cardiovascular Disease. Curr Hypertens Rep 2022; 24:627-637. [PMID: 36136214 PMCID: PMC9510332 DOI: 10.1007/s11906-022-01222-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW In this review, we focus on immune cell activation in obesity and cardiovascular disease, highlighting specific immune cell microenvironments present in individuals with atherosclerosis, non-ischemic heart disease, hypertension, and infectious diseases. RECENT FINDINGS Obesity and cardiovascular disease are intimately linked and often characterized by inflammation and a cluster of metabolic complications. Compelling evidence from single-cell analysis suggests that obese adipose tissue is inflammatory and infiltrated by almost all immune cell populations. How this inflammatory tissue state contributes to more systemic conditions such as cardiovascular and infectious disease is less well understood. However, current research suggests that changes in the adipose tissue immune environment impact an individual's ability to combat illnesses such as influenza and SARS-CoV2. Obesity is becoming increasingly prevalent globally and is often associated with type 2 diabetes and heart disease. An increased inflammatory state is a major contributor to this association. Widespread chronic inflammation in these disease states is accompanied by an increase in both innate and adaptive immune cell activation. Acutely, these immune cell changes are beneficial as they sustain homeostasis as inflammation increases. However, persistent inflammation subsequently damages tissues and organs throughout the body. Future studies aimed at understanding the unique immune cell populations in each tissue compartment impacted by obesity may hold potential for therapeutic applications.
Collapse
Affiliation(s)
- Jamie N Garcia
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 702 Light Hall, Nashville, TN, 37232, USA
| | - Celestine N Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mona Mashayekhi
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 702 Light Hall, Nashville, TN, 37232, USA.
- VA Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
10
|
Epigenetic Mechanisms Involved in Inflammaging-Associated Hypertension. Curr Hypertens Rep 2022; 24:547-562. [PMID: 35796869 DOI: 10.1007/s11906-022-01214-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW This review summarizes the involvement of inflammaging in vascular damage with focus on the epigenetic mechanisms by which inflammaging-induced hypertension is triggered. RECENT FINDINGS Inflammaging in hypertension is a complex condition associated with the production of inflammatory mediators by the immune cells, enhancement of oxidative stress, and tissue remodeling in vascular smooth muscle cells and endothelial cells. Cellular processes are numerous, including inflammasome assembly and cell senescence which may involve mitochondrial dysfunction, autophagy, DNA damage response, dysbiosis, and many others. More recently, a series of noncoding RNAs, mainly microRNAs, have been described as possessing epigenetic actions on the regulation of inflammasome-related hypertension, emerging as a promising therapeutic strategy. Although there are a variety of pharmacological agents that effectively regulate inflammaging-related hypertension, a deeper understanding of the epigenetic events behind the control of vessel deterioration is needed for the treatment or even to prevent the disease onset.
Collapse
|
11
|
Mildly elevated diastolic blood pressure increases subsequent risk of breast cancer in postmenopausal women in the Health Examinees-Gem study. Sci Rep 2022; 12:15995. [PMID: 36163474 PMCID: PMC9512811 DOI: 10.1038/s41598-022-19705-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/02/2022] [Indexed: 12/24/2022] Open
Abstract
Epidemiological evidence suggests that hypertension is associated with breast cancer risk. However, previous studies disregard blood pressure components in the healthy population. We aimed to examine the relationship between systolic and diastolic blood pressure and breast cancer risk in a Korean population-based prospective cohort. A total of 73,031 women from the Health Examinees Gem Study were followed from baseline (2004 to 2013) through 2018. Systolic and diastolic blood pressure were measured by trainee physicians at baseline recruitment and then categorized based on the international guidelines for clinical hypertension. Associations between systolic and diastolic blood pressure with overall breast cancer and stratified by premenopausal and postmenopausal status were evaluated using adjusted multivariable Cox proportional hazard regression. A total of 858 breast cancer cases were recorded for a median follow-up period of 9 years. Compared with the normal DBP category (< 85 mmHg), the normal-high category was positively associated with breast cancer risk in postmenopausal women (85–89 mmHg, HR 1.73 95% CI 1.28–2.33), but not in premenopausal women (85–89 mmHg, HR 0.87 95% CI 0.56–1.35). Similar results were found when all cases of self-reported hypertension were excluded. Results for SBP did not show a significant association with breast cancer risk. The association between DBP and breast cancer suggests DBP could be an important factor in cancer prevention, especially for women after menopause. Our study provides a first detailed approach to understanding the importance of diastolic blood pressure for breast cancer prevention and warrants further investigation.
Collapse
|
12
|
Abstract
Sex is a key risk factor for many types of cardiovascular disease. It is imperative to understand the mechanisms underlying sex differences to devise optimal preventive and therapeutic approaches for all individuals. Both biological sex (determined by sex chromosomes and gonadal hormones) and gender (social and cultural behaviors associated with femininity or masculinity) influence differences between men and women in disease susceptibility and pathology. Here, we focus on the application of experimental mouse models that elucidate the influence of 2 components of biological sex-sex chromosome complement (XX or XY) and gonad type (ovaries or testes). These models have revealed that in addition to well-known effects of gonadal hormones, sex chromosome complement influences cardiovascular risk factors, such as plasma cholesterol levels and adiposity, as well as the development of atherosclerosis and pulmonary hypertension. One mechanism by which sex chromosome dosage influences cardiometabolic traits is through sex-biased expression of X chromosome genes that escape X inactivation. These include chromatin-modifying enzymes that regulate gene expression throughout the genome. The identification of factors that determine sex-biased gene expression and cardiometabolic traits will expand our mechanistic understanding of cardiovascular disease processes and provide insight into sex differences that remain throughout the lifespan as gonadal hormone levels alter with age.
Collapse
Affiliation(s)
- Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA
- Department of Medicine, David Geffen School of Medicine at UCLA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Carrie B. Wiese
- Department of Human Genetics, David Geffen School of Medicine at UCLA
| |
Collapse
|
13
|
Ishimwe JA, Dola T, Ertuglu LA, Kirabo A. Bile acids and salt-sensitive hypertension: a role of the gut-liver axis. Am J Physiol Heart Circ Physiol 2022; 322:H636-H646. [PMID: 35245132 PMCID: PMC8957326 DOI: 10.1152/ajpheart.00027.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/22/2022]
Abstract
Salt-sensitivity of blood pressure (SSBP) affects 50% of the hypertensive and 25% of the normotensive populations. Importantly, SSBP is associated with increased risk for mortality in both populations independent of blood pressure. Despite its deleterious effects, the pathogenesis of SSBP is not fully understood. Emerging evidence suggests a novel role of bile acids in salt-sensitive hypertension and that they may play a crucial role in regulating inflammation and fluid volume homeostasis. Mechanistic evidence implicates alterations in the gut microbiome, the epithelial sodium channel (ENaC), the farnesoid X receptor, and the G protein-coupled bile acid receptor TGR5 in bile acid-mediated effects on cardiovascular function. The mechanistic interplay between excess dietary sodium-induced alterations in the gut microbiome and immune cell activation, bile acid signaling, and whether such interplay may contribute to the etiology of SSBP is still yet to be defined. The main goal of this review is to discuss the potential role of bile acids in the pathogenesis of cardiovascular disease with a focus on salt-sensitive hypertension.
Collapse
Affiliation(s)
- Jeanne A Ishimwe
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Thanvi Dola
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Lale A Ertuglu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
14
|
Freitas RAD, Lima VV, Bomfim GF, Giachini FRC. Interleukin-10 in the Vasculature: Pathophysiological Implications. Curr Vasc Pharmacol 2021; 20:230-243. [PMID: 34961448 DOI: 10.2174/1570161120666211227143459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
Interleukin-10 (IL-10) is an important immunomodulatory cytokine, initially characterized as an anti-inflammatory agent released by immune cells during infectious and inflammatory processes. IL-10 exhibits biological functions that extend to the regulation of different intracellular signaling pathways directly associated with vascular function. This cytokine plays a vital role in vascular tone regulation through the change of important proteins involved in vasoconstriction and vasodilation. Numerous investigations covered here have shown that therapeutic strategies inducing IL-10 result in anti-inflammatory, anti-hypertrophic, antihyperplastic, anti-apoptotic and antihypertensive effects. This non-systematic review summarizes the modulating effects mediated by IL-10 in vascular tissue, particularly on vascular tone, and the intracellular pathway induced by this cytokine. We also highlight the advances in IL-10 manipulation as a therapeutic target in different cardiovascular pathophysiologies, including the physiological implications in animals and humans. Finally, the review illustrates current and potential future perspectives of the potential use of IL-10 in clinical trials, based on the clinical evidence.
Collapse
Affiliation(s)
| | - Victor Vitorino Lima
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças - Brazil
| | | | - Fernanda Regina Casagrande Giachini
- Institute of Biological Sciences, Federal University of Goias, Goiânia - Brazil.
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças - Brazil
| |
Collapse
|
15
|
Park JH, Seo EJ, Bae SH. Incidence and Risk Factors of Cardio-Cerebrovascular Disease in Korean Menopausal Women: A Retrospective Observational Study using the Korean Genome and Epidemiology Study data. Asian Nurs Res (Korean Soc Nurs Sci) 2021; 15:265-271. [PMID: 34438085 DOI: 10.1016/j.anr.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/19/2021] [Accepted: 08/17/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Cardio-cerebrovascular diseases constitute the most common and fatal disease among menopausal women. However, the risk of cardio-cerebrovascular diseases in menopausal women compared to men has been underestimated, with insufficient related studies. Therefore, we examined the incidence and risk factors of cardio-cerebrovascular diseases among Korean menopausal women. METHODS A retrospective observational study design with secondary analysis was conducted using data from the Korean Genome and Epidemiology Study survey. We used the study's data of 1,197 menopausal women, aged 40-64 years, who did not have cardio-cerebrovascular diseases at baseline and their related data from the biennial follow-ups over 14 years. Cardio-cerebrovascular diseases were defined as hypertension, coronary artery disease, or stroke. The incidence of cardio-cerebrovascular diseases was calculated per person-years, and multivariate Cox proportional hazards models were used to determine the predictors of cardio-cerebrovascular diseases during the follow-up period. RESULTS Of the 1,197 cases, 264 were early or surgical menopausal women. The overall incidence of cardio-cerebrovascular diseases was 18.75 per 1,000 person-years. Early or surgical menopause (HR = 4.32, p < .001), along with family history of cardiovascular disease (HR = 1.87, p = .024), elevated blood pressure (HR = 1.79, p < .001), abdominal obesity (HR = 1.37, p = .046), or duration of menopause at the same age (HR = 1.01, p = .001), were strong predictors of cardio-cerebrovascular diseases. CONCLUSION Based on the results of this study, it is necessary to identify and closely monitor women with early or surgical menopause for cardiovascular and cerebrovascular diseases prevention. Also, prevention of cardio-cerebrovascular diseases through blood pressure and abdominal obesity management is vital for menopausal women.
Collapse
Affiliation(s)
- Jin-Hee Park
- College of Nursing·Research Institute of Nursing Science, Ajou University, Suwon, Republic of Korea
| | - Eun Ji Seo
- College of Nursing·Research Institute of Nursing Science, Ajou University, Suwon, Republic of Korea
| | - Sun Hyoung Bae
- College of Nursing·Research Institute of Nursing Science, Ajou University, Suwon, Republic of Korea.
| |
Collapse
|
16
|
Milner TA, Contoreggi NH, Yu F, Johnson MA, Wang G, Woods C, Mazid S, Van Kempen TA, Waters EM, McEwen BS, Korach KS, Glass MJ. Estrogen Receptor β Contributes to Both Hypertension and Hypothalamic Plasticity in a Mouse Model of Peri-Menopause. J Neurosci 2021; 41:5190-5205. [PMID: 33941651 PMCID: PMC8211546 DOI: 10.1523/jneurosci.0164-21.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Hypertension susceptibility in women increases at the transition to menopause, termed perimenopause, a state characterized by erratic estrogen fluctuation and extended hormone cycles. Elucidating the role of estrogen signaling in the emergence of hypertension during perimenopause has been hindered by animal models that are confounded by abrupt estrogen cessation or effects of aging. In the present study, accelerated ovarian failure (AOF) in estrogen receptor β (ERβ) reporter mice was induced by 4-vinylcyclohexene diepoxide in young mice to model early-stage ovarian failure (peri-AOF) characteristic of peri-menopause. It was found that administering ERβ agonists suppressed elevated blood pressure in a model of neurogenic hypertension induced by angiotensin II (AngII) in peri-AOF, but not in age-matched male mice. It was also found that ERβ agonist administration in peri-AOF females, but not males, suppressed the heightened NMDAR signaling and reactive oxygen production in ERβ neurons in the hypothalamic paraventricular nucleus (PVN), a critical neural regulator of blood pressure. It was further shown that deleting ERβ in the PVN of gonadally intact females produced a phenotype marked by a sensitivity to AngII hypertension. These results suggest that ERβ signaling in the PVN plays an important role in blood pressure regulation in female mice and contributes to hypertension susceptibility in females at an early stage of ovarian failure comparable to human perimenopause.
Collapse
Affiliation(s)
- Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, New York 10065
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Fangmin Yu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Megan A Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Gang Wang
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Clara Woods
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Sanoara Mazid
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Tracey A Van Kempen
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Elizabeth M Waters
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, New York 10065
| | - Bruce S McEwen
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, New York 10065
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, North Carolina 27709
| | - Michael J Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
17
|
Abstract
BACKGROUND Hypertension and obesity often coexist. There are sex differences in the mechanisms of obesity-related hypertension but the reasons for these differences are still not fully understood. OBJECTIVE The aim of this study was to investigate sex differences in the development of hypertension associated with obesity. METHODS A total of 866 men and 1022 women were selected for the study. Anthropometric measurements, including arterial pressure measurements, were performed. The plasma lipid levels were measured using an enzymatic method with commercially available kits. RESULTS In both overweight and obesity, hypertensive women had more atherogenic lipid profiles and higher values of lipid accumulation product (LAP) than normotensive women. In overweight and obese men, no significant differences in lipid levels or LAP were noted between the normotensive and hypertensive groups. CONCLUSION The pathogenesis of obesity-related hypertension in women differs from that in men and tends to be associated with metabolic disorders.
Collapse
Affiliation(s)
- Anastasiya M Kaneva
- Institute of Physiology of Коmi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Russia
| | - Evgeny R Bojko
- Institute of Physiology of Коmi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Russia
| |
Collapse
|
18
|
Uhlorn JA, Husband NA, Romero‐Aleshire MJ, Moffett C, Lindsey ML, Langlais PR, Brooks HL. CD4 + T Cell-Specific Proteomic Pathways Identified in Progression of Hypertension Across Postmenopausal Transition. J Am Heart Assoc 2021; 10:e018038. [PMID: 33410333 PMCID: PMC7955317 DOI: 10.1161/jaha.120.018038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Background Menopause is associated with an increase in the prevalence and severity of hypertension in women. Although premenopausal females are protected against T cell-dependent immune activation and development of angiotensin II (Ang II) hypertension, this protection is lost in postmenopausal females. Therefore, the current study hypothesized that specific CD4+ T cell pathways are regulated by sex hormones and Ang II to mediate progression from premenopausal protection to postmenopausal hypertension. Methods and Results Menopause was induced in C57BL/6 mice via repeated 4-vinylcyclohexene diepoxide injections, while premenopausal females received sesame oil vehicle. A subset of premenopausal mice and all menopausal mice were infused with Ang II for 14 days (Control, Ang II, Meno/Ang II). Proteomic and phosphoproteomic profiles of CD4+ T cells isolated from spleens were examined. Ang II markedly increased CD4+ T cell protein abundance and phosphorylation associated with DNA and histone methylation in both premenopausal and postmenopausal females. Compared with premenopausal T cells, Ang II infusion in menopausal mice increased T cell phosphorylation of MP2K2, an upstream regulator of ERK, and was associated with upregulated phosphorylation at ERK targeted sites. Additionally, Ang II infusion in menopausal mice decreased T cell phosphorylation of TLN1, a key regulator of IL-2Rα and FOXP3 expression. Conclusions These findings identify novel, distinct T cell pathways that influence T cell-mediated inflammation during postmenopausal hypertension.
Collapse
Affiliation(s)
- Joshua A. Uhlorn
- Department of PhysiologyCollege of MedicineUniversity of ArizonaTucsonAZ
| | | | | | - Caitlin Moffett
- Department of PhysiologyCollege of MedicineUniversity of ArizonaTucsonAZ
| | - Merry L. Lindsey
- Department of Cellular and Integrative PhysiologyCenter for Heart and Vascular ResearchNebraska‐Western Iowa Health Care SystemUniversity of Nebraska Medical Center and Research ServiceOmahaNE
| | - Paul R. Langlais
- Department of MedicineCollege of MedicineUniversity of ArizonaTucsonAZ
| | - Heddwen L. Brooks
- Department of PhysiologyCollege of MedicineUniversity of ArizonaTucsonAZ
| |
Collapse
|
19
|
Mi J, Song J, Zhao Y, Wu X. Association of hemoglobin glycation index and its interaction with obesity/family history of hypertension on hypertension risk: a community-based cross-sectional survey. BMC Cardiovasc Disord 2020; 20:477. [PMID: 33148181 PMCID: PMC7640660 DOI: 10.1186/s12872-020-01762-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/29/2020] [Indexed: 01/12/2023] Open
Abstract
Background Hemoglobin glycation index (HGI) is considered to be a convenient measurable indicator to assess the inter-individual variation of HbA1c. In the present study, we tested the relationship between HGI and risk of hypertension, and further explored the possible interacting influences of HGI with other such factors on hypertension risk among Chinese individuals. Methods The eligible subjects were chosen from a community-based cross-sectional survey in China. We collected relevant data and clinical indicators for each participant. HGI was calculated as “measured HbA1c-predicted HbA1c” and divided into four categories according to quartile. The following indicators were used to assess interactive effects: (1) relative excess risk due to interaction (RERI); (2) attributable proportion due to interaction (AP); and (3) synergy index (SI). Statistical analysis was performed using R software. Results Specifically, 1777 eligible participants were selected in this cross-sectional survey. There were 433 subjects who were identified to have hypertension (24.4%). A significant increase in the prevalence of hypertension from Q1 to Q4 of HGI was observed (p < 0.001). Multivariable logistic model demonstrated that subjects at the highest HGI group had a substantially increased risk of being hypertensive than subjects in the first quartile of HGI, as indicated by the OR value of 1.87 (95% CI 1.26–2.78). Moreover, a significant interaction between family history of hypertension and HGI on hypertension risk was detected (RERI: 1.36, 95% CI 0.11–2.63; AP: 0.43, 95% CI 0.17–0.69; and SI:2.68, 95% CI 1.10–6.48). The interactive effect between HGI and abdominal obesity was also found to be significant, as estimated by the value of RERI (1.04, 95% CI 0.24–1.85), AP (0.33, 95% CI 0.11–0.56) and SI (1.96, 95% CI 1.01–3.79). However, in the analysis of the interaction between HGI and general obesity, only the AP value (0.28, 95% CI 0.01–0.54) was observed to be significant. Conclusion High HGI was independently associated with the risk of hypertension. Moreover, HGI significantly shared interactions with obesity and family history of hypertension that influenced the risk of hypertension.
Collapse
Affiliation(s)
- Jing Mi
- School of Public Health, Bengbu Medical College, 2600 Donghai road, Bengbu, 233000, Anhui Province, China
| | - Jian Song
- School of Public Health, Bengbu Medical College, 2600 Donghai road, Bengbu, 233000, Anhui Province, China
| | - Yingying Zhao
- Bengbu Health Board, 568 Nanhu road, Bengbu, 233000, Anhui Province, China
| | - Xuesen Wu
- School of Public Health, Bengbu Medical College, 2600 Donghai road, Bengbu, 233000, Anhui Province, China.
| |
Collapse
|
20
|
Nikolich-Žugich J, Bradshaw CM, Uhrlaub JL, Watanabe M. Immunity to acute virus infections with advanced age. Curr Opin Virol 2020; 46:45-58. [PMID: 33160186 DOI: 10.1016/j.coviro.2020.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022]
Abstract
New infections in general, and new viral infections amongst them, represent a serious challenge to an older organism. This review discusses the age-related alterations in responsiveness to infection from the standpoint of virus:host relationship and the host physiological whole-organism and specific immune response to the virus. Changes with age in the innate and adaptive immune system homeostasis and function are reviewed briefly. This is followed by a review of specific alterations and defects in the response of older organisms (chiefly mice and humans) to acute (particularly emerging and re-emerging) viral infections, with a very brief summary of the response to latent persistent infections. Finally, we provide a brief summary of the perspectives for possible interventions to enhance antiviral immunity.
Collapse
Affiliation(s)
- Janko Nikolich-Žugich
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA.
| | - Christine M Bradshaw
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| | - Jennifer L Uhrlaub
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| | - Makiko Watanabe
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| |
Collapse
|
21
|
Zhang J, Qu L, Wei J, Jiang S, Xu L, Wang L, Cheng F, Jiang K, Buggs J, Liu R. A new mechanism for the sex differences in angiotensin II-induced hypertension: the role of macula densa NOS1β-mediated tubuloglomerular feedback. Am J Physiol Renal Physiol 2020; 319:F908-F919. [PMID: 33044868 DOI: 10.1152/ajprenal.00312.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Females are protected against the development of angiotensin II (ANG II)-induced hypertension compared with males, but the mechanisms have not been completely elucidated. In the present study, we hypothesized that the effect of ANG II on the macula densa nitric oxide (NO) synthase 1β (NOS1β)-mediated tubuloglomerular feedback (TGF) mechanism is different between males and females, thereby contributing to the sexual dimorphism of ANG II-induced hypertension. We used microperfusion, micropuncture, clearance of FITC-inulin, and radio telemetry to examine the sex differences in the changes of macula densa NOS1β expression and activity, TGF response, natriuresis, and blood pressure (BP) after a 2-wk ANG II infusion in wild-type and macula densa-specific NOS1 knockout mice. In wild-type mice, ANG II induced higher expression of macula densa NOS1β, greater NO generation by the macula densa, and a lower TGF response in vitro and in vivo in females than in males; the increases of glomerular filtration rate, urine flow rate, and Na+ excretion in response to an acute volume expansion were significantly greater and the BP responses to ANG II were significantly less in females than in males. In contrast, these sex differences in the effects of ANG II on TGF, natriuretic response, and BP were largely diminished in knockout mice. In addition, tissue culture of human kidney biopsies (renal cortex) with ANG II resulted in a greater increase in NOS1β expression in females than in males. In conclusion, macula densa NOS1β-mediated TGF is a novel and important mechanism for the sex differences in ANG II-induced hypertension.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Larry Qu
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Shan Jiang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Lan Xu
- College of Public Health, University of South Florida, Tampa, Florida
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Kun Jiang
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jacentha Buggs
- Advanced Organ Disease and Transplantation Institute, Tampa General Hospital, Tampa, Florida
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
22
|
Justina VD, Giachini FR, Sullivan JC, Webb RC. Toll-Like Receptors Contribute to Sex Differences in Blood Pressure Regulation. J Cardiovasc Pharmacol 2020; 76:255-266. [PMID: 32902942 PMCID: PMC7751064 DOI: 10.1097/fjc.0000000000000869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) play an important role in the innate immune system, and recently, they have been shown to be involved in the regulation of blood pressure. The incidence of hypertension is higher in men, and it increases in postmenopausal women. In fact, premenopausal women are protected from cardiovascular disease compared with age-matched men, and it is well established that this protective effect is lost with menopause. However, the molecular mechanisms underlying this protection in women are unknown. Whether or not it could be related to differential activation of the innate immune system remains to be elucidated. This review focuses on (1) the differences between men and women in TLR activation and (2) whether TLR activation may influence the regulation of blood pressure in a sex-dependent manner.
Collapse
Affiliation(s)
- Vanessa Dela Justina
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Fernanda R. Giachini
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
- Institute of Health Sciences and Health, Universidad Federal De Mato Grosso, Barra Do Garcas, Brazil
| | - Jennifer C. Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA
| | - R. Clinton Webb
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA
| |
Collapse
|
23
|
Nolan LS. Age-related hearing loss: Why we need to think about sex as a biological variable. J Neurosci Res 2020; 98:1705-1720. [PMID: 32557661 DOI: 10.1002/jnr.24647] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
It has long been known that age-related hearing loss (ARHL) is more common, more severe, and with an earlier onset in men compared to women. Even in the absence of confounding factors such as noise exposure, these sexdifferences in susceptibility to ARHL remain. In the last decade, insight into the pleiotrophic nature by which estrogen signaling can impact multiple signaling mechanisms to mediate downstream changes in gene expression and/or elicit rapid changes in cellular function has rapidly gathered pace, and a role for estrogen signaling in the biological pathways that confer neuroprotection is becoming undeniable. Here I review the evidence why we need to consider sex as a biological variable (SABV) when investigating the etiology of ARHL. Loss of auditory function with aging is frequency-specific and modulated by SABV. Evidence also suggests that differences in cochlear physiology between women and men are already present from birth. Understanding the molecular basis of these sex differences in ARHL will accelerate the development of precision medicine therapies for ARHL.
Collapse
Affiliation(s)
- Lisa S Nolan
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
24
|
Touyz RM, Rios FJ, Alves-Lopes R, Neves KB, Camargo LL, Montezano AC. Oxidative Stress: A Unifying Paradigm in Hypertension. Can J Cardiol 2020; 36:659-670. [PMID: 32389339 PMCID: PMC7225748 DOI: 10.1016/j.cjca.2020.02.081] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
The etiology of hypertension involves complex interactions among genetic, environmental, and pathophysiologic factors that influence many regulatory systems. Hypertension is characteristically associated with vascular dysfunction, cardiovascular remodelling, renal dysfunction, and stimulation of the sympathetic nervous system. Emerging evidence indicates that the immune system is also important and that activated immune cells migrate and accumulate in tissues promoting inflammation, fibrosis, and target-organ damage. Common to these processes is oxidative stress, defined as an imbalance between oxidants and antioxidants in favour of the oxidants that leads to a disruption of oxidation-reduction (redox) signalling and control and molecular damage. Physiologically, reactive oxygen species (ROS) act as signalling molecules and influence cell function through highly regulated redox-sensitive signal transduction. In hypertension, oxidative stress promotes posttranslational modification (oxidation and phosphorylation) of proteins and aberrant signalling with consequent cell and tissue damage. Many enzymatic systems generate ROS, but NADPH oxidases (Nox) are the major sources in cells of the heart, vessels, kidneys, and immune system. Expression and activity of Nox are increased in hypertension and are the major systems responsible for oxidative stress in cardiovascular disease. Here we provide a unifying concept where oxidative stress is a common mediator underlying pathophysiologic processes in hypertension. We focus on some novel concepts whereby ROS influence vascular function, aldosterone/mineralocorticoid actions, and immunoinflammation, all important processes contributing to the development of hypertension.
Collapse
Affiliation(s)
- Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom.
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Rhéure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Karla B Neves
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
25
|
|