1
|
Jiang Q, Yang Q, Zhang C, Hou C, Hong W, Du M, Shan X, Li X, Zhou D, Wen D, Xiong Y, Yang K, Lin Z, Song J, Mo Z, Feng H, Xing Y, Fu X, Liu C, Peng F, Wu L, Li B, Lu W, Yuan JXJ, Wang J, Chen Y. Nephrectomy and high-salt diet inducing pulmonary hypertension and kidney damage by increasing Ang II concentration in rats. Respir Res 2024; 25:288. [PMID: 39080603 PMCID: PMC11290206 DOI: 10.1186/s12931-024-02916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a significant risk factor for pulmonary hypertension (PH), a complication that adversely affects patient prognosis. However, the mechanisms underlying this association remain poorly understood. A major obstacle to progress in this field is the lack of a reliable animal model replicating CKD-PH. METHODS This study aimed to establish a stable rat model of CKD-PH. We employed a combined approach, inducing CKD through a 5/6 nephrectomy and concurrently exposing the rats to a high-salt diet. The model's hemodynamics were evaluated dynamically, alongside a comprehensive assessment of pathological changes in multiple organs. Lung tissues and serum samples were collected from the CKD-PH rats to analyze the expression of angiotensin-converting enzyme 2 (ACE2), evaluate the activity of key vascular components within the renin-angiotensin-aldosterone system (RAAS), and characterize alterations in the serum metabolic profile. RESULTS At 14 weeks post-surgery, the CKD-PH rats displayed significant changes in hemodynamic parameters indicative of pulmonary arterial hypertension. Additionally, right ventricular hypertrophy was observed. Notably, no evidence of pulmonary vascular remodeling was found. Further analysis revealed RAAS dysregulation and downregulated ACE2 expression within the pulmonary vascular endothelium of CKD-PH rats. Moreover, the serum metabolic profile of these animals differed markedly from the sham surgery group. CONCLUSIONS Our findings suggest that the development of pulmonary arterial hypertension in CKD-PH rats is likely a consequence of a combined effect: RAAS dysregulation, decreased ACE2 expression in pulmonary vascular endothelial cells, and metabolic disturbances.
Collapse
Grants
- 82370063, 82170069, 82241012, 82120108001, 81970057, 82170065, 82000045, 82270052 National Natural Science Foundation of China
- 82370063, 82170069, 82241012, 82120108001, 81970057, 82170065, 82000045, 82270052 National Natural Science Foundation of China
- National Key Research and Development Program of China
Collapse
Affiliation(s)
- Qian Jiang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Qifeng Yang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Chenting Zhang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Chi Hou
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Wei Hong
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Min Du
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Xiaoqian Shan
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Xuanyi Li
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Dansha Zhou
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Dongmei Wen
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Yuanhui Xiong
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Kai Yang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Ziying Lin
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Jingjing Song
- Department of Stomatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Zhanjie Mo
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Huazhuo Feng
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Yue Xing
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Xin Fu
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Chunli Liu
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Fang Peng
- Department of Critical Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Liling Wu
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518000, Guangdong, China
| | - Bing Li
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China.
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510320, Guangdong, China.
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China.
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
2
|
Mao Z, Zheng P, Zhu X, Wang L, Zhang F, Liu H, Li H, Zhou L, Liu W. Obstructive sleep apnea hypopnea syndrome and vascular lesions: An update on what we currently know. Sleep Med 2024; 119:296-311. [PMID: 38723575 DOI: 10.1016/j.sleep.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 06/18/2024]
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is the most prevalent sleep and respiratory disorder. This syndrome can induce severe cardiovascular and cerebrovascular complications, and intermittent hypoxia is a pivotal contributor to this damage. Vascular pathology is closely associated with the impairment of target organs, marking a focal point in current research. Vascular lesions are the fundamental pathophysiological basis of multiorgan ailments and indicate a shared pathogenic mechanism among common cardiovascular and cerebrovascular conditions, suggesting their importance as a public health concern. Increasing evidence shows a strong correlation between OSAHS and vascular lesions. Previous studies predominantly focused on the pathophysiological alterations in OSAHS itself, such as intermittent hypoxia and fragmented sleep, leading to vascular disruptions. This review aims to delve deeper into the vascular lesions affected by OSAHS by examining the microscopic pathophysiological mechanisms involved. Emphasis has been placed on examining how OSAHS induces vascular lesions through disruptions in the endothelial barrier, metabolic dysregulation, cellular phenotype alterations, neuroendocrine irregularities, programmed cell death, vascular inflammation, oxidative stress and epigenetic modifications. This review examines the epidemiology and associated risk factors for OSAHS and vascular diseases and subsequently describes the existing evidence on vascular lesions induced by OSAHS in the cardiovascular, cerebrovascular, retinal, renal and reproductive systems. A detailed account of the current research on the pathophysiological mechanisms mediating vascular lesions caused by OSAHS is provided, culminating in a discussion of research advancements in therapeutic modalities to mitigate OSAHS-related vascular lesions and the implications of these treatment strategies.
Collapse
Affiliation(s)
- Zhenyu Mao
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Zhu
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengqin Zhang
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai Li
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wei Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
3
|
Salazar AM, Al-Asad KS, Prasad RM, Panama G, Banga S, Wilcox M. Pulmonary Artery Denervation as a New Therapeutic Option for Pulmonary Hypertension: A Systematic Review and Meta-Analysis. Curr Probl Cardiol 2023; 48:101776. [PMID: 37121454 DOI: 10.1016/j.cpcardiol.2023.101776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
Pulmonary hypertension (PH) is a progressive disease with a high morbidity and mortality. The treatment is based on the type of PH. Prognosis still remains poor despite the use of different medications. Pulmonary artery denervation (PADN) has been studied as a novel therapeutic option in these patients. PUBMED, EMBASE and COCHRANE databases were searched by 2 investigators until January 2023. Information was analyzed for the following outcomes: 6-minute walk distance (6MWD), mean pulmonary artery pressure, pulmonary vascular resistance and cardiac output. Subgroup analysis comparing pre and post PADN in different PH groups was done. Statistical analysis was performed with the Review Manager version 5.4. This meta- analysis included 6 controlled trials and 6 single-arm prospective studies with a total of 616 patients. Our pooled analysis showed a significant reduction in mean pulmonary artery pressure [WMD -6.51, 95% CI (-9.87, -3.15), p = 0.0001], pulmonary vascular resistance [WMD -3.69, 95% CI (-6.74, -0.64), p = 0.02] and increased cardiac output [WMD -0.37, 95% CI (0.08, 0.65), p = 0.01]. Subgroup analysis pre and post PADN demonstrated a significant improvement in 6MWD in the WHO group 1 [WMD 99.53, 95% CI (19.60, 179.47), p = 0.01], group 2 [WMD: 69.96, 95% CI (36.40, 103.51), p = < 0.0001] and group 4 [WMD: 99.54, 95% CI (21.80, 177.28), p = 0.01]. This meta-analysis supports PADN as a therapeutic option for patients with PH, regardless of group class. Further randomized trials are still needed to evaluate safety and efficacy.
Collapse
Affiliation(s)
- Adolfo Martinez Salazar
- Division of Internal Medicine, Department of Medicine, Michigan State University, East Lansing, Michigan.
| | - Khalid Saeed Al-Asad
- Division of Internal Medicine, Department of Medicine, Michigan State University, East Lansing, Michigan
| | - Rohan M Prasad
- Department of Cardiology, Michigan State University, East Lansing, Michigan
| | - Gabriel Panama
- Division of Internal Medicine, Department of Medicine, Michigan State University, East Lansing, Michigan
| | - Sandeep Banga
- Department of Cardiology, Michigan State University, East Lansing, Michigan
| | - Matthew Wilcox
- Department of Cardiology, Thoracic Cardiovascular Institute, Sparrow Hospital, Lansing, Michigan
| |
Collapse
|
4
|
Ramirez JM, Carroll MS, Burgraff N, Rand CM, Weese-Mayer DE. A narrative review of the mechanisms and consequences of intermittent hypoxia and the role of advanced analytic techniques in pediatric autonomic disorders. Clin Auton Res 2023; 33:287-300. [PMID: 37326924 DOI: 10.1007/s10286-023-00958-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
Disorders of autonomic functions are typically characterized by disturbances in multiple organ systems. These disturbances are often comorbidities of common and rare diseases, such as epilepsy, sleep apnea, Rett syndrome, congenital heart disease or mitochondrial diseases. Characteristic of many autonomic disorders is the association with intermittent hypoxia and oxidative stress, which can cause or exaggerate a variety of other autonomic dysfunctions, making the treatment and management of these syndromes very complex. In this review we discuss the cellular mechanisms by which intermittent hypoxia can trigger a cascade of molecular, cellular and network events that result in the dysregulation of multiple organ systems. We also describe the importance of computational approaches, artificial intelligence and the analysis of big data to better characterize and recognize the interconnectedness of the various autonomic and non-autonomic symptoms. These techniques can lead to a better understanding of the progression of autonomic disorders, ultimately resulting in better care and management.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA, 98101, USA.
- Departments of Neurological Surgery and Pediatrics, University of Washington School of Medicine, 1900 Ninth Avenue, Seattle, WA, 98101, USA.
| | - Michael S Carroll
- Data Analytics and Reporting, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Nicholas Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA, 98101, USA
| | - Casey M Rand
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Debra E Weese-Mayer
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Lv R, Liu X, Zhang Y, Dong N, Wang X, He Y, Yue H, Yin Q. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct Target Ther 2023; 8:218. [PMID: 37230968 DOI: 10.1038/s41392-023-01496-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a common breathing disorder in sleep in which the airways narrow or collapse during sleep, causing obstructive sleep apnea. The prevalence of OSAS continues to rise worldwide, particularly in middle-aged and elderly individuals. The mechanism of upper airway collapse is incompletely understood but is associated with several factors, including obesity, craniofacial changes, altered muscle function in the upper airway, pharyngeal neuropathy, and fluid shifts to the neck. The main characteristics of OSAS are recurrent pauses in respiration, which lead to intermittent hypoxia (IH) and hypercapnia, accompanied by blood oxygen desaturation and arousal during sleep, which sharply increases the risk of several diseases. This paper first briefly describes the epidemiology, incidence, and pathophysiological mechanisms of OSAS. Next, the alterations in relevant signaling pathways induced by IH are systematically reviewed and discussed. For example, IH can induce gut microbiota (GM) dysbiosis, impair the intestinal barrier, and alter intestinal metabolites. These mechanisms ultimately lead to secondary oxidative stress, systemic inflammation, and sympathetic activation. We then summarize the effects of IH on disease pathogenesis, including cardiocerebrovascular disorders, neurological disorders, metabolic diseases, cancer, reproductive disorders, and COVID-19. Finally, different therapeutic strategies for OSAS caused by different causes are proposed. Multidisciplinary approaches and shared decision-making are necessary for the successful treatment of OSAS in the future, but more randomized controlled trials are needed for further evaluation to define what treatments are best for specific OSAS patients.
Collapse
Affiliation(s)
- Renjun Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xueying Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yue Zhang
- Department of Geriatrics, the 2nd Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Na Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yao He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Hongmei Yue
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
6
|
Iturriaga R, Castillo-Galán S. The Beneficial Effect of the Blockade of Stim-Activated TRPC-ORAI Channels on Vascular Remodeling and Pulmonary Hypertension Induced by Intermittent Hypoxia Is Independent of Oxidative Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1427:53-60. [PMID: 37322335 DOI: 10.1007/978-3-031-32371-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Obstructive sleep apnea (OSA), a sleep breathing disorder featured by chronic intermittent hypoxia (CIH), is associated with pulmonary hypertension (PH). Rats exposed to CIH develop systemic and lung oxidative stress, pulmonary vascular remodeling, and PH and overexpress Stim-activated TRPC-ORAI channels (STOC) in the lung. Previously, we demonstrated that 2-aminoethyl-diphenylborinate (2-APB)-treatment, a STOC-blocker, prevents PH and the overexpression of STOC induced by CIH. However, 2-APB did not prevent systemic and pulmonary oxidative stress. Accordingly, we hypothesize that the contribution of STOC in the development of PH induced by CIH is independent of oxidative stress. We measured the correlation between right ventricular systolic pressure (RVSP) and lung malondialdehyde (MDA) with the gene expression of STOC and morphological parameters in the lung from control, CIH-treated, and 2-APB-treated rats. We found correlations between RVSP and increased medial layer and STOC pulmonary levels. 2-APB-treated rats showed a correlation between RVSP and the medial layer thickness, α-actin-ir, and STOC, whereas RVSP did not correlate with MDA levels in CIH and 2-APB-treated rats. CIH rats showed correlations between lung MDA levels and the gene expression of TRPC1 and TRPC4. These results suggest that STOC channels play a key role in developing CIH-induced PH that is independent from lung oxidative stress.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Sebastián Castillo-Galán
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
7
|
Castillo-Galán S, Riquelme B, Iturriaga R. Crucial Role of Stromal Interaction Molecule-Activated TRPC-ORAI Channels in Vascular Remodeling and Pulmonary Hypertension Induced by Intermittent Hypoxia. Front Physiol 2022; 13:841828. [PMID: 35370769 PMCID: PMC8969100 DOI: 10.3389/fphys.2022.841828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Obstructive sleep apnea (OSA), a sleep breathing disorder featured by chronic intermittent hypoxia (CIH), is associate with pulmonary hypertension. Rats exposed to CIH develop lung vascular remodeling and pulmonary hypertension, which paralleled the upregulation of stromal interaction molecule (STIM)-activated TRPC-ORAI Ca2+ channels (STOC) in the lung, suggesting that STOC participate in the pulmonary vascular alterations. Accordingly, to evaluate the role played by STOC in pulmonary hypertension we studied whether the STOC blocker 2-aminoethoxydiphenyl borate (2-APB) may prevent the vascular remodeling and the pulmonary hypertension induced by CIH in a rat model of OSA. We assessed the effects of 2-APB on right ventricular systolic pressure (RVSP), pulmonary vascular remodeling, α-actin and proliferation marker Ki-67 levels in pulmonary arterial smooth muscle cells (PASMC), mRNA levels of STOC subunits, and systemic and pulmonary oxidative stress (TBARS) in male Sprague-Dawley (200 g) rats exposed to CIH (5% O2, 12 times/h for 8h) for 28 days. At 14 days of CIH, osmotic pumps containing 2-APB (10 mg/kg/day) or its vehicle were implanted and rats were kept for 2 more weeks in CIH. Exposure to CIH for 28 days raised RVSP > 35 mm Hg, increased the medial layer thickness and the levels of α-actin and Ki-67 in PASMC, and increased the gene expression of TRPC1, TRPC4, TRPC6 and ORAI1 subunits. Treatment with 2-APB prevented the raise in RVSP and the increment of the medial layer thickness, as well as the increased levels of α-actin and Ki-67 in PASMC, and the increased gene expression of STOC subunits. In addition, 2-APB did not reduced the lung and systemic oxidative stress, suggesting that the effects of 2-APB on vascular remodeling and pulmonary hypertension are independent on the reduction of the oxidative stress. Thus, our results supported that STIM-activated TRPC-ORAI Ca2+ channels contributes to the lung vascular remodeling and pulmonary hypertension induced by CIH.
Collapse
Affiliation(s)
- Sebastián Castillo-Galán
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara Riquelme
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- *Correspondence: Rodrigo Iturriaga,
| |
Collapse
|
8
|
Takeda Y, Itaya-Hironaka A, Yamauchi A, Makino M, Sakuramoto-Tsuchida S, Ota H, Kawaguchi R, Takasawa S. Intermittent Hypoxia Upregulates the Renin and Cd38 mRNAs in Renin-Producing Cells via the Downregulation of miR-203. Int J Mol Sci 2021; 22:10127. [PMID: 34576290 PMCID: PMC8466835 DOI: 10.3390/ijms221810127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Sleep apnea syndrome is characterized by recurrent episodes of oxygen desaturation and reoxygenation (intermittent hypoxia [IH]), and it is a known risk factor for hypertension. The upregulation of the renin-angiotensin system has been reported in IH, and the correlation between renin and CD38 has been noted. We exposed human HEK293 and mouse As4.1 renal cells to experimental IH or normoxia for 24 h and then measured the mRNA levels using a real-time reverse transcription polymerase chain reaction. The mRNA levels of Renin (Ren) and Cd38 were significantly increased by IH, indicating that they could be involved in the CD38-cyclic ADP-ribose signaling pathway. We next investigated the promotor activities of both genes, which were not increased by IH. Yet, a target mRNA search of the microRNA (miRNA) revealed both mRNAs to have a potential target sequence for miR-203. The miR-203 level of the IH-treated cells was significantly decreased when compared with the normoxia-treated cells. The IH-induced upregulation of the genes was abolished by the introduction of the miR-203 mimic, but not the miR-203 mimic NC negative control. These results indicate that IH stress downregulates the miR-203 in renin-producing cells, thereby resulting in increased mRNA levels of Ren and Cd38, which leads to hypertension.
Collapse
Affiliation(s)
- Yoshinori Takeda
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (Y.T.); (A.I.-H.); (A.Y.); (M.M.); (S.S.-T.); (H.O.)
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan;
| | - Asako Itaya-Hironaka
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (Y.T.); (A.I.-H.); (A.Y.); (M.M.); (S.S.-T.); (H.O.)
| | - Akiyo Yamauchi
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (Y.T.); (A.I.-H.); (A.Y.); (M.M.); (S.S.-T.); (H.O.)
| | - Mai Makino
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (Y.T.); (A.I.-H.); (A.Y.); (M.M.); (S.S.-T.); (H.O.)
| | - Sumiyo Sakuramoto-Tsuchida
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (Y.T.); (A.I.-H.); (A.Y.); (M.M.); (S.S.-T.); (H.O.)
| | - Hiroyo Ota
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (Y.T.); (A.I.-H.); (A.Y.); (M.M.); (S.S.-T.); (H.O.)
- Respiratory Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Ryuji Kawaguchi
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan;
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (Y.T.); (A.I.-H.); (A.Y.); (M.M.); (S.S.-T.); (H.O.)
| |
Collapse
|
9
|
Yaribeygi H, Sathyapalan T, Jamialahmadi T, Sahebkar A. The Impact of Diabetes Mellitus in COVID-19: A Mechanistic Review of Molecular Interactions. J Diabetes Res 2020; 2020:5436832. [PMID: 33294461 PMCID: PMC7691013 DOI: 10.1155/2020/5436832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/13/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
The ongoing pandemic of COVID-19 is now the major issue in global health. Evidence implies that patients with diabetes are at a higher risk of severe disease or death due to COVID-19 than individuals without diabetes. However, the underlying mechanism for this differential effect in individuals with and without diabetes is not clearly understood. We have reviewed the pathophysiological pathways which may facilitate the entry of virus or an increase in its infectivity in host cells in the diabetic milieu. We suggest that the preexisting pathological pathways in patients with poorly controlled diabetes increase the risk of infectivity and are responsible for the higher levels of tissue injury and death in patients with diabetes.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, UK
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Castillo-Galán S, Arenas GA, Reyes RV, Krause BJ, Iturriaga R. Stim-activated TRPC-ORAI channels in pulmonary hypertension induced by chronic intermittent hypoxia. Pulm Circ 2020; 10:13-22. [PMID: 33110495 PMCID: PMC7557718 DOI: 10.1177/2045894020941484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/18/2020] [Indexed: 12/30/2022] Open
Abstract
Obstructive sleep apnea (OSA), a breathing disorder featured by chronic intermittent
hypoxia (CIH) is associated with pulmonary hypertension (PH). Rodents exposed to CIH
develop pulmonary vascular remodeling and PH, but the pathogenic mechanisms are not well
known. Overexpression of Stim-activated Transient Receptor Potential Channels (TRPC) and
Calcium Release-Activated Calcium Channel Protein (ORAI) TRPC-ORAI Ca2+
channels (STOC) has been involved in pulmonary vascular remodeling and PH in sustained
hypoxia. However, it is not known if CIH may change STOC levels. Accordingly, we studied
the effects of CIH on the expression of STOC subunits in the lung and if these changes
paralleled the progression of the vascular pulmonary remodeling and PH in a preclinical
model of OSA. Male Sprague-Dawley rats (∼200 g) were exposed to CIH (5%O2, 12
times/h for 8 h) for 14, 21, and 28 days. We measured right ventricular systolic pressure
(RVSP), cardiac morphometry with MRI, pulmonary vascular remodeling, and wire-myographic
arterial responses to KCl and endothelin-1 (ET-1). Pulmonary RNA and protein STOC levels
of TRPC1, TRPC4, TRPC6, ORAI 1, ORAI 2, and STIM1 subunits were measured by qPCR and
western blot, and results were compared with age-matched controls. CIH elicited a
progressive increase of RVSP and vascular contractile responses to KCl and ET-1, leading
to vascular remodeling and augmented right ventricular ejection fraction, which was
significant at 28 days of CIH. The levels of TRPC1, TRPC4, TRPC 6, ORAI 1, and STIM 1
channels increased following CIH, and some of them paralleled morphologic and functional
changes. Our findings show that CIH increased pulmonary STOC expression, paralleling
vascular remodeling and PH.
Collapse
Affiliation(s)
- Sebastian Castillo-Galán
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - German A Arenas
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto V Reyes
- Laboratorio de Bioquímica y Biología Molecular de la Hipoxia, Universidad de Chile, Santiago, Chile
| | - Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
11
|
Porzionato A, Emmi A, Stocco E, Barbon S, Boscolo-Berto R, Macchi V, De Caro R. The potential role of the carotid body in COVID-19. Am J Physiol Lung Cell Mol Physiol 2020; 319:L620-L626. [PMID: 32755325 PMCID: PMC7516384 DOI: 10.1152/ajplung.00309.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The carotid body (CB) plays a contributory role in the pathogenesis of various respiratory, cardiovascular, renal, and metabolic diseases through reflex changes in ventilation and sympathetic output. On the basis of available data about peripheral arterial chemoreception and severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), a potential involvement in the coronavirus disease 2019 (COVID-19) may be hypothesized through different mechanisms. The CB could be a site of SARS-CoV-2 invasion, due to local expression of its receptor [angiotensin-converting enzyme (ACE) 2] and an alternative route of nervous system invasion, through retrograde transport along the carotid sinus nerve. The CB function could be affected by COVID-19-induced inflammatory/immune reactions and/or ACE1/ACE2 imbalance, both at local or systemic level. Increased peripheral arterial chemosensitivity and reflex sympatho-activation may contribute to the increased morbidity and mortality in COVID-19 patients with respiratory, cardiovascular, renal, or metabolic comorbidities.
Collapse
Affiliation(s)
- Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Aron Emmi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Elena Stocco
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Silvia Barbon
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Rafael Boscolo-Berto
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| |
Collapse
|
12
|
Porzionato A, Emmi A, Barbon S, Boscolo-Berto R, Stecco C, Stocco E, Macchi V, De Caro R. Sympathetic activation: a potential link between comorbidities and COVID-19. FEBS J 2020; 287:3681-3688. [PMID: 32779891 PMCID: PMC7405290 DOI: 10.1111/febs.15481] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022]
Abstract
In coronavirus disease 2019 (COVID-19), higher morbidity and mortality are associated with age, male gender, and comorbidities, such as chronic lung diseases, cardiovascular pathologies, hypertension, kidney diseases, diabetes mellitus, and obesity. All of the above conditions are characterized by increased sympathetic discharge, which may exert significant detrimental effects on COVID-19 patients, through actions on the lungs, heart, blood vessels, kidneys, metabolism, and/or immune system. Furthermore, COVID-19 may also increase sympathetic discharge, through changes in blood gases (chronic intermittent hypoxia, hyperpnea), angiotensin-converting enzyme (ACE)1/ACE2 imbalance, immune/inflammatory factors, or emotional distress. Nevertheless, the potential role of the sympathetic nervous system has not yet been considered in the pathophysiology of COVID-19. In our opinion, sympathetic overactivation could represent a so-far undervalued mechanism for a vicious circle between COVID-19 and comorbidities.
Collapse
Affiliation(s)
- Andrea Porzionato
- Section of Anatomy, Department of Neuroscience, University of Padova, Italy
| | - Aron Emmi
- Section of Anatomy, Department of Neuroscience, University of Padova, Italy
| | - Silvia Barbon
- Section of Anatomy, Department of Neuroscience, University of Padova, Italy
| | | | - Carla Stecco
- Section of Anatomy, Department of Neuroscience, University of Padova, Italy
| | - Elena Stocco
- Section of Anatomy, Department of Neuroscience, University of Padova, Italy
| | - Veronica Macchi
- Section of Anatomy, Department of Neuroscience, University of Padova, Italy
| | - Raffaele De Caro
- Section of Anatomy, Department of Neuroscience, University of Padova, Italy
| |
Collapse
|
13
|
Xu J, Wei Z, Wang X, Li X, Wang W. The risk of cardiovascular and cerebrovascular disease in overlap syndrome: a meta-analysis. J Clin Sleep Med 2020; 16:1199-1207. [PMID: 32267225 PMCID: PMC7954048 DOI: 10.5664/jcsm.8466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022]
Abstract
STUDY OBJECTIVES To undertake a meta-analysis of literature comparing the prevalence of cardiovascular and cerebrovascular comorbidities between patients with overlap syndrome (OS) and patients with chronic obstructive pulmonary disease (COPD) or patients with obstructive sleep apnea. METHODS Studies about the cardiovascular and cerebrovascular disease of OS were searched for among several electronic databases from the time of database construction to June 2019. Two independent reviewers performed the process of study screening, quality assessment, and data extraction. Meta-analysis of odds ratios (ORs) was carried out by RevMan5.3 under either fixed-effects or random-effects models. Sensitivity analysis was conducted to examine the robustness of pooled outcome. RESULTS A total of 17 articles were included. Compared with COPD/obstructive sleep apnea, OS significantly increased the risk of developing hypertension (OS vs COPD: OR = 1.94, 95% confidence interval [CI] [1.49, 2.52]; OS vs obstructive sleep apnea: OR = 2.05, 95% CI [1.57, 2.68]) and pulmonary hypertension (OS vs COPD: OR = 2.96, 95% CI [1.30, 6.77]; OS vs obstructive sleep apnea: OR = 5.93, 95% CI [1.84, 18.42]). There was no significant difference in the prevalence of coronary heart disease (OR = 1.19, 95% CI [.67,2.11]) and cerebrovascular disease (OR = 2.43, 95% CI [0.81, 7.31]) between patients with COPD and patients with OS. However, the sensitivity analysis showed that the pooled outcome of the comparison of pulmonary arterial pressure between patients with OS and patients with COPD was not stable. CONCLUSIONS OS significantly increased cardiovascular risk including the prevalence of hypertension and pulmonary hypertension. However, since the pooled outcome about pulmonary arterial pressure was not stable, further studies are still required.
Collapse
Affiliation(s)
- Jiahuan Xu
- Institute of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
- Institute of Respiratory Medicine, Zhejiang Hospital, Hangzhou, China
| | - Zhijing Wei
- Institute of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xingjian Wang
- Institute of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xiaomeng Li
- Institute of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Wei Wang
- Institute of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|