1
|
Meifang W, Ying W, Wen C, Kaizu X, Meiyan S, Liming L. Advance in the pharmacological and comorbidities management of heart failure with preserved ejection fraction: evidence from clinical trials. Heart Fail Rev 2024; 29:305-320. [PMID: 37561223 DOI: 10.1007/s10741-023-10338-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
The prevalence of heart failure with preserved ejection fraction (HFpEF) accounts for approximately 50% of the total heart failure population, and with the aging of the population and the increasing prevalence of hypertension, obesity, and type 2 diabetes (T2DM), the incidence of HFpEF continues to rise and has become the most common subtype of heart failure. Compared with heart failure with reduced ejection fraction, HFpEF has a more complex pathophysiology and is more often associated with hypertension, T2DM, obesity, atrial fibrillation, renal insufficiency, pulmonary hypertension, obstructive sleep apnea, and other comorbidities. HFpEF has generally been considered a syndrome with high phenotypic heterogeneity, and no effective treatments have been shown to reduce mortality to date. Diuretics and comorbidity management are traditional treatments for HFpEF; however, they are mostly empirical due to a lack of clinical evidence in the setting of HFpEF. With the EMPEROR-Preserved and DELIVER results, sodium-glucose cotransporter 2 inhibitors become the first evidence-based therapies to reduce rehospitalization for heart failure. Subgroup analyses of the PARAGON-HF, TOPCAT, and CHARM-Preserved trials suggest that angiotensin receptor-neprilysin inhibitors, spironolactone, and angiotensin II receptor blockers may be beneficial in patients at the lower end of the ejection fraction spectrum. Other potential pharmacotherapies represented by non-steroidal mineralocorticoid receptor antagonists finerenone and antifibrotic agent pirfenidone also hold promise for the treatment of HFpEF. This article intends to review the clinical evidence on current pharmacotherapies of HFpEF, as well as the comorbidities management of atrial fibrillation, hypertension, T2DM, obesity, pulmonary hypertension, renal insufficiency, obstructive sleep apnea, and iron deficiency, to optimize the clinical management of HFpEF.
Collapse
Affiliation(s)
- Wu Meifang
- Department of Cardiology, School of Clinical Medicine, Fujian Medical University, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China
| | - Wu Ying
- Department of Cardiology, School of Clinical Medicine, Fujian Medical University, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China
| | - Chen Wen
- Department of Cardiology, School of Clinical Medicine, Fujian Medical University, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China
| | - Xu Kaizu
- Department of Cardiology, School of Clinical Medicine, Fujian Medical University, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China
| | - Song Meiyan
- Department of Cardiology, School of Clinical Medicine, Fujian Medical University, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China
| | - Lin Liming
- Department of Cardiology, School of Clinical Medicine, Fujian Medical University, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China.
| |
Collapse
|
2
|
Ganekal P, Vastrad B, Vastrad C, Kotrashetti S. Identification of biomarkers, pathways, and potential therapeutic targets for heart failure using next-generation sequencing data and bioinformatics analysis. Ther Adv Cardiovasc Dis 2023; 17:17539447231168471. [PMID: 37092838 PMCID: PMC10134165 DOI: 10.1177/17539447231168471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Heart failure (HF) is the most common cardiovascular diseases and the leading cause of cardiovascular diseases related deaths. Increasing molecular targets have been discovered for HF prognosis and therapy. However, there is still an urgent need to identify novel biomarkers. Therefore, we evaluated biomarkers that might aid the diagnosis and treatment of HF. METHODS We searched next-generation sequencing (NGS) dataset (GSE161472) and identified differentially expressed genes (DEGs) by comparing 47 HF samples and 37 normal control samples using limma in R package. Gene ontology (GO) and pathway enrichment analyses of the DEGs were performed using the g: Profiler database. The protein-protein interaction (PPI) network was plotted with Human Integrated Protein-Protein Interaction rEference (HiPPIE) and visualized using Cytoscape. Module analysis of the PPI network was done using PEWCC1. Then, miRNA-hub gene regulatory network and TF-hub gene regulatory network were constructed by Cytoscape software. Finally, we performed receiver operating characteristic (ROC) curve analysis to predict the diagnostic effectiveness of the hub genes. RESULTS A total of 930 DEGs, 464 upregulated genes and 466 downregulated genes, were identified in HF. GO and REACTOME pathway enrichment results showed that DEGs mainly enriched in localization, small molecule metabolic process, SARS-CoV infections, and the citric acid tricarboxylic acid (TCA) cycle and respiratory electron transport. After combining the results of the PPI network miRNA-hub gene regulatory network and TF-hub gene regulatory network, 10 hub genes were selected, including heat shock protein 90 alpha family class A member 1 (HSP90AA1), arrestin beta 2 (ARRB2), myosin heavy chain 9 (MYH9), heat shock protein 90 alpha family class B member 1 (HSP90AB1), filamin A (FLNA), epidermal growth factor receptor (EGFR), phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), cullin 4A (CUL4A), YEATS domain containing 4 (YEATS4), and lysine acetyltransferase 2B (KAT2B). CONCLUSIONS This discovery-driven study might be useful to provide a novel insight into the diagnosis and treatment of HF. However, more experiments are needed in the future to investigate the functional roles of these genes in HF.
Collapse
Affiliation(s)
- Prashanth Ganekal
- Department of General Medicine, Basaveshwara Medical College, Chitradurga, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, #253, Bharthinagar, Dharwad 580001, India
| | | |
Collapse
|
3
|
Profile of Patients with Cardiovascular Diseases during the Pandemic in a Cardiology Clinic of a COVID-19 Support Hospital. Healthcare (Basel) 2022; 10:healthcare10101887. [PMID: 36292334 PMCID: PMC9601427 DOI: 10.3390/healthcare10101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
Background: During the pandemic, our hospital became a COVID support hospital and consequently the cardiology clinic had restricted activity; thus, it received only suspect and/or patients confirmed positive with the various COVID-19 strains that were associated with a chronic/flaring cardiovascular pathology. Methods: Two batches of patients admitted during a one-year period were compared in the cardiology clinic over two different periods of time: BATCH I (1 April 2019 to 31 March 2020), in a non-COVID context (BATCH I N-COV) and BATCH II (1 July 2020 to 30 June 2021) comprising patients that presented with respiratory infection of SARS-CoV-2 (BATCH II COV-2), associated with chronic and/or acute cardiovascular condition. To determine the profile of the patients admitted in our clinic, we observed the following parameters: age, type of cardiac condition, and admission mode (for the N-COV group). Results: The data obtained as absolute numbers and as percentages in relation to the total number of admissions were presented in separate tables and graphs for both of the studied groups. Conclusions: The SARS-CoV-2 pandemic, in its almost two years of evolution, has divided the medical world in two main categories: COVID and non-COVID. Admission of the patients with chronic, but non-COVID cardiac conditions, in our case, dropped to almost one-quarter when we compared the two absolute admission numbers: 1382 in the year prior to pandemic compared with only 356 in the pandemic year. We believe that the number of deaths due to SARS-CoV-2 infection was infinitely higher than the reported ones and uncountable, in as much as COVID-19 did not kill only the infected patients, but it has also yielded a very large number of collateral victims among chronic patients who had no contact with the disease, but were unable to be admitted and treated for chronic heart disease.
Collapse
|
4
|
Yi H, Liu C, Shi J, Wang S, Zhang H, He Y, Tao J, Li S, Zhang R. EGCG Alleviates Obesity-Induced Myocardial Fibrosis in Rats by Enhancing Expression of SCN5A. Front Cardiovasc Med 2022; 9:869279. [PMID: 35571212 PMCID: PMC9098820 DOI: 10.3389/fcvm.2022.869279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
Object Obesity is an increase in body weight beyond the limitation of skeletal and physical requirement, as the result of an excessive accumulation of fat in the body. Obesity could increase the risk of myocardial fibrosis. (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant substance in green tea and has been reported to have multiple pharmacological activities. However, there is not enough evidence to show that EGCG has a therapeutic effect on obesity-induced myocardial fibrosis. This study aims to investigate whether EGCG is a potential drug for obesity-induced myocardial fibrosis. Methods Obesity-induced myocardial fibrosis rat model was established by HFD feeding for 36 weeks. EGCG was intragastrically administered at 160 mg/kg/d for the last 4 weeks. The pathological changes of myocardial fibrosis were evaluated by tissue pathological staining and collagen quantification. Furthermore, total RNA was extracted from the heart for RNA-seq to identify the changes in the transcript profile, and the relevant hub genes were verified by quantitative real-time PCR and western blot. Results EGCG significantly relieved HFD diet-induced obesity and alleviated the pathology of myocardial fibrosis. Biochemical analysis showed that EGCG could relieve the burden of lipid metabolism and injury to the myocardium and transcript profile analysis showed that EGCG could alleviate obesity-induced myocardial fibrosis by increasing the level of Scn5a in the heart. Furthermore, quantitative real-time PCR and western blot analysis for SCN5A also confirmed this finding. Conclusion Taken together, these results suggest that EGCG could protect against the obesity-induced myocardial fibrosis. EGCG plays an anti-myocardial fibrosis role by regulating the expression of SCN5A in the heart.
Collapse
Affiliation(s)
- Haoan Yi
- Department of Cell Biology and Medical Genetics, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Cong Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Orthopedics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Shuo Wang
- Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Haoxin Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yongshu He
- Department of Cell Biology and Medical Genetics, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Jianping Tao
- Department of Anesthesiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shude Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, China
- Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- *Correspondence: Shude Li
| | - Renfa Zhang
- Department of Physical Education, Kunming Medical University, Kunming, China
- Renfa Zhang
| |
Collapse
|
5
|
Dhore-Patil A, Thannoun T, Samson R, Le Jemtel TH. Diabetes Mellitus and Heart Failure With Preserved Ejection Fraction: Role of Obesity. Front Physiol 2022; 12:785879. [PMID: 35242044 PMCID: PMC8886215 DOI: 10.3389/fphys.2021.785879] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022] Open
Abstract
Heart failure with preserved ejection fraction is a growing epidemic and accounts for half of all patients with heart failure. Increasing prevalence, morbidity, and clinical inertia have spurred a rethinking of the pathophysiology of heart failure with preserved ejection fraction. Unlike heart failure with reduced ejection fraction, heart failure with preserved ejection fraction has distinct clinical phenotypes. The obese-diabetic phenotype is the most often encountered phenotype in clinical practice and shares the greatest burden of morbidity and mortality. Left ventricular remodeling plays a major role in its pathophysiology. Understanding the interplay of obesity, diabetes mellitus, and inflammation in the pathophysiology of left ventricular remodeling may help in the discovery of new therapeutic targets to improve clinical outcomes in heart failure with preserved ejection fraction. Anti-diabetic agents like glucagon-like-peptide 1 analogs and sodium-glucose co-transporter 2 are promising therapeutic modalities for the obese-diabetic phenotype of heart failure with preserved ejection fraction and aggressive weight loss via lifestyle or bariatric surgery is still key to reverse adverse left ventricular remodeling. This review focuses on the obese-diabetic phenotype of heart failure with preserved ejection fraction highlighting the interaction between obesity, diabetes, and coronary microvascular dysfunction in the development and progression of left ventricular remodeling. Recent therapeutic advances are reviewed.
Collapse
Affiliation(s)
- Aneesh Dhore-Patil
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States.,Tulane University Heart and Vascular Institute, New Orleans, LA, United States
| | - Tariq Thannoun
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States.,Tulane University Heart and Vascular Institute, New Orleans, LA, United States
| | - Rohan Samson
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States.,Tulane University Heart and Vascular Institute, New Orleans, LA, United States
| | - Thierry H Le Jemtel
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States.,Tulane University Heart and Vascular Institute, New Orleans, LA, United States
| |
Collapse
|
6
|
Dietary Management of Heart Failure: DASH Diet and Precision Nutrition Perspectives. Nutrients 2021; 13:nu13124424. [PMID: 34959976 PMCID: PMC8708696 DOI: 10.3390/nu13124424] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
Heart failure (HF) is a major health care burden increasing in prevalence over time. Effective, evidence-based interventions for HF prevention and management are needed to improve patient longevity, symptom control, and quality of life. Dietary Approaches to Stop Hypertension (DASH) diet interventions can have a positive impact for HF patients. However, the absence of a consensus for comprehensive dietary guidelines and for pragmatic evidence limits the ability of health care providers to implement clinical recommendations. The refinement of medical nutrition therapy through precision nutrition approaches has the potential to reduce the burden of HF, improve clinical care, and meet the needs of diverse patients. The aim of this review is to summarize current evidence related to HF dietary recommendations including DASH diet nutritional interventions and to develop initial recommendations for DASH diet implementation in outpatient HF management. Articles involving human studies were obtained using the following search terms: Dietary Approaches to Stop Hypertension (DASH diet), diet pattern, diet, metabolism, and heart failure. Only full-text articles written in English were included in this review. As DASH nutritional interventions have been proposed, limitations of these studies are the small sample size and non-randomization of interventions, leading to less reliable evidence. Randomized controlled interventions are needed to offer definitive evidence related to the use of the DASH diet in HF management.
Collapse
|
7
|
Silverman DN, Litwin SE. Pharmacologic Weight Loss for Heart Failure With Preserved Ejection Fraction: Getting to the Core of the Problem. Circ Heart Fail 2021; 14:e008554. [PMID: 34517721 DOI: 10.1161/circheartfailure.121.008554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Daniel N Silverman
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston (D.N.S., S.E.L.)
- Division of Cardiology, Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC (D.N.S., S.E.L.)
| | - Sheldon E Litwin
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston (D.N.S., S.E.L.)
- Division of Cardiology, Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC (D.N.S., S.E.L.)
| |
Collapse
|
8
|
Abstract
The findings of randomized trials of neurohormonal modulation have been neutral in heart failure with preserved ejection fraction and consistently positive in heart failure with reduced ejection. Left ventricular remodeling promotes the development and progression of heart failure with preserved and reduced ejection fraction. However, different stimuli mediate left ventricular remodeling that is commonly concentric in heart failure with preserved ejection fraction and eccentric in heart failure with reduced ejection. The stimuli that promote concentric left ventricular remodeling may account for the neutral findings of neuhormonal modulation in heart failure with preserved ejection fraction. Low‐grade systemic inflammation‐induced microvascular endothelial dysfunction is currently the leading hypothesis behind the development and progression of heart failure with preserved ejection fraction. The hypothesis provided the rationale for several randomized controlled trials that have led to neutral findings. The trials and their limitations are reviewed.
Collapse
Affiliation(s)
- Rohan Samson
- Section of Cardiology John W. Deming Department of Medicine Tulane University School of Medicine New Orleans LA
| | - Thierry H Le Jemtel
- Section of Cardiology John W. Deming Department of Medicine Tulane University School of Medicine New Orleans LA
| |
Collapse
|
9
|
Ren J, Wu NN, Wang S, Sowers JR, Zhang Y. Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications. Physiol Rev 2021; 101:1745-1807. [PMID: 33949876 PMCID: PMC8422427 DOI: 10.1152/physrev.00030.2020] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The prevalence of heart failure is on the rise and imposes a major health threat, in part, due to the rapidly increased prevalence of overweight and obesity. To this point, epidemiological, clinical, and experimental evidence supports the existence of a unique disease entity termed “obesity cardiomyopathy,” which develops independent of hypertension, coronary heart disease, and other heart diseases. Our contemporary review evaluates the evidence for this pathological condition, examines putative responsible mechanisms, and discusses therapeutic options for this disorder. Clinical findings have consolidated the presence of left ventricular dysfunction in obesity. Experimental investigations have uncovered pathophysiological changes in myocardial structure and function in genetically predisposed and diet-induced obesity. Indeed, contemporary evidence consolidates a wide array of cellular and molecular mechanisms underlying the etiology of obesity cardiomyopathy including adipose tissue dysfunction, systemic inflammation, metabolic disturbances (insulin resistance, abnormal glucose transport, spillover of free fatty acids, lipotoxicity, and amino acid derangement), altered intracellular especially mitochondrial Ca2+ homeostasis, oxidative stress, autophagy/mitophagy defect, myocardial fibrosis, dampened coronary flow reserve, coronary microvascular disease (microangiopathy), and endothelial impairment. Given the important role of obesity in the increased risk of heart failure, especially that with preserved systolic function and the recent rises in COVID-19-associated cardiovascular mortality, this review should provide compelling evidence for the presence of obesity cardiomyopathy, independent of various comorbid conditions, underlying mechanisms, and offer new insights into potential therapeutic approaches (pharmacological and lifestyle modification) for the clinical management of obesity cardiomyopathy.
Collapse
Affiliation(s)
- Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China.,Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Ne N Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Shuyi Wang
- School of Medicine, Shanghai University, Shanghai, China.,University of Wyoming College of Health Sciences, Laramie, Wyoming
| | - James R Sowers
- Dalton Cardiovascular Research Center, Diabetes and Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| |
Collapse
|
10
|
Li Y, Chandra TP, Song X, Nie L, Liu M, Yi J, Zheng X, Chu C, Yang J. H2S improves doxorubicin-induced myocardial fibrosis by inhibiting oxidative stress and apoptosis via Keap1-Nrf2. Technol Health Care 2021; 29:195-209. [PMID: 33682759 PMCID: PMC8150551 DOI: 10.3233/thc-218020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We waimed to investigate whether H2S can relieve the myocardial fibrosis caused by doxorubicin through Keap1-Nrf2. METHODS Sprague-Dawley (SD) rats were randomly divided into four groups: normal control group (Control); DOX model group (DOX); H2S intervention model group (DOX+H2S); H2S control group (H2S). DOX and DOX+H2S group were injected with doxorubicin (3.0 mg/kg/time) intraperitoneally. Both of the Control group and H2S groups were given normal saline in equal volume, 2 weeks later, DOX+H2S and H2S group were controlled with NaHS (56 μmol/kg/d) through the abdominal cavity, while the Control and DOX group were injected with normal saline of the same dosage intraperitoneally. RESULTS Myocardial injury and myocardial cell apoptosis were significantly increased, the H2S content in myocardial tissue was remarkably down-regulated, the expression levels of MDA, Keap1, caspase-3, caspase-9, TNF-α, IL1β, MMPs and TIMP-1 in rat myocardial tissue was significantly up-regulated (P< 0.05), and the expression levels of GSH, NQO1, Bcl-2 were down-regulated compared with those of control group. The above results can be reversed by the DOX+H2S group. There is no statistically significant difference between the Control group and the H2S control group. CONCLUSIONS These results suggest that H2S can improve DOX-induced myocardial fibrosis in rats, and the keap1/Nrf2 signaling pathway, oxidative stress, inflammation, and apoptosis may be involved in the mechanism.
Collapse
Affiliation(s)
- Yaling Li
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Thakur Prakash Chandra
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Xiong Song
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Liangui Nie
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Maojun Liu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Jiali Yi
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Xia Zheng
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Chun Chu
- Department of Pharmacy, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|