1
|
Forna L, Bozomitu L, Lupu A, Lupu VV, Cojocariu C, Anton C, Girleanu I, Singeap AM, Muzica CM, Trifan A. Insights into the Natural and Treatment Courses of Hepatitis B in Children: A Retrospective Study. Biomedicines 2024; 12:1585. [PMID: 39062157 PMCID: PMC11274914 DOI: 10.3390/biomedicines12071585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic Hepatitis B virus (HBV) infection in children remains a significant public health challenge. The natural history and treatment outcomes of HBV can vary widely, influencing management strategies. This retrospective study was conducted in Northeast Romania and involved a cohort of 148 pediatric patients diagnosed with chronic viral Hepatitis B. Of these, 59 children underwent antiviral treatment while 89 were not treated. One of the main objectives was the rate of HBeAg (Hepatitis B-e antigen) seroconversion, a marker of disease progression and response to therapy. Among the treated group, 26 children (44%) achieved HBeAg seroconversion following therapy. In contrast, 44 of the untreated children (49%) experienced spontaneous HBeAg seroconversion, indicating a substantial rate of natural resolution within this population subset. The findings highlight a significant proportion of spontaneous seroconversion in untreated pediatric patients, suggesting a potential re-evaluation of treatment criteria and timing for children with chronic HBV infection. The comparable rates of seroconversion between treated and untreated cohorts underscore the need for individualized treatment approaches based on a combination of virological, biochemical, and clinical parameters. Further studies are required to refine management strategies to optimize long-term outcomes in pediatric HBV infections.
Collapse
Affiliation(s)
- Lorenza Forna
- Pediatrics–“Sf. Maria” Clinical Emergency Children’s Hospital, 700309 Iași, Romania; (L.F.); (L.B.); (A.L.); (V.V.L.)
- Faculty of General Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iași, Romania; (C.C.); (C.A.); (I.G.); (A.M.S.); (A.T.)
| | - Laura Bozomitu
- Pediatrics–“Sf. Maria” Clinical Emergency Children’s Hospital, 700309 Iași, Romania; (L.F.); (L.B.); (A.L.); (V.V.L.)
- Faculty of General Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iași, Romania; (C.C.); (C.A.); (I.G.); (A.M.S.); (A.T.)
| | - Ancuta Lupu
- Pediatrics–“Sf. Maria” Clinical Emergency Children’s Hospital, 700309 Iași, Romania; (L.F.); (L.B.); (A.L.); (V.V.L.)
- Faculty of General Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iași, Romania; (C.C.); (C.A.); (I.G.); (A.M.S.); (A.T.)
| | - Vasile Valeriu Lupu
- Pediatrics–“Sf. Maria” Clinical Emergency Children’s Hospital, 700309 Iași, Romania; (L.F.); (L.B.); (A.L.); (V.V.L.)
- Faculty of General Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iași, Romania; (C.C.); (C.A.); (I.G.); (A.M.S.); (A.T.)
| | - Camelia Cojocariu
- Faculty of General Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iași, Romania; (C.C.); (C.A.); (I.G.); (A.M.S.); (A.T.)
- Department of Clinical Gastroenterology, “Sf. Spiridon” Clinical Emergency Hospital, 700111 Iași, Romania
| | - Carmen Anton
- Faculty of General Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iași, Romania; (C.C.); (C.A.); (I.G.); (A.M.S.); (A.T.)
- Department of Clinical Gastroenterology, “Sf. Spiridon” Clinical Emergency Hospital, 700111 Iași, Romania
| | - Irina Girleanu
- Faculty of General Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iași, Romania; (C.C.); (C.A.); (I.G.); (A.M.S.); (A.T.)
- Department of Clinical Gastroenterology, “Sf. Spiridon” Clinical Emergency Hospital, 700111 Iași, Romania
| | - Ana Maria Singeap
- Faculty of General Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iași, Romania; (C.C.); (C.A.); (I.G.); (A.M.S.); (A.T.)
- Department of Clinical Gastroenterology, “Sf. Spiridon” Clinical Emergency Hospital, 700111 Iași, Romania
| | - Cristina Maria Muzica
- Faculty of General Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iași, Romania; (C.C.); (C.A.); (I.G.); (A.M.S.); (A.T.)
- Department of Clinical Gastroenterology, “Sf. Spiridon” Clinical Emergency Hospital, 700111 Iași, Romania
| | - Anca Trifan
- Faculty of General Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iași, Romania; (C.C.); (C.A.); (I.G.); (A.M.S.); (A.T.)
- Department of Clinical Gastroenterology, “Sf. Spiridon” Clinical Emergency Hospital, 700111 Iași, Romania
| |
Collapse
|
2
|
Hagemann CL, Macedo AJ, Tasca T. Therapeutic potential of antimicrobial peptides against pathogenic protozoa. Parasitol Res 2024; 123:122. [PMID: 38311672 DOI: 10.1007/s00436-024-08133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024]
Abstract
Protozoal infections cause significant morbidity and mortality in humans and animals. The use of several antiprotozoal drugs is associated with serious adverse effects and resistance development, and drugs that are more effective are urgently needed. Microorganisms, mammalian cells and fluids, insects, and reptiles are sources of antimicrobial peptides (AMPs) that act against pathogenic microorganisms; these AMPs have been widely studied as a promising alternative therapeutic option to conventional antibiotics, aiming to treat infections caused by multidrug-resistant pathogens. One advantage of AMP molecules is their adaptability, as they can be easily fine-tuned for broad-spectrum or targeted activity by changing the amino acid residues in their sequence. Consequently, these variations in structural and physicochemical properties can alter the antimicrobial activities of AMPs and decrease resistance development. This article presents an overview of peptide activities against amebiasis, giardiasis, trichomoniasis, Chagas disease, leishmaniasis, malaria, and toxoplasmosis. AMPs and their analogs demonstrate great potential as therapeutics, with potent and selective activity, when compared with commercially available drugs, and hold the potential to act as new scaffolds for the development of novel anti-protozoal drugs.
Collapse
Affiliation(s)
- Corina Lobato Hagemann
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, 2752, Porto Alegre, RS, CEP 90610-000, Brazil
| | - Alexandre José Macedo
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, 2752, Porto Alegre, RS, CEP 90610-000, Brazil
| | - Tiana Tasca
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, 2752, Porto Alegre, RS, CEP 90610-000, Brazil.
| |
Collapse
|
3
|
Yıldırım A, Özbilgin A, Yereli K. Antiprotozoal activity of auranofin on Trypanosoma cruzi, Leishmania tropica and Toxoplasma gondii: in vitro and ex vivo study. Trans R Soc Trop Med Hyg 2023; 117:733-740. [PMID: 37377375 DOI: 10.1093/trstmh/trad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/04/2022] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Three obligate intracellular protozoan parasite species, which are responsible for significant morbidity and mortality and settle in macrophage cells, affect more than one-half of the world's population, namely, Trypanosoma cruzi, Leishmania tropica and Toxoplasma gondii, which are causative agents of Chagas disease, leishmaniasis and toxoplasmosis, respectively. In the current study, it was aimed to investigate the in vitro and ex vivo antiprotozoal activity of auranofin on T. cruzi, L. tropica and T. gondii. METHODS The in vitro drug efficacy (IC50) of auranofin was investigated by haemocytometry and the CellTiter-Glo assay methods and the ex vivo drug efficacy (IC50) by light microscopic examination of Giemsa-stained slides. Also, the cytotoxic activity (CC50) of auranofin was examined by the CellTiter-Glo assay. The selectivity index (SI) was calculated for auranofin. RESULTS According to IC50, CC50 and SI data, auranofin did not exhibit cytotoxic activity on Vero cells, but exhibited antiprotozoal activity on epimastigotes and intracellular amastigotes of T. cruzi, promastigotes and intracellular amastigotes of L. tropica and intracellular tachyzoites of T. gondii (p<0.05). CONCLUSIONS The detection antiprotozoal activity of auranofin on T. cruzi, L. tropica and T. gondii according to the IC50, CC50 and SI values is considered an important and promising development. This is significant because auranofin may be an effective alternative treatment for Chagas disease, leishmaniasis and toxoplasmosis in the future.
Collapse
Affiliation(s)
- Ahmet Yıldırım
- Manisa Celal Bayar University, Medical Faculty, Department of Parasitology, Uncubozköy, 45030 Manisa, Turkey
| | - Ahmet Özbilgin
- Manisa Celal Bayar University, Medical Faculty, Department of Parasitology, Uncubozköy, 45030 Manisa, Turkey
| | - Kor Yereli
- Manisa Celal Bayar University, Medical Faculty, Department of Parasitology, Uncubozköy, 45030 Manisa, Turkey
| |
Collapse
|
4
|
Suárez-Rico DO, Munguía-Huizar FJ, Cortés-Zárate R, Hernández-Hernández JM, González-Pozos S, Perez-Rangel A, Castillo-Romero A. Repurposing Terfenadine as a Novel Antigiardial Compound. Pharmaceuticals (Basel) 2023; 16:1332. [PMID: 37765140 PMCID: PMC10535608 DOI: 10.3390/ph16091332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Giardia lamblia is a highly infectious protozoan that causes giardiasis, a gastrointestinal disease with short-term and long-lasting symptoms. The currently available drugs for giardiasis treatment have limitations such as side effects and drug resistance, requiring the search for new antigiardial compounds. Drug repurposing has emerged as a promising strategy to expedite the drug development process. In this study, we evaluated the cytotoxic effect of terfenadine on Giardia lamblia trophozoites. Our results showed that terfenadine inhibited the growth and cell viability of Giardia trophozoites in a time-dose-dependent manner. In addition, using scanning electron microscopy, we identified morphological damage; interestingly, an increased number of protrusions on membranes and tubulin dysregulation with concomitant dysregulation of Giardia GiK were observed. Importantly, terfenadine showed low toxicity for Caco-2 cells, a human intestinal cell line. These findings highlight the potential of terfenadine as a repurposed drug for the treatment of giardiasis and warrant further investigation to elucidate its precise mechanism of action and evaluate its efficacy in future research.
Collapse
Affiliation(s)
- Daniel Osmar Suárez-Rico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Calle Sierra Mojada 950, Independencia Oriente, Guadalajara 44340, Mexico;
| | - Francisco Javier Munguía-Huizar
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara 44340, Mexico; (F.J.M.-H.); (R.C.-Z.)
| | - Rafael Cortés-Zárate
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara 44340, Mexico; (F.J.M.-H.); (R.C.-Z.)
| | - José Manuel Hernández-Hernández
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de Mexico 07360, Mexico; (J.M.H.-H.); (A.P.-R.)
| | - Sirenia González-Pozos
- Unidad de Microscopía Electrónica LaNSE, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de Mexico 07360, Mexico;
| | - Armando Perez-Rangel
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de Mexico 07360, Mexico; (J.M.H.-H.); (A.P.-R.)
| | - Araceli Castillo-Romero
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara 44340, Mexico; (F.J.M.-H.); (R.C.-Z.)
| |
Collapse
|
5
|
Gaona-López C, Martínez-Vázquez AV, Villalobos-Rocha JC, Juárez-Rendón KJ, Rivera G. Analysis of Giardia lamblia Nucleolus as Drug Target: A Review. Pharmaceuticals (Basel) 2023; 16:1168. [PMID: 37631082 PMCID: PMC10457859 DOI: 10.3390/ph16081168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Giardia lamblia (G. lamblia) is the main causative agent of diarrhea worldwide, affecting children and adults alike; in the former, it can be lethal, and in the latter a strong cause of morbidity. Despite being considered a predominant disease in low-income and developing countries, current migratory flows have caused an increase in giardiasis cases in high-income countries. Currently, there is a wide variety of chemotherapeutic treatments to combat this parasitosis, most of which have potentially serious side effects, such as genotoxic, carcinogenic, and teratogenic. The necessity to create novel treatments and discover new therapeutic targets to fight against this illness is evident. The current review centers around the controversial nucleolus of G. lamblia, providing a historical perspective that traces its apparent absence to the present evidence supporting its existence as a subnuclear compartment in this organism. Additionally, possible examples of ncRNAs and proteins ubiquitous to the nucleolus that can be used as targets of different therapeutic strategies are discussed. Finally, some examples of drugs under research that could be effective against G. lamblia are described.
Collapse
Affiliation(s)
- Carlos Gaona-López
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | | | - Juan Carlos Villalobos-Rocha
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico;
| | - Karina Janett Juárez-Rendón
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (A.V.M.-V.); (K.J.J.-R.)
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| |
Collapse
|
6
|
Wongstitwilairoong B, Anothaisintawee T, Ruamsap N, Lertsethtakarn P, Kietsiri P, Oransathid W, Oransathid W, Gonwong S, Silapong S, Suksawad U, Sornsakrin S, Bodhidatta L, Boudreaux DM, Livezey JR. Prevalence of Intestinal Parasitic Infections, Genotypes, and Drug Susceptibility of Giardia lamblia among Preschool and School-Aged Children: A Cross-Sectional Study in Thailand. Trop Med Infect Dis 2023; 8:394. [PMID: 37624332 PMCID: PMC10457730 DOI: 10.3390/tropicalmed8080394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
This study aimed to estimate the prevalence of intestinal parasitic infections in children and assess the drug susceptibility and genotypes/assemblages of Giardia lamblia in Thailand. This cross-sectional study was conducted among children aged 3-12 years in Sangkhlaburi District, Kanchanaburi Province, Thailand, between 25 September 2017 and 12 January 2018. Parasites were identified by stool microscopic examination, cultivation of intestinal parasitic protozoa, and enzyme-linked immunosorbent assay (ELISA). Drug susceptibility and genotype of G. lamblia were performed, respectively, by a resazurin assay and Triosephosphate Isomerase A and B genes using modified primers and probes. Among the 661 participants, 445 had an intestinal parasitic infection, resulting in a prevalence of 67.32% (95% CI: 63.60-70.89%). Blastocystis hominis was the most prevalent protozoa infection (49.32%; 95% CI: 45.44-53.22%), while Ascaris lumbricoides was the most prevalent helminth infection (0.91%; 95% CI: 0.33-1.97%). The prevalence of G. lamblia was 17.40%, with genotype B being the most common. According to our study, intestinal parasitic infections were commonly found in Thai children. G. lamblia was the most common pathogenic protozoa infection identified and exhibited less susceptibility to metronidazole compared to furazolidone and mebendazole.
Collapse
Affiliation(s)
| | - Thunyarat Anothaisintawee
- Department of Bacterial and Parasitic Diseases, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences, Bangkok 10120, Thailand; (B.W.); (P.L.); (P.K.); (W.O.); (W.O.); (S.G.); (S.S.); (U.S.); (S.S.); (L.B.); (D.M.B.); (J.R.L.)
| | - Nattaya Ruamsap
- Department of Bacterial and Parasitic Diseases, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences, Bangkok 10120, Thailand; (B.W.); (P.L.); (P.K.); (W.O.); (W.O.); (S.G.); (S.S.); (U.S.); (S.S.); (L.B.); (D.M.B.); (J.R.L.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mauriello A, Mari A, Nseir W, Saracco GM, Pellicano R. Diarrhea due to parasites: a short, updated point of view from the clinical setting. Minerva Gastroenterol (Torino) 2022; 68:463-469. [PMID: 35001606 DOI: 10.23736/s2724-5985.21.03095-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diarrhea represents a common manifestation of several gastrointestinal diseases. Infectious agents are the most common causes of diarrhea in developing countries, where the inadequate sanitation and hygiene are prevalent. In these countries, the scarcity of preventive measures as well as the limited health resources cause a substantial increase in incidence, morbidity and mortality due to infectious diseases, including diarrhea. Currently, with the availability of rapid and inexpensive air transportation millions of people travel for tourism, work and immigration from developing countries to industrialized countries and vice versa. This leads to a high number of imported pathogens such as parasites causing infectious diarrhea. Importantly, while most cases of parasitic diarrhea are short, mild and self-limited, other cases may be associated with chronic diarrhea and serious morbidity and mortality. The aim of the current review was to provide an update, from a clinician's point of view, of the main parasites causing diarrhea, with a focus on their diagnosis and management in the clinical setting.
Collapse
Affiliation(s)
- Anna Mauriello
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Amir Mari
- Unit of Gastroenterology, Nazareth Hospital, The Azrieli Faculty of Medicine, Bar Ilan University, Nazareth, Israel
| | - William Nseir
- Department of Internal Medicine A, Baruch Padeh Medical Center, The Azrieli Faculty of Medicine, Bar Ilan University, Nazareth, Israel
| | - Giorgio M Saracco
- Department of Medical Sciences, University of Turin, Turin, Italy.,Unit of Gastroenterology, Molinette Hospital, Turin, Italy
| | | |
Collapse
|
8
|
Behrouz S, Soltani Rad MN, Ganji Z, Behrouz M, Zarenezhad E, Agholi M. Design, synthesis, antigiardial and in silico assessments of novel propargylamines containing nitroimidazole core. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Alnomasy S, Al-Awsi GRL, Raziani Y, Albalawi AE, Alanazi AD, Niazi M, Mahmoudvand H. Systematic review on medicinal plants used for the treatment of Giardia infection. Saudi J Biol Sci 2021; 28:5391-5402. [PMID: 34466120 PMCID: PMC8381067 DOI: 10.1016/j.sjbs.2021.05.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/30/2022] Open
Abstract
Background However, broad adoption of herbal remedies for giardiasis is at present hampered by uncertain findings of investigation not always sufficiently powered. This study was aimed at systematically reviewing the existing literature in herbal medicines to treat giardiasis. Methods This review was carried out 06- PRISMA guideline and registered in the CAMARADES-NC3Rs Preclinical Systematic Review and Meta-Analysis Facility (SyRF) database. The search was performed in five databases which are Scopus, PubMed, Web of Science, EMBASE, and Google Scholar without time limitation for all published articles (in vitro, in vivo, and clinical studies). The searched words and terms were: “Giardia”, “giardiasis”, “extract”, “essential oil”, “herbal medicines”, “anti-Giardia”, “In vitro”, “In vivo”, “clinical trial” etc. Results Out of 1585 papers, 40 papers including 28 in vitro (70.0%), 7 in vivo (17.5%), 2 in vitro/ in vivo (5.0%), and 3 clinical trials (7.5%) up to 2020, met the inclusion criteria for discussion in this systematic review. The most widely used medicinal plants against Giardia infection belong to the family Lamiaceae (30.0%) followed by Asteraceae (13.5%), Apiaceae (10.5%). The most common parts used in the studies were aerial parts (45.0%) followed by leaves (27.4%) and seeds (7.5%). The aqueous extract (30.0%), essential oil (25.4%) and hydroalcholic and methanolic (10.5%) were considered as the desired approaches of herbal extraction, respectively. Conclusion The current review showed that the plant-based anti-Giardia agents are very promising as an alternative and complementary resource for treating giardiasis since had low significant toxicity. However, more studies are required to elucidate this conclusion, especially in clinical systems.
Collapse
Affiliation(s)
- Sultan Alnomasy
- Medical Laboratories Department, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | | | - Yosra Raziani
- College of Medicine, Department of Nursing, Komar University of Science and Technology, Sulaymaniyah, Kurdistan Region, Iraq
| | | | - Abdullah D Alanazi
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, P.O. Box 1040, Ad-Dawadimi 11911, Saudi Arabia
| | - Massumeh Niazi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hossein Mahmoudvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
10
|
Dashti N, Zarebavani M. Probiotics in the management of Giardia duodenalis: an update on potential mechanisms and outcomes. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1869-1878. [PMID: 34324017 DOI: 10.1007/s00210-021-02124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Giardia duodenalis is a common cause of infection in children and travelers. The most frequent symptom is diarrhea in these patients. G. duodenalis trophozoites use a highly specialized adhesive disc to attach the host intestinal epithelium to induce intestinal damages. Pathological features of the small intestine following giardiasis include villous atrophy; infiltration of granulocytes, lymphocytes, and plasma cells into the lamina propria; and nodular lymphoid hyperplasia. The disturbed intestinal microbiota has been observed in patients with giardiasis. Therefore, a growing body of evidence has emphasized restoring the gut microbiome by probiotics in giardiasis. This study aimed to review the literature to find the pathologic features of giardiasis and its relationship with imbalanced microbiota. Then, benefits of probiotics in giardiasis and their potential molecular mechanisms were discussed. It has been illustrated that using probiotics (e.g., Lactobacillus and Saccharomyces) can reduce the time of gastrointestinal symptoms and repair the damages, particularly in giardiasis. Probiotics' capability in restoring the composition of commensal microbiota may lead to therapeutic outcomes. According to preclinical and clinical studies, probiotics can protect against parasite-induced mucosal damages via increasing the antioxidant capacity, suppressing oxidative products, and regulating the systemic and mucosal immune responses. In addition, they can reduce the proportion of G. duodenalis load by directly targeting the parasite. They can destroy the cellular architecture of parasites and suppress the proliferation and growth of trophozoites via the production of some factors with anti-giardial features. Further researches are required to find suitable probiotics for the prevention and treatment of giardiasis.
Collapse
Affiliation(s)
- Nasrin Dashti
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Zarebavani
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Loderstädt U, Frickmann H. Antimicrobial resistance of the enteric protozoon Giardia duodenalis - A narrative review. Eur J Microbiol Immunol (Bp) 2021; 11:29-43. [PMID: 34237023 PMCID: PMC8287975 DOI: 10.1556/1886.2021.00009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction As therapy-refractory giardiasis is an emerging health issue, this review aimed at summarizing mechanisms of reduced antimicrobial susceptibility in Giardia duodenalis and strategies to overcome this problem. Methods A narrative review on antimicrobial resistance in G. duodenalis was based upon a selective literature research. Results Failed therapeutic success has been observed for all standard therapies of giardiasis comprising nitroimidazoles like metronidazole or tinidazole as first line substances but also benznidazoles like albendazole and mebendazole, the nitrofuran furazolidone, the thiazolide nitazoxanide, and the aminoglycoside paromomycin. Multicausality of the resistance phenotypes has been described, with differentiated gene expression due to epigenetic and post-translational modifications playing a considerable bigger role than mutational base exchanges in the parasite DNA. Standardized resistance testing algorithms are not available and clinical evidence for salvage therapies is scarce in spite of research efforts targeting new giardicidal drugs. Conclusion In case of therapeutic failure of first line nitroimidazoles, salvage strategies including various options for combination therapy exist in spite of limited evidence and lacking routine diagnostic-compatible assays for antimicrobial susceptibility testing in G. duodenalis. Sufficiently powered clinical and diagnostic studies are needed to overcome both the lacking evidence regarding salvage therapy and the diagnostic neglect of antimicrobial resistance.
Collapse
Affiliation(s)
- Ulrike Loderstädt
- 1Institute for Infection Control and Infectious Diseases, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Hagen Frickmann
- 2Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany.,3Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| |
Collapse
|
12
|
Jex AR, Svärd S, Hagen KD, Starcevich H, Emery-Corbin SJ, Balan B, Nosala C, Dawson SC. Recent advances in functional research in Giardia intestinalis. ADVANCES IN PARASITOLOGY 2020; 107:97-137. [PMID: 32122532 PMCID: PMC7878119 DOI: 10.1016/bs.apar.2019.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review considers current advances in tools to investigate the functional biology of Giardia, it's coding and non-coding genes, features and cellular and molecular biology. We consider major gaps in current knowledge of the parasite and discuss the present state-of-the-art in its in vivo and in vitro cultivation. Advances in in silico tools, including for the modelling non-coding RNAs and genomic elements, as well as detailed exploration of coding genes through inferred homology to model organisms, have provided significant, primary level insight. Improved methods to model the three-dimensional structure of proteins offer new insights into their function, and binding interactions with ligands, other proteins or precursor drugs, and offer substantial opportunities to prioritise proteins for further study and experimentation. These approaches can be supplemented by the growing and highly accessible arsenal of systems-based methods now being applied to Giardia, led by genomic, transcriptomic and proteomic methods, but rapidly incorporating advanced tools for detection of real-time transcription, evaluation of chromatin states and direct measurement of macromolecular complexes. Methods to directly interrogate and perturb gene function have made major leaps in recent years, with CRISPr-interference now available. These approaches, coupled with protein over-expression, fluorescent labelling and in vitro and in vivo imaging, are set to revolutionize the field and herald an exciting time during which the field may finally realise Giardia's long proposed potential as a model parasite and eukaryote.
Collapse
Affiliation(s)
- Aaron R Jex
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Staffan Svärd
- Centre for Biomedicine, Uppsala University, Uppsala, Sweden
| | - Kari D Hagen
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Hannah Starcevich
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Samantha J Emery-Corbin
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Balu Balan
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Chris Nosala
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Scott C Dawson
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| |
Collapse
|
13
|
Wang Y, Gonzalez-Moreno O, Roellig DM, Oliver L, Huguet J, Guo Y, Feng Y, Xiao L. Epidemiological distribution of genotypes of Giardia duodenalis in humans in Spain. Parasit Vectors 2019; 12:432. [PMID: 31492183 PMCID: PMC6728964 DOI: 10.1186/s13071-019-3692-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although the distribution of Giardia duodenalis genotypes in humans has been increasingly reported in recent years, data on possible differences in pathogen transmission between age groups and virulence between genotypes are scarce. The purpose of this study is to investigate the genetic diversity of G. duodenalis in humans in Spain and compare the distribution of G. duodenalis assemblages A and B between children and adults and clinical presentations between the two genotypes. METHODS In the present study, 125 microscopy-positive fecal samples were collected from humans in Spain over a 7-year period. PCR and sequence analyses of the triosephosphate isomerase, β-giardin and glutamate dehydrogenase genes were used to identify the multilocus genotypes of G. duodenalis. RESULTS Sequence analysis of three genetic loci identified both G. duodenalis assemblages A (29) and B (66), with co-infections of the two in two patients. Among the sequences obtained in this study, four multilocus genotypes (MLGs) of the sub-assemblage AII were observed within assemblage A. In contrast, 19 MLGs were detected within assemblage B due to the high sequence diversity at each locus. One MLG, however, was found in 51.9% (27/52) of assemblage B samples. Children were more commonly infected by assemblage B (44/53 or 83%) than adults (22/42 or 52.4%; χ2 = 10.371, df = 1, P = 0.001). Asymptomatic infection was more common in patients with assemblage A (4/29 or 13.8%) than in those with assemblage B (1/66 or 1.5%; χ2 = 6.091, df = 1, P = 0.029), and the frequency of abdominal pain occurrence was higher in assemblage B patients (65/66 or 98.5%) than assemblage A patients (25/29 or 86.2%; χ2 = 6.091, df = 1, P = 0.029). CONCLUSIONS These results illustrate the existence of differences in genotype distribution between children and adults and clinical presentations between G. duodenalis genotypes. They are useful in understanding the transmission of G. duodenalis in humans in Spain.
Collapse
Affiliation(s)
- Yuanfei Wang
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Olga Gonzalez-Moreno
- Laboratory of Microbiology and Parasitology, SYNLAB, 08950 Barcelona, Spain
- Laboratory of Parasitology, Department of Biology, Healthcare and Environment, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Dawn M. Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333 USA
| | - Laura Oliver
- Laboratory of Microbiology and Parasitology, SYNLAB, 08950 Barcelona, Spain
| | - Jordi Huguet
- Laboratory of Microbiology and Parasitology, SYNLAB, 08950 Barcelona, Spain
| | - Yaqiong Guo
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237 China
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
14
|
Méndez ST, Castillo-Villanueva A, Martínez-Mayorga K, Reyes-Vivas H, Oria-Hernández J. Structure-based identification of a potential non-catalytic binding site for rational drug design in the fructose 1,6-biphosphate aldolase from Giardia lamblia. Sci Rep 2019; 9:11779. [PMID: 31409864 PMCID: PMC6692403 DOI: 10.1038/s41598-019-48192-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
Giardia lamblia is the causal agent of giardiasis, one of the most prevalent parasitosis in the world. Even though effective pharmacotherapies against this parasite are available, the disadvantages associated with its use call for the development of new antigiardial compounds. Based on the Giardia dependence on glycolysis as a main energy source, glycolytic enzymes appear to be attractive targets with antiparasitic potential. Among these, fructose 1,6-biphosphate aldolase (GlFBPA) has been highlighted as a promising target for drug design. Current efforts are based on the design of competitive inhibitors of GlFBPA; however, in the kinetic context of metabolic pathways, competitive inhibitors seem to have low potential as therapeutic agents. In this work, we performed an experimental and in silico structure-based approach to propose a non-catalytic binding site which could be used as a hot spot for antigardial drug design. The druggability of the selected binding site was experimentally tested; the alteration of the selected region by site directed mutagenesis disturbs the catalytic properties and the stability of the enzyme. A computational automated search of binding sites supported the potential of this region as functionally relevant. A preliminary docking study was performed, in order to explore the feasibility and type of molecules to be able to accommodate in the proposed binding region. Altogether, the results validate the proposed region as a specific molecular binding site with pharmacological potential.
Collapse
Affiliation(s)
- Sara-Teresa Méndez
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Alcaldía Coyoacán, CP 04530, Ciudad de México, Mexico
| | - Adriana Castillo-Villanueva
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Alcaldía Coyoacán, CP 04530, Ciudad de México, Mexico
| | - Karina Martínez-Mayorga
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Alcaldía Coyoacán, C.P. 04510, Ciudad de México, Mexico
| | - Horacio Reyes-Vivas
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Alcaldía Coyoacán, CP 04530, Ciudad de México, Mexico.
| | - Jesús Oria-Hernández
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Alcaldía Coyoacán, CP 04530, Ciudad de México, Mexico.
| |
Collapse
|
15
|
Palomo-Ligas L, Gutiérrez-Gutiérrez F, Ochoa-Maganda VY, Cortés-Zárate R, Charles-Niño CL, Castillo-Romero A. Identification of a novel potassium channel (GiK) as a potential drug target in Giardia lamblia: Computational descriptions of binding sites. PeerJ 2019; 7:e6430. [PMID: 30834181 PMCID: PMC6397635 DOI: 10.7717/peerj.6430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/10/2019] [Indexed: 12/12/2022] Open
Abstract
Background The protozoan Giardia lamblia is the causal agent of giardiasis, one of the main diarrheal infections worldwide. Drug resistance to common antigiardial agents and incidence of treatment failures have increased in recent years. Therefore, the search for new molecular targets for drugs against Giardia infection is essential. In protozoa, ionic channels have roles in their life cycle, growth, and stress response. Thus, they are promising targets for drug design. The strategy of ligand-protein docking has demonstrated a great potential in the discovery of new targets and structure-based drug design studies. Methods In this work, we identify and characterize a new potassium channel, GiK, in the genome of Giardia lamblia. Characterization was performed in silico. Because its crystallographic structure remains unresolved, homology modeling was used to construct the three-dimensional model for the pore domain of GiK. The docking virtual screening approach was employed to determine whether GiK is a good target for potassium channel blockers. Results The GiK sequence showed 24–50% identity and 50–90% positivity with 21 different types of potassium channels. The quality assessment and validation parameters indicated the reliability of the modeled structure of GiK. We identified 110 potassium channel blockers exhibiting high affinity toward GiK. A total of 39 of these drugs bind in three specific regions. Discussion The GiK pore signature sequence is related to the small conductance calcium-activated potassium channels (SKCa). The predicted binding of 110 potassium blockers to GiK makes this protein an attractive target for biological testing to evaluate its role in the life cycle of Giardia lamblia and potential candidate for the design of novel antigiardial drugs.
Collapse
Affiliation(s)
- Lissethe Palomo-Ligas
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Filiberto Gutiérrez-Gutiérrez
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Verónica Yadira Ochoa-Maganda
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Rafael Cortés-Zárate
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Claudia Lisette Charles-Niño
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Araceli Castillo-Romero
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
16
|
Ribeiro M, Oliveira D, Oliveira F, Caliari M, Martins F, Nicoli J, Torres M, Andrade M, Cardoso V, Gomes M. Effect of probiotic Saccharomyces boulardii in experimental giardiasis. Benef Microbes 2018; 9:789-797. [DOI: 10.3920/bm2017.0155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of the study was to assess the efficacy of Saccharomyces boulardii in experimental treatment of giardiasis and its impact on intestinal integrity and some functions of gerbils infected with Giardia lamblia. 28 gerbils (Meriones unguiculatus), aged 4-6 weeks, were divided into four groups: untreated and uninfected control (CT); infected with G. lamblia (IGL); treated with S. boulardii (SB); and infected with G. lamblia and treated with S. boulardii (ITSB). The SB and ITSB groups received S. boulardii 15 days prior to being infected with G. lamblia. The treatment continued until completion of the experiment (22nd day). The IGL and ITSB groups were gavage-inoculated with G. lamblia ensuring one-week infection. 4 h before euthanasia, all animals were gavaged with a solution containing diethylenetriamine-pentaacetic acid (DTPA) marked with technetium-99mTc DTPA to determine intestinal permeability. The small intestine was removed for histopathological, morphometric analysis and count of trophozoites adhered to the mucosa. The selected probiotic caused an approximate reduction of 70% of parasite load, which was determined by attached trophozoites (P<0.01) and immune-marked trophozoites (P<0.05). Treatment with S. boulardii (SB and ITSB groups) also increased the height of the intestinal villi and crypt depth compared to the CT and IGL groups (P<0.05). The area of mucus production and the number of goblet cells of the SB and ITSB groups were higher compared to the CT and IGL groups (P<0.01). The animals treated with S. boulardii also exhibited a significant increase of intraepithelial lymphocytes counts (P<0.01). There was no difference in the intestinal permeability between the groups studied. The efficacy of S. boulardii in reducing damages caused by Giardia was demonstrated, with an approximate reduction of 70% of the parasite load, suggesting its use as a coadjuvant in giardiasis treatment.
Collapse
Affiliation(s)
- M.R.S. Ribeiro
- Department of Parasitology, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901 MG, Brazil
- Department of Basic Life Sciences, Federal University of Juiz de Fora, Campus Governador Valadares, 35010-180 MG, Brazil
| | - D.R. Oliveira
- Department of Basic Life Sciences, Federal University of Juiz de Fora, Campus Governador Valadares, 35010-180 MG, Brazil
| | - F.M.S. Oliveira
- Department of Pathology, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901 MG, Brazil
| | - M.V. Caliari
- Department of Pathology, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901 MG, Brazil
| | - F.S. Martins
- Department of Microbiology, Federal University of Minas Gerais, Pampulha, Rua Tiradentes 151, Centro, Belo Horizonte, 31970-201 MG, Brazil
| | - J.R. Nicoli
- Department of Microbiology, Federal University of Minas Gerais, Pampulha, Rua Tiradentes 151, Centro, Belo Horizonte, 31970-201 MG, Brazil
| | - M.F. Torres
- Department of Pediatrics, Federal University of Minas Gerais, Belo Horizonte, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901 MG, Brazil
| | - M.E.R. Andrade
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901 MG, Brazil
| | - V.N. Cardoso
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901 MG, Brazil
| | - M.A. Gomes
- Department of Parasitology, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901 MG, Brazil
| |
Collapse
|
17
|
Disulfiram as a novel inactivator of Giardia lamblia triosephosphate isomerase with antigiardial potential. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:425-432. [PMID: 29197728 PMCID: PMC5727346 DOI: 10.1016/j.ijpddr.2017.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/18/2017] [Accepted: 11/20/2017] [Indexed: 12/27/2022]
Abstract
Giardiasis, the infestation of the intestinal tract by Giardia lamblia, is one of the most prevalent parasitosis worldwide. Even though effective therapies exist for it, the problems associated with its use indicate that new therapeutic options are needed. It has been shown that disulfiram eradicates trophozoites in vitro and is effective in vivo in a murine model of giardiasis; disulfiram inactivation of carbamate kinase by chemical modification of an active site cysteine has been proposed as the drug mechanism of action. The triosephosphate isomerase from G. lamblia (GlTIM) has been proposed as a plausible target for the development of novel antigiardial pharmacotherapies, and chemical modification of its cysteine 222 (C222) by thiol-reactive compounds is evidenced to inactivate the enzyme. Since disulfiram is a cysteine modifying agent and GlTIM can be inactivated by modification of C222, in this work we tested the effect of disulfiram over the recombinant and trophozoite-endogenous GlTIM. The results show that disulfiram inactivates GlTIM by modification of its C222. The inactivation is species-specific since disulfiram does not affect the human homologue enzyme. Disulfiram inactivation induces only minor conformational changes in the enzyme, but substantially decreases its stability. Recombinant and endogenous GlTIM inactivates similarly, indicating that the recombinant protein resembles the natural enzyme. Disulfiram induces loss of trophozoites viability and inactivation of intracellular GlTIM at similar rates, suggesting that both processes may be related. It is plausible that the giardicidal effect of disulfiram involves the inactivation of more than a single enzyme, thus increasing its potential for repurposing it as an antigiardial drug. Disulfiram inactivates efficiently the triosephosphate isomerase of Giardia lamblia. Inactivation is species-specific; the human enzyme is insusceptible to disulfiram. Recombinant and GlTIM extracted from trophozoites inactivates similarly. Disulfiram inhibits endogenous GlTIM and trophozoite viability simultaneously. Disulfiram is a promissory option for drug repurposing against giardiasis.
Collapse
|
18
|
Haston JC, Fowler SL, Summer A. Giardiasis Treatment Challenges in a Pediatric International Adoption Clinic. Clin Pediatr (Phila) 2017; 56:1160-1163. [PMID: 28056536 DOI: 10.1177/0009922816684611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Julia C Haston
- 1 Medical University of South Carolina, Charleston, SC, USA
| | | | - Andrea Summer
- 1 Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
19
|
Novel giardicidal compounds bearing proton pump inhibitor scaffold proceeding through triosephosphate isomerase inactivation. Sci Rep 2017; 7:7810. [PMID: 28798383 PMCID: PMC5552691 DOI: 10.1038/s41598-017-07612-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/30/2017] [Indexed: 12/26/2022] Open
Abstract
Giardiasis is a worldwide parasitic disease that affects mainly children and immunosuppressed people. Side effects and the emergence of resistance over current used drugs make imperative looking for new antiparasitics through discovering of new biological targets and designing of novel drugs. Recently, it has determined that gastric proton-pump inhibitors (PPI) have anti-giardiasic activity. The glycolytic enzyme, triosephosphate isomerase (GlTIM), is one of its potential targets. Therefore, we employed the scaffold of PPI to design new compounds aimed to increase their antigiardial capacity by inactivating GlTIM. Here we demonstrated that two novel PPI-derivatives (BHO2 and BHO3), have better anti-giardiasic activity than omeprazole in concentrations around 120–130 µM, without cytotoxic effect on mammal cell cultures. The derivatives inactivated GlTIM through the chemical modification of Cys222 promoting local structural changes in the enzyme. Furthermore, derivatives forms adducts linked to Cys residues through a C-S bond. We demonstrated that PPI can be used as scaffolds to design better antiparasitic molecules; we also are proposing a molecular mechanism of reaction for these novel derivatives.
Collapse
|
20
|
Giardia Colonizes and Encysts in High-Density Foci in the Murine Small Intestine. mSphere 2017; 2:mSphere00343-16. [PMID: 28656177 PMCID: PMC5480036 DOI: 10.1128/msphere.00343-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 04/21/2017] [Indexed: 01/28/2023] Open
Abstract
Giardia is a single-celled parasite causing significant diarrheal disease in several hundred million people worldwide. Due to limited access to the site of infection in the gastrointestinal tract, our understanding of the dynamics of Giardia infections in the host has remained limited and largely inferred from laboratory culture. To better understand Giardia physiology and colonization in the host, we developed imaging methods to quantify Giardia expressing bioluminescent physiological reporters in two relevant animal models. We discovered that parasites primarily colonize and encyst in the proximal small intestine in discrete, high-density foci. We also show that high parasite density contributes to encystation initiation. Giardia lamblia is a highly prevalent yet understudied protistan parasite causing significant diarrheal disease worldwide. Hosts ingest Giardia cysts from contaminated sources. In the gastrointestinal tract, cysts excyst to become motile trophozoites, colonizing and attaching to the gut epithelium. Trophozoites later differentiate into infectious cysts that are excreted and contaminate the environment. Due to the limited accessibility of the gut, the temporospatial dynamics of giardiasis in the host are largely inferred from laboratory culture and thus may not mirror Giardia physiology in the host. Here, we have developed bioluminescent imaging (BLI) to directly interrogate and quantify the in vivo temporospatial dynamics of Giardia infection, thereby providing an improved murine model to evaluate anti-Giardia drugs. Using BLI, we determined that parasites primarily colonize the proximal small intestine nonuniformly in high-density foci. By imaging encystation-specific bioreporters, we show that encystation initiates shortly after inoculation and continues throughout the duration of infection. Encystation also initiates in high-density foci in the proximal small intestine, and high density contributes to the initiation of encystation in laboratory culture. We suggest that these high-density in vivo foci of colonizing and encysting Giardia likely result in localized disruption to the epithelium. This more accurate visualization of giardiasis redefines the dynamics of the in vivo Giardia life cycle, paving the way for future mechanistic studies of density-dependent parasitic processes in the host. IMPORTANCEGiardia is a single-celled parasite causing significant diarrheal disease in several hundred million people worldwide. Due to limited access to the site of infection in the gastrointestinal tract, our understanding of the dynamics of Giardia infections in the host has remained limited and largely inferred from laboratory culture. To better understand Giardia physiology and colonization in the host, we developed imaging methods to quantify Giardia expressing bioluminescent physiological reporters in two relevant animal models. We discovered that parasites primarily colonize and encyst in the proximal small intestine in discrete, high-density foci. We also show that high parasite density contributes to encystation initiation.
Collapse
|
21
|
Hart CJS, Munro T, Andrews KT, Ryan JH, Riches AG, Skinner-Adams TS. A novel in vitro image-based assay identifies new drug leads for giardiasis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:83-89. [PMID: 28171818 PMCID: PMC5295624 DOI: 10.1016/j.ijpddr.2017.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/26/2022]
Abstract
Giardia duodenalis is an intestinal parasite that causes giardiasis, a widespread human gastrointestinal disease. Treatment of giardiasis relies on a small arsenal of compounds that can suffer from limitations including side-effects, variable treatment efficacy and parasite drug resistance. Thus new anti-Giardia drug leads are required. The search for new compounds with anti-Giardia activity currently depends on assays that can be labour-intensive, expensive and restricted to measuring activity at a single time-point. Here we describe a new in vitro assay to assess anti-Giardia activity. This image-based assay utilizes the Perkin-Elmer Operetta® and permits automated assessment of parasite growth at multiple time points without cell-staining. Using this new approach, we assessed the "Malaria Box" compound set for anti-Giardia activity. Three compounds with sub-μM activity (IC50 0.6-0.9 μM) were identified as potential starting points for giardiasis drug discovery.
Collapse
Affiliation(s)
- Christopher J S Hart
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Taylah Munro
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Katherine T Andrews
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - John H Ryan
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, Victoria 3168, Australia
| | - Andrew G Riches
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, Victoria 3168, Australia
| | - Tina S Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
22
|
Aguilar-Diaz H, Canizalez-Roman A, Nepomuceno-Mejia T, Gallardo-Vera F, Hornelas-Orozco Y, Nazmi K, Bolscher JGM, Carrero JC, Leon-Sicairos C, Leon-Sicairos N. Parasiticidal effect of synthetic bovine lactoferrin peptides on the enteric parasite Giardia intestinalis. Biochem Cell Biol 2016; 95:82-90. [PMID: 28165283 DOI: 10.1139/bcb-2016-0079] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Giardia intestinalis is the most common infectious protozoan parasite in children. Despite the effectiveness of some drugs, the disease remains a major worldwide problem. Consequently, the search for new treatments is important for disease eradication. Biological molecules with antimicrobial properties represent a promising alternative to combat pathogens. Bovine lactoferrin (bLF) is a key component of the innate host defense system, and its peptides have exhibited strong antimicrobial activity. Based on these properties, we evaluated the parasiticidal activity of these peptides on G. intestinalis. Trophozoites were incubated with different peptide concentrations for different periods of time, and the growth or viability was determined by carboxyfluorescein-succinimidyl-diacetate-ester (CFDA) and propidium iodide (PI) staining. Endocytosis of peptides was investigated by confocal microscopy, damage was analyzed by transmission and scanning electron microscopy, and the type of programmed cell death was analyzed by flow cytometry. Our results showed that the LF peptides had giardicidal activity. The LF peptides interacted with G. intestinalis and exposure to LF peptides correlated with an increase in the granularity and vacuolization of the cytoplasm. Additionally, the formation of pores, extensive membrane disruption, and programmed cell death was observed in trophozoites treated with LF peptides. Our results demonstrate that LF peptides exhibit potent in vitro antigiardial activity.
Collapse
Affiliation(s)
- Hugo Aguilar-Diaz
- a CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa. Cedros y Sauces, Fracc. Fresnos Culiacán 80246, Sinaloa, México
| | - Adrian Canizalez-Roman
- a CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa. Cedros y Sauces, Fracc. Fresnos Culiacán 80246, Sinaloa, México.,b Departamento de Investigación, Hospital de la Mujer, Boulevard Miguel Tamayo Espinoza de los Monteros S/N, Col. Desarrollo Urbano Tres Ríos, Culiacán 80020, Sinaloa, México
| | - Tomas Nepomuceno-Mejia
- c Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Calle 4a, Avenida Norte esquina con Calle 19 Pte S/N, Centro, Tapachula 30700, Chiapas, Mexico
| | - Francisco Gallardo-Vera
- d Laboratorio Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México. Ciudad Universitaria, México DF 04510, México
| | - Yolanda Hornelas-Orozco
- e Servicio Académico de Microscopía Electrónica de Barrido, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, México, D. F. 04510, México
| | - Kamran Nazmi
- f Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, 1081 LA, Amsterdam, the Netherlands
| | - Jan G M Bolscher
- f Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, 1081 LA, Amsterdam, the Netherlands
| | - Julio Cesar Carrero
- g Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, DF 04510, México
| | - Claudia Leon-Sicairos
- h Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Avenida de las Américas y Josefa Ortiz (Ciudad Universitaria), Culiacán 80030, Sinaloa, México
| | - Nidia Leon-Sicairos
- a CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa. Cedros y Sauces, Fracc. Fresnos Culiacán 80246, Sinaloa, México.,i Departamento de Investigación, Hospital Pediátrico de Sinaloa, Boulevard Constitución S/N, Col. Jorge Almada, Culiacan 80200, Sinaloa, México
| |
Collapse
|
23
|
Einarsson E, Ma'ayeh S, Svärd SG. An up-date on Giardia and giardiasis. Curr Opin Microbiol 2016; 34:47-52. [PMID: 27501461 DOI: 10.1016/j.mib.2016.07.019] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022]
Abstract
Giardia intestinalis is a non-invasive protozoan parasite infecting the upper small intestine causing acute, watery diarrhea or giardiasis in 280 million people annually. Asymptomatic infections are equally common and recent data have suggested that infections even can be protective against other diarrheal diseases. Most symptomatic infections resolve spontaneously but infections can lead to chronic disease and treatment failures are becoming more common world-wide. Giardia infections can also result in irritable bowel syndrome (IBS) and food allergies after resolution. Until recently not much was known about the mechanism of giardiasis or the cause of post-giardiasis syndromes and treatment failures, but here we will describe the recent progress in these areas.
Collapse
Affiliation(s)
- Elin Einarsson
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Showgy Ma'ayeh
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
24
|
Leitsch D, Müller J, Müller N. Evaluation of Giardia lamblia thioredoxin reductase as drug activating enzyme and as drug target. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2016; 6:148-153. [PMID: 27485086 PMCID: PMC4971154 DOI: 10.1016/j.ijpddr.2016.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/21/2016] [Indexed: 12/11/2022]
Abstract
The antioxidative enzyme thioredoxin reductase (TrxR) has been suggested to be a drug target in several pathogens, including the protist parasite Giardia lamblia. TrxR is also believed to catalyse the reduction of nitro drugs, e.g. metronidazole and furazolidone, a reaction required to render these compounds toxic to G. lamblia and other microaerophiles/anaerobes. It was the objective of this study to assess the potential of TrxR as a drug target in G. lamblia and to find direct evidence for the role of this enzyme in the activation of metronidazole and other nitro drugs. TrxR was overexpressed approximately 10-fold in G. lamblia WB C6 cells by placing the trxR gene behind the arginine deiminase (ADI) promoter on a plasmid. Likewise, a mutant TrxR with a defective disulphide reductase catalytic site was strongly expressed in another G. lamblia WB C6 cell line. Susceptibilities to five antigiardial drugs, i.e. metronidazole, furazolidone, nitazoxanide, albendazole and auranofin were determined in both transfectant cell lines and compared to wildtype. Further, the impact of all five drugs on TrxR activity in vivo was measured. Overexpression of TrxR rendered G. lamblia WB C6 more susceptible to metronidazole and furazolidone but not to nitazoxanide, albendazole, and auranofin. Of all five drugs tested, only auranofin had an appreciably negative effect on TrxR activity in vivo, albeit to a much smaller extent than expected. Overexpression of TrxR and mutant TrxR had hardly any impact on growth of G. lamblia WB C6, although the enzyme also exerts a strong NADPH oxidase activity which is a source of oxidative stress. Our results constitute first direct evidence for the notion that TrxR is an activator of metronidazole and furazolidone but rather question that it is a relevant drug target of presently used antigiardial drugs.
Collapse
Affiliation(s)
- David Leitsch
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, CH-3012, Bern, Switzerland; Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, A-1090, Vienna, Austria.
| | - Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, CH-3012, Bern, Switzerland
| | - Norbert Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, CH-3012, Bern, Switzerland
| |
Collapse
|
25
|
Abstract
Drug discovery, development and registration is an expensive and time-consuming process associated with a high failure rate [Pessetto et al. (Mol Cancer Ther 12:1299-1309, 2013), Woodcock and Woosley (Annu Rev Med 59:1-12, 2008)]. Drug 'repurposing' is the identification of new therapeutic purposes for already approved drugs and is more affordable and achievable than novel drug discovery [Pessetto et al. (Mol Cancer Ther 12:1299-1309, 2013)]. Auranofin is a drug that is approved for the treatment of rheumatoid arthritis but is being investigated for potential therapeutic application in a number of other diseases including cancer, neurodegenerative disorders, HIV/AIDS, parasitic infections and bacterial infections [Tejman-Yarden et al. (Antimicrob Agents Chemother 57:2029-2035, 2013)]. The main mechanism of action of auranofin is through the inhibition of reduction/oxidation (redox) enzymes that are essential for maintaining intracellular levels of reactive oxygen species. Inhibition of these enzymes leads to cellular oxidative stress and intrinsic apoptosis [Pessetto et al. (Mol Cancer Ther 12:1299-1309, 2013), Fan et al. (Cell Death Dis 5:e1191, 2014), Fiskus et al. (Cancer Res 74:2520-2532, 2014), Marzano et al. (Free Radic Biol Med 42:872-881, 2007)]. Drugs such as auranofin that have already been approved for human use [Tejman-Yarden et al. (Antimicrob Agents Chemother 57:2029-2035, 2013)] can be brought into clinical use for other diseases relatively quickly and for a fraction of the cost of new drugs.
Collapse
Affiliation(s)
- Christine Roder
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, VIC, 3216, Australia,
| | | |
Collapse
|
26
|
Ansell BRE, McConville MJ, Baker L, Korhonen PK, Young ND, Hall RS, Rojas CAA, Svärd SG, Gasser RB, Jex AR. Time-Dependent Transcriptional Changes in Axenic Giardia duodenalis Trophozoites. PLoS Negl Trop Dis 2015; 9:e0004261. [PMID: 26636323 PMCID: PMC4670223 DOI: 10.1371/journal.pntd.0004261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/03/2015] [Indexed: 12/27/2022] Open
Abstract
Giardia duodenalis is the most common gastrointestinal protozoan parasite of humans and a significant contributor to the global burden of both diarrheal disease and post-infectious chronic disorders. Although G. duodenalis can be cultured axenically, significant gaps exist in our understanding of the molecular biology and metabolism of this pathogen. The present study employed RNA sequencing to characterize the mRNA transcriptome of G. duodenalis trophozoites in axenic culture, at log (48 h of growth), stationary (60 h), and declining (96 h) growth phases. Using ~400-times coverage of the transcriptome, we identified 754 differentially transcribed genes (DTGs), mainly representing two large DTG groups: 438 that were down-regulated in the declining phase relative to log and stationary phases, and 281 that were up-regulated. Differential transcription of prominent antioxidant and glycolytic enzymes implicated oxygen tension as a key factor influencing the transcriptional program of axenic trophozoites. Systematic bioinformatic characterization of numerous DTGs encoding hypothetical proteins of unknown function was achieved using structural homology searching. This powerful approach greatly informed the differential transcription analysis and revealed putative novel antioxidant-coding genes, and the presence of a near-complete two-component-like signaling system that may link cytosolic redox or metabolite sensing to the observed transcriptional changes. Motif searching applied to promoter regions of the two large DTG groups identified different putative transcription factor-binding motifs that may underpin global transcriptional regulation. This study provides new insights into the drivers and potential mediators of transcriptional variation in axenic G. duodenalis and provides context for static transcriptional studies.
Collapse
Affiliation(s)
- Brendan R. E. Ansell
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Malcolm J. McConville
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Louise Baker
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K. Korhonen
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Neil D. Young
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Ross S. Hall
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Cristian A. A. Rojas
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Staffan G. Svärd
- Department of Cell & Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Robin B. Gasser
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Aaron R. Jex
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
27
|
Ethanol and isopropanol in concentrations present in hand sanitizers sharply reduce excystation of Giardia and Entamoeba and eliminate oral infectivity of Giardia cysts in gerbils. Antimicrob Agents Chemother 2015; 59:6749-54. [PMID: 26282413 DOI: 10.1128/aac.01290-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/07/2015] [Indexed: 12/17/2022] Open
Abstract
Enteric protozoan parasites, which are spread by the fecal-oral route, are important causes of diarrhea (Giardia duodenalis) and amebic dysentery (Entamoeba histolytica). Cyst walls of Giardia and Entamoeba have a single layer composed of fibrils of β-1,3-linked GalNAc and β-1,4-linked GlcNAc (chitin), respectively. The goal here was to determine whether hand sanitizers that contain ethanol or isopropanol as the active microbicide might reduce transmission of these parasites. We found that treatment with these alcohols with or without drying in a rotary evaporator (to model rapid evaporation of sanitizers on hands) kills 85 to 100% of cysts of G. duodenalis and 90 to 100% of cysts of Entamoeba invadens (a nonpathogenic model for E. histolytica), as shown by nuclear labeling with propidium iodide and failure to excyst in vitro. Alcohols with or without drying collapsed the cyst walls of Giardia but did not collapse the cyst walls of Entamoeba. To validate the in vitro results, we showed that treatment with alcohols eliminated oral infection of gerbils by 1,000 G. duodenalis cysts, while a commercial hand sanitizer (Purell) killed E. invadens cysts that were directly applied to the hands. These results suggest that expanded use of alcohol-based hand sanitizers might reduce the transmission of Giardia and Entamoeba.
Collapse
|
28
|
Martínez-Espinosa R, Argüello-García R, Saavedra E, Ortega-Pierres G. Albendazole induces oxidative stress and DNA damage in the parasitic protozoan Giardia duodenalis. Front Microbiol 2015; 6:800. [PMID: 26300866 PMCID: PMC4526806 DOI: 10.3389/fmicb.2015.00800] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/22/2015] [Indexed: 12/15/2022] Open
Abstract
The control of Giardia duodenalis infections is carried out mainly by drugs, among these albendazole (ABZ) is commonly used. Although the cytotoxic effect of ABZ usually involves binding to β-tubulin, it has been suggested that oxidative stress may also play a role in its parasiticidal mechanism. In this work the effect of ABZ in Giardia clones that are susceptible or resistant to different concentrations (1.35, 8, and 250 μM) of this drug was analyzed. Reactive oxygen species (ROS) were induced by ABZ in susceptible clones and this was associated with a decrease in growth that was alleviated by cysteine supplementation. Remarkably, ABZ-resistant clones exhibited partial cross-resistance to H2O2, whereas a Giardia H2O2-resistant strain can grow in the presence of ABZ. Lipid oxidation and protein carbonylation in ABZ-treated parasites did not show significant differences as compared to untreated parasites; however, ABZ induced the formation of 8OHdG adducts and DNA degradation, indicating nucleic acid oxidative damage. This was supported by observations of histone H2AX phosphorylation in ABZ-susceptible trophozoites treated with 250 μM ABZ. Flow cytometry analysis showed that ABZ partially arrested cell cycle in drug-susceptible clones at G2/M phase at the expense of cells in G1 phase. Also, ABZ treatment resulted in phosphatidylserine exposure on the parasite surface, an event related to apoptosis. All together these data suggest that ROS induced by ABZ affect Giardia genetic material through oxidative stress mechanisms and subsequent induction of apoptotic-like events.
Collapse
Affiliation(s)
- Rodrigo Martínez-Espinosa
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| | - Raúl Argüello-García
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| | - Emma Saavedra
- Department of Biochemistry, Instituto Nacional de Cardiología Ignacio Chávez México City, Mexico
| | - Guadalupe Ortega-Pierres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| |
Collapse
|
29
|
Astiazarán-García H, Iñigo-Figueroa G, Quihui-Cota L, Anduro-Corona I. Crosstalk between Zinc Status and Giardia Infection: A New Approach. Nutrients 2015; 7:4438-52. [PMID: 26046395 PMCID: PMC4488794 DOI: 10.3390/nu7064438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 12/27/2022] Open
Abstract
Zinc supplementation has been shown to reduce the incidence and prevalence of diarrhea; however, its anti-diarrheal effect remains only partially understood. There is now growing evidence that zinc can have pathogen-specific protective effects. Giardiasis is a common yet neglected cause of acute-chronic diarrheal illness worldwide which causes disturbances in zinc metabolism of infected children, representing a risk factor for zinc deficiency. How zinc metabolism is compromised by Giardia is not well understood; zinc status could be altered by intestinal malabsorption, organ redistribution or host-pathogen competition. The potential metal-binding properties of Giardia suggest unusual ways that the parasite may interact with its host. Zinc supplementation was recently found to reduce the rate of diarrhea caused by Giardia in children and to upregulate humoral immune response in Giardia-infected mice; in vitro and in vivo, zinc-salts enhanced the activity of bacitracin in a zinc-dose-dependent way, and this was not due to zinc toxicity. These findings reflect biological effect of zinc that may impact significantly public health in endemic areas of infection. In this paper, we shall explore one direction of this complex interaction, discussing recent information regarding zinc status and its possible contribution to the outcome of the encounter between the host and Giardia.
Collapse
Affiliation(s)
- Humberto Astiazarán-García
- Departamento de Nutrición y Metabolismo, Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a La Victoria Km 0.6, Hermosillo, Sonora, CP 83304, Mexico.
| | - Gemma Iñigo-Figueroa
- Departamento de Nutrición y Metabolismo, Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a La Victoria Km 0.6, Hermosillo, Sonora, CP 83304, Mexico.
| | - Luis Quihui-Cota
- Departamento de Nutrición Pública y Salud, Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a La Victoria Km 0.6, Hermosillo, Sonora, C.P. 83304, Mexico.
| | - Iván Anduro-Corona
- Departamento de Nutrición y Metabolismo, Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a La Victoria Km 0.6, Hermosillo, Sonora, CP 83304, Mexico.
| |
Collapse
|
30
|
Hounkong K, Sawangjaroen N, Kongyen W, Rukachaisirikul V, Wootipoom N. Mechanisms of 1-hydroxy-2-hydroxymethylanthraquinone from Coptosapelta flavescens as an anti-giardial activity. Acta Trop 2015; 146:11-6. [PMID: 25735817 DOI: 10.1016/j.actatropica.2015.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/07/2015] [Accepted: 02/23/2015] [Indexed: 12/11/2022]
Abstract
Thai medicinal plants represent a rich source of potential anti-parasitic compounds. 1-hydroxy-2-hydroxymethylanthraquinone (CFQ) purified from Coptosapelta flavescens, a plant commonly used to expel intestinal worms, indicated potential anti-giardial agent as shown in a previous study. This study aims to investigate its mechanism of action. We assessed whether CFQ was involved as an inducer of apoptosis as well as having effects on the fine structure of Giardia intestinalis trophozoites. We observed the consequences of exposing G. intestinalis trophozoites to CFQ and metronidazole, both had an IC50 of 0.42μg/ml, after 6, 12 and 24h exposure. An apoptosis in trophozoite was confirmed by the AnnexinV-FITC assay and as viewed by flow cytometry. CFQ at its IC50 induced apoptosis as early as 6h after incubation while metronidazole produced little or no apoptosis at its IC50 value. Ultrastructural analyzes at 24h demonstrated that both CFQ and metronidazole induced several physical alterations, including the appearance of wrinkled and rounded cells, membrane blebbing, ventral disc damage, electron dense precipitates in the nuclei, all of which were indicative of cell death. However, membrane rupture was found only in G. intestinalis exposed to CFQ and this proved the induction of apoptosis. Taken together, we have provided a mechanistic explanation of the action of CFQ against G. intestinalis trophozoites. These results have provided further evidence that CFQ is a new compound that has the potential for use to treat infections from G. intestinalis.
Collapse
|
31
|
Lalle M, Camerini S, Cecchetti S, Finelli R, Sferra G, Müller J, Ricci G, Pozio E. The FAD-dependent glycerol-3-phosphate dehydrogenase of Giardia duodenalis: an unconventional enzyme that interacts with the g14-3-3 and it is a target of the antitumoral compound NBDHEX. Front Microbiol 2015; 6:544. [PMID: 26082764 PMCID: PMC4450592 DOI: 10.3389/fmicb.2015.00544] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/17/2015] [Indexed: 12/18/2022] Open
Abstract
The flagellated protozoan Giardia duodenalis is a worldwide parasite causing giardiasis, an acute and chronic diarrheal disease. Metabolism in G. duodenalis has a limited complexity thus making metabolic enzymes ideal targets for drug development. However, only few metabolic pathways (i.e., carbohydrates) have been described so far. Recently, the parasite homolog of the mitochondrial-like glycerol-3-phosphate dehydrogenase (gG3PD) has been identified among the interactors of the g14-3-3 protein. G3PD is involved in glycolysis, electron transport, glycerophospholipids metabolism, and hyperosmotic stress response, and is emerging as promising target in tumor treatment. In this work, we demonstrate that gG3PD is a functional flavoenzyme able to convert glycerol-3-phosphate into dihydroxyacetone phosphate and that its activity and the intracellular glycerol level increase during encystation. Taking advantage of co-immunoprecipitation assays and deletion mutants, we provide evidence that gG3PD and g14-3-3 interact at the trophozoite stage, the intracellular localization of gG3PD is stage dependent and it partially co-localizes with mitosomes during cyst development. Finally, we demonstrate that the gG3PD activity is affected by the antitumoral compound 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol, that results more effective in vitro at killing G. duodenalis trophozoites than the reference drug metronidazole. Overall, our results highlight the involvement of gG3PD in processes crucial for the parasite survival thus proposing this enzyme as target for novel antigiardial interventions.
Collapse
Affiliation(s)
- Marco Lalle
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità Rome, Italy
| | - Serena Camerini
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità Rome, Italy
| | - Serena Cecchetti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità Rome, Italy
| | - Renata Finelli
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità Rome, Italy
| | - Gabriella Sferra
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità Rome, Italy
| | - Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern Bern, Switzerland
| | - Giorgio Ricci
- Department of Sciences and Chemical Technologies, University of Rome "Tor Vergata" Rome, Italy
| | - Edoardo Pozio
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità Rome, Italy
| |
Collapse
|
32
|
Leboho TC, Giri S, Popova I, Cock I, Michael JP, de Koning CB. Double Sonogashira reactions on dihalogenated aminopyridines for the assembly of an array of 7-azaindoles bearing triazole and quinoxaline substituents at C-5: Inhibitory bioactivity against Giardia duodenalis trophozoites. Bioorg Med Chem 2015; 23:4943-4951. [PMID: 26043947 DOI: 10.1016/j.bmc.2015.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/04/2015] [Accepted: 05/12/2015] [Indexed: 12/11/2022]
Abstract
The synthesis of 2,3,5-trisubstituted 7-azaindoles as well as 2,5-disubstituted 7-azaindoles from 3,5-dihalogenated 2-aminopyridines is outlined. Using a double Sonogashira coupling reaction on 2-amino-3,5-diiodopyridine followed by the Cacchi reaction the synthesis of 2,3,5-trisubstituted 7-azaindoles was accomplished. In addition, using two sequential Sonogashira coupling reactions on 2-amino-5-bromo-3-iodopyridine and a potassium t-butoxide mediated ring closure reaction resulted in the assembly of 2,5-disubstituted 7-azaindoles. The 5-alkynyl substituent of the azaindole was easily converted into both quinoxaline and triazole substituents, the latter utilizing an alkyne-azide cycloaddition reaction. Some of these azaindole derivatives showed very promising biological activity against the gastrointestinal protozoal parasite Giardia duodenalis.
Collapse
Affiliation(s)
- Tlabo C Leboho
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
| | - Somnath Giri
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
| | - Inessa Popova
- Environmental Futures Research Institute and the School of Natural Sciences, Griffith University, Nathan Campus, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Ian Cock
- Environmental Futures Research Institute and the School of Natural Sciences, Griffith University, Nathan Campus, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Joseph P Michael
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
| | - Charles B de Koning
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa.
| |
Collapse
|
33
|
Nabarro LEB, Lever RA, Armstrong M, Chiodini PL. Increased incidence of nitroimidazole-refractory giardiasis at the Hospital for Tropical Diseases, London: 2008-2013. Clin Microbiol Infect 2015; 21:791-6. [PMID: 25975511 DOI: 10.1016/j.cmi.2015.04.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/12/2015] [Accepted: 04/27/2015] [Indexed: 11/25/2022]
Abstract
Giardia intestinalis is the commonest gastrointestinal protozoal pathogen worldwide, and causes acute and chronic diarrhoea with malabsorption. First-line treatment is with a nitroimidazole, with a reported efficacy rate of 89%. Failure of treatment can occur in patients with hypogammaglobulinaemia or human immunodeficiency virus (HIV), or be due to nitroimidazole-resistant organisms. There is little evidence to guide the clinical management of nitroimidazole-refractory disease. We performed a retrospective audit of nitroimidazole-refractory giardiasis in returned travellers at the Hospital for Tropical Diseases, London between 2011 and 2013. Seventy-three patients with microscopy-proven or PCR-proven giardiasis in whom nitroimidazole treatment had failed were identified, and their management was investigated. In 2008, nitroimidazole treatment failed in 15.1% of patients. This increased to 20.6% in 2011 and to 40.2% in 2013. Patient demographics remained stable during this period, as did routes of referral. Of patients with giardiasis, 39.0% had travelled to India; this rose to 69.9% in patients with nitroimidazole-refractory disease. Of the patients with refractory disease, 44.6% had HIV serological investigations performed and 36.5% had immunoglobulin levels determined. Patients with refractory disease were treated with various agents, including albendazole, nitazoxanide, and mepacrine, alone or in combination. All 20 patients who received a mepacrine-containing regimen were cured. This data shows a worrying increase in refractory disease, predominantly in travellers from India, which is likely to represent increasing nitroimidazole resistance. Improved tools for the diagnosis of resistant G. intestinalis are urgently needed to establish the true prevalence of nitroimidazole-resistant giardiasis, together with clinical trials to establish the most effective second-line agent for empirical treatment regimens.
Collapse
Affiliation(s)
- L E B Nabarro
- The Hospital for Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - R A Lever
- The Hospital for Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - M Armstrong
- The Hospital for Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - P L Chiodini
- The Hospital for Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
34
|
Argüello-García R, Cruz-Soto M, González-Trejo R, Paz-Maldonado LMT, Bazán-Tejeda ML, Mendoza-Hernández G, Ortega-Pierres G. An antioxidant response is involved in resistance of Giardia duodenalis to albendazole. Front Microbiol 2015; 6:286. [PMID: 25914688 PMCID: PMC4392323 DOI: 10.3389/fmicb.2015.00286] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 03/23/2015] [Indexed: 12/16/2022] Open
Abstract
Albendazole (ABZ) is a therapeutic benzimidazole used to treat giardiasis that targets β-tubulin. However, the molecular bases of ABZ resistance in Giardia duodenalis are not understood because β-tubulin in ABZ-resistant clones lacks mutations explaining drug resistance. In previous work we compared ABZ-resistant (1.35, 8, and 250 μM) and ABZ-susceptible clones by proteomic analysis and eight proteins involved in energy metabolism, cytoskeleton dynamics, and antioxidant response were found as differentially expressed among the clones. Since ABZ is converted into sulphoxide (ABZ-SO) and sulphone (ABZ-SOO) metabolites we measured the levels of these metabolites, the antioxidant enzymes and free thiols in the susceptible and resistant clones. Production of reactive oxygen species (ROS) and levels of ABZ-SO/ABZ-SOO induced by ABZ were determined by fluorescein diacetate-based fluorescence and liquid chromatography respectively. The mRNA and protein levels of antioxidant enzymes (NADH oxidase, peroxiredoxin 1a, superoxide dismutase and flavodiiron protein) in these clones were determined by RT-PCR and proteomic analysis. The intracellular sulfhydryl (R-SH) pool was quantified using dinitrobenzoic acid. The results showed that ABZ induced ROS accumulation in the ABZ-susceptible Giardia cultures but not in the resistant ones whilst the accumulation of ABZ-SO and ABZ-SOO was lower in all ABZ-resistant cultures. Consistent with these findings, all the antioxidant enzymes detected and analyzed were upregulated in ABZ-resistant clones. Likewise the R-SH pool increased concomitantly to the degree of ABZ-resistance. These results indicate an association between accumulation of ABZ metabolites and a pro-oxidant effect of ABZ in Giardia-susceptible clones. Furthermore the antioxidant response involving ROS-metabolizing enzymes and intracellular free thiols in ABZ-resistant parasites suggest that this response may contribute to overcome the pro-oxidant cytotoxicity of ABZ.
Collapse
Affiliation(s)
- Raúl Argüello-García
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Instituto Politécnico Nacional, Mexico City Mexico
| | | | - Rolando González-Trejo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Instituto Politécnico Nacional, Mexico City Mexico
| | - Luz María T Paz-Maldonado
- Ingeniería de Biorreactores, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí Mexico
| | - M Luisa Bazán-Tejeda
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Instituto Politécnico Nacional, Mexico City Mexico
| | - Guillermo Mendoza-Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City Mexico
| | - Guadalupe Ortega-Pierres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Instituto Politécnico Nacional, Mexico City Mexico
| |
Collapse
|