1
|
Zhang XJ, Xu ZY, Wu YC, Tan EK. Paroxysmal movement disorders: Recent advances and proposal of a classification system. Parkinsonism Relat Disord 2019; 59:131-139. [PMID: 30902529 DOI: 10.1016/j.parkreldis.2019.02.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 02/09/2019] [Accepted: 02/15/2019] [Indexed: 01/18/2023]
Abstract
The increasing recognition of the phenotypic and genotypic heterogeneity that exists amongst the paroxysmal movement disorders (PMDs) is challenging the way these disorders have been traditionally classified. The present review aims to summarize how recent genetic advances have influenced our understanding of the nosology, pathophysiology and treatment strategies of paroxysmal movement disorders. We propose classifying PMDs using a system that would combine both phenotype and genotype information to allow these disorders to be better categorized and studied. In the era of next generation sequencing, the use of a standardized algorithm and employment of selective genetic screening will lead to greater diagnostic certainty and targeted therapeutics for the patients.
Collapse
Affiliation(s)
- Xiao-Jin Zhang
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore; Department of Neurology, Shanghai General Hospital, China; Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Zhe-Yu Xu
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Yun-Cheng Wu
- Department of Neurology, Shanghai General Hospital, China
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore.
| |
Collapse
|
2
|
Zacchi LF, Dittmar JC, Mihalevic MJ, Shewan AM, Schulz BL, Brodsky JL, Bernstein KA. Early-onset torsion dystonia: a novel high-throughput yeast genetic screen for factors modifying protein levels of torsinAΔE. Dis Model Mech 2017; 10:1129-1140. [PMID: 28768697 PMCID: PMC5611967 DOI: 10.1242/dmm.029926] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022] Open
Abstract
Dystonia is the third most common movement disorder, but its diagnosis and treatment remain challenging. One of the most severe types of dystonia is early-onset torsion dystonia (EOTD). The best studied and validated EOTD-associated mutation, torsinAΔE, is a deletion of a C-terminal glutamate residue in the AAA+ ATPase torsinA. TorsinA appears to be an endoplasmic reticulum (ER)/nuclear envelope chaperone with multiple roles in the secretory pathway and in determining subcellular architecture. Many functions are disabled in the torsinAΔE variant, and torsinAΔE is also less stable than wild-type torsinA and is a substrate for ER-associated degradation. Nevertheless, the molecular factors involved in the biogenesis and degradation of torsinA and torsinAΔE have not been fully explored. To identify conserved cellular factors that can alter torsinAΔE protein levels, we designed a new high-throughput, automated, genome-wide screen utilizing our validated Saccharomyces cerevisiae torsinA expression system. By analyzing the yeast non-essential gene deletion collection, we identified 365 deletion strains with altered torsinAΔE steady-state levels. One notable hit was EUG1, which encodes a member of the protein disulfide isomerase family (PDIs). PDIs reside in the ER and catalyze the formation of disulfide bonds, mediate protein quality control and aid in nascent protein folding. We validated the role of select human PDIs in torsinA biogenesis in mammalian cells and found that overexpression of PDIs reduced the levels of torsinA and torsinAΔE. Together, our data report the first genome-wide screen to identify cellular factors that alter expression levels of the EOTD-associated protein torsinAΔE. More generally, the identified hits help in dissecting the cellular machinery involved in folding and degrading a torsinA variant, and constitute potential therapeutic factors for EOTD. This screen can also be readily adapted to identify factors impacting the levels of any protein of interest, considerably expanding the applicability of yeast in both basic and applied research.
Collapse
Affiliation(s)
- Lucía F Zacchi
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - John C Dittmar
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Michael J Mihalevic
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, UPCI Research Pavilion, 2.42e, Pittsburgh, PA 15213, USA
| | - Annette M Shewan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jeffrey L Brodsky
- Department of Biological Sciences, A320 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kara A Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, UPCI Research Pavilion, 2.42e, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Wakabayashi-Ito N, Ajjuri RR, Henderson BW, Doherty OM, Breakefield XO, O'Donnell JM, Ito N. Mutant human torsinA, responsible for early-onset dystonia, dominantly suppresses GTPCH expression, dopamine levels and locomotion in Drosophila melanogaster. Biol Open 2015; 4:585-95. [PMID: 25887123 PMCID: PMC4434810 DOI: 10.1242/bio.201411080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Dystonia represents the third most common movement disorder in humans with over 20 genetic loci identified. TOR1A (DYT1), the gene responsible for the most common primary hereditary dystonia, encodes torsinA, an AAA ATPase family protein. Most cases of DYT1 dystonia are caused by a 3 bp (ΔGAG) deletion that results in the loss of a glutamic acid residue (ΔE302/303) in the carboxyl terminal region of torsinA. This torsinAΔE mutant protein has been speculated to act in a dominant-negative manner to decrease activity of wild type torsinA. Drosophila melanogaster has a single torsin-related gene, dtorsin. Null mutants of dtorsin exhibited locomotion defects in third instar larvae. Levels of dopamine and GTP cyclohydrolase (GTPCH) proteins were severely reduced in dtorsin-null brains. Further, the locomotion defect was rescued by the expression of human torsinA or feeding with dopamine. Here, we demonstrate that human torsinAΔE dominantly inhibited locomotion in larvae and adults when expressed in neurons using a pan-neuronal promoter Elav. Dopamine and tetrahydrobiopterin (BH4) levels were significantly reduced in larval brains and the expression level of GTPCH protein was severely impaired in adult and larval brains. When human torsinA and torsinAΔE were co-expressed in neurons in dtorsin-null larvae and adults, the locomotion rates and the expression levels of GTPCH protein were severely reduced. These results support the hypothesis that torsinAΔE inhibits wild type torsinA activity. Similarly, neuronal expression of a Drosophila DtorsinΔE equivalent mutation dominantly inhibited larval locomotion and GTPCH protein expression. These results indicate that both torsinAΔE and DtorsinΔE act in a dominant-negative manner. We also demonstrate that Dtorsin regulates GTPCH expression at the post-transcriptional level. This Drosophila model of DYT1 dystonia provides an important tool for studying the differences in the molecular function between the wild type and the mutant torsin proteins.
Collapse
Affiliation(s)
- Noriko Wakabayashi-Ito
- Department of Neurology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Rami R Ajjuri
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Benjamin W Henderson
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Olugbenga M Doherty
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Xandra O Breakefield
- Department of Neurology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Janis M O'Donnell
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Naoto Ito
- Department of Neurology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
4
|
Zacchi LF, Wu HC, Bell SL, Millen L, Paton AW, Paton JC, Thomas PJ, Zolkiewski M, Brodsky JL. The BiP molecular chaperone plays multiple roles during the biogenesis of torsinA, an AAA+ ATPase associated with the neurological disease early-onset torsion dystonia. J Biol Chem 2014; 289:12727-47. [PMID: 24627482 PMCID: PMC4007462 DOI: 10.1074/jbc.m113.529123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/09/2014] [Indexed: 01/02/2023] Open
Abstract
Early-onset torsion dystonia (EOTD) is a neurological disorder characterized by involuntary and sustained muscle contractions that can lead to paralysis and abnormal posture. EOTD is associated with the deletion of a glutamate (ΔE) in torsinA, an endoplasmic reticulum (ER) resident AAA(+) ATPase. To date, the effect of ΔE on torsinA and the reason that this mutation results in EOTD are unclear. Moreover, there are no specific therapeutic options to treat EOTD. To define the underlying biochemical defects associated with torsinAΔE and to uncover factors that might be targeted to offset defects associated with torsinAΔE, we developed a yeast torsinA expression system and tested the roles of ER chaperones in mediating the folding and stability of torsinA and torsinAΔE. We discovered that the ER lumenal Hsp70, BiP, an associated Hsp40, Scj1, and a nucleotide exchange factor, Lhs1, stabilize torsinA and torsinAΔE. BiP also maintained torsinA and torsinAΔE solubility. Mutations predicted to compromise specific torsinA functional motifs showed a synthetic interaction with the ΔE mutation and destabilized torsinAΔE, suggesting that the ΔE mutation predisposes torsinA to defects in the presence of secondary insults. In this case, BiP was required for torsinAΔE degradation, consistent with data that specific chaperones exhibit either pro-degradative or pro-folding activities. Finally, using two independent approaches, we established that BiP stabilizes torsinA and torsinAΔE in mammalian cells. Together, these data define BiP as the first identified torsinA chaperone, and treatments that modulate BiP might improve symptoms associated with EOTD.
Collapse
Affiliation(s)
- Lucía F. Zacchi
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Hui-Chuan Wu
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Samantha L. Bell
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Linda Millen
- the Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, and
| | - Adrienne W. Paton
- the Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - James C. Paton
- the Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Philip J. Thomas
- the Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, and
| | - Michal Zolkiewski
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Jeffrey L. Brodsky
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
5
|
Lohmann K, Schmidt A, Schillert A, Winkler S, Albanese A, Baas F, Bentivoglio AR, Borngräber F, Brüggemann N, Defazio G, Del Sorbo F, Deuschl G, Edwards MJ, Gasser T, Gómez-Garre P, Graf J, Groen JL, Grünewald A, Hagenah J, Hemmelmann C, Jabusch HC, Kaji R, Kasten M, Kawakami H, Kostic VS, Liguori M, Mir P, Münchau A, Ricchiuti F, Schreiber S, Siegesmund K, Svetel M, Tijssen MAJ, Valente EM, Westenberger A, Zeuner KE, Zittel S, Altenmüller E, Ziegler A, Klein C. Genome-wide association study in musician's dystonia: a risk variant at the arylsulfatase G locus? Mov Disord 2013; 29:921-7. [PMID: 24375517 DOI: 10.1002/mds.25791] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/15/2013] [Accepted: 11/26/2013] [Indexed: 11/06/2022] Open
Abstract
Musician's dystonia (MD) affects 1% to 2% of professional musicians and frequently terminates performance careers. It is characterized by loss of voluntary motor control when playing the instrument. Little is known about genetic risk factors, although MD or writer's dystonia (WD) occurs in relatives of 20% of MD patients. We conducted a 2-stage genome-wide association study in whites. Genotypes at 557,620 single-nucleotide polymorphisms (SNPs) passed stringent quality control for 127 patients and 984 controls. Ten SNPs revealed P < 10(-5) and entered the replication phase including 116 MD patients and 125 healthy musicians. A genome-wide significant SNP (P < 5 × 10(-8) ) was also genotyped in 208 German or Dutch WD patients, 1,969 Caucasian, Spanish, and Japanese patients with other forms of focal or segmental dystonia as well as in 2,233 ethnically matched controls. Genome-wide significance with MD was observed for an intronic variant in the arylsulfatase G (ARSG) gene (rs11655081; P = 3.95 × 10(-9) ; odds ratio [OR], 4.33; 95% confidence interval [CI], 2.66-7.05). rs11655081 was also associated with WD (P = 2.78 × 10(-2) ) but not with any other focal or segmental dystonia. The allele frequency of rs11655081 varies substantially between different populations. The population stratification in our sample was modest (λ = 1.07), but the effect size may be overestimated. Using a small but homogenous patient sample, we provide data for a possible association of ARSG with MD. The variant may also contribute to the risk of WD, a form of dystonia that is often found in relatives of MD patients.
Collapse
Affiliation(s)
- Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Armata IA, Balaj L, Kuster JK, Zhang X, Tsai S, Armatas AA, Multhaupt-Buell TJ, Soberman R, Breakefield XO, Ichinose H, Sharma N. Dopa-responsive dystonia: functional analysis of single nucleotide substitutions within the 5' untranslated GCH1 region. PLoS One 2013; 8:e76975. [PMID: 24124602 PMCID: PMC3790877 DOI: 10.1371/journal.pone.0076975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 09/05/2013] [Indexed: 11/19/2022] Open
Abstract
Background Mutations in the GCH1 gene are associated with childhood onset, dopa-responsive dystonia (DRD). Correct diagnosis of DRD is crucial, given the potential for complete recovery once treated with L-dopa. The majority of DRD associated mutations lie within the coding region of the GCH1 gene, but three additional single nucleotide sequence substitutions have been reported within the 5’ untranslated (5’UTR) region of the mRNA. The biologic significance of these 5’UTR GCH1 sequence substitutions has not been analyzed. Methodology/Principal Findings Luciferase reporter assays, quantitative real time PCR and RNA decay assays, combined with bioinformatics, revealed a pathogenic 5’UTR GCH1 substitution. The +142C>T single nucleotide 5’UTR substitution that segregates with affected status in DRD patients, substantially attenuates translation without altering RNA expression levels or stability. The +142C>T substitution disrupts translation most likely by creating an upstream initiation start codon (uAUG) and an upstream open reading frame (uORF). Conclusions/Significance This is the first GCH1 regulatory substitution reported to act at a post-transcriptional level, increasing the list of genetic diseases caused by abnormal translation and reaffirming the importance of investigating potential regulatory substitutions in genetic diseases.
Collapse
Affiliation(s)
- Ioanna A. Armata
- Department of Neurogenetics, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - Leonora Balaj
- Department of Neurogenetics, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John K. Kuster
- Department of Neurogenetics, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xuan Zhang
- Department of Neurogenetics, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shelun Tsai
- Department of Neurogenetics, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Trisha J. Multhaupt-Buell
- Department of Neurogenetics, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Roy Soberman
- Renal Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Xandra O. Breakefield
- Department of Neurogenetics, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hiroshi Ichinose
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Nutan Sharma
- Department of Neurogenetics, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
7
|
Kaur A. Rare autosomal dominant mutations in GNAL are associated with primary torsion dystonia. Clin Genet 2013; 84:211-2. [PMID: 23621094 DOI: 10.1111/cge.12178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 04/23/2013] [Indexed: 11/29/2022]
Affiliation(s)
- A Kaur
- Department of Medical Genetics, Center of Molecular Medicine and Therapeutics, University of British Columbia, 950 West 28th Avenue, Vancouver, British Columbia, V5Z 4H4, Canada.
| |
Collapse
|
8
|
Lohmann K, Wilcox RA, Winkler S, Ramirez A, Rakovic A, Park JS, Arns B, Lohnau T, Groen J, Kasten M, Brüggemann N, Hagenah J, Schmidt A, Kaiser FJ, Kumar KR, Zschiedrich K, Alvarez-Fischer D, Altenmüller E, Ferbert A, Lang AE, Münchau A, Kostic V, Simonyan K, Agzarian M, Ozelius LJ, Langeveld APM, Sue CM, Tijssen MAJ, Klein C. Whispering dysphonia (DYT4 dystonia) is caused by a mutation in the TUBB4 gene. Ann Neurol 2013; 73:537-45. [PMID: 23595291 DOI: 10.1002/ana.23829] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/13/2012] [Accepted: 11/30/2012] [Indexed: 12/19/2022]
Abstract
OBJECTIVE A study was undertaken to identify the gene underlying DYT4 dystonia, a dominantly inherited form of spasmodic dysphonia combined with other focal or generalized dystonia and a characteristic facies and body habitus, in an Australian family. METHODS Genome-wide linkage analysis was carried out in 14 family members followed by genome sequencing in 2 individuals. The index patient underwent a detailed neurological follow-up examination, including electrophysiological studies and magnetic resonance imaging scanning. Biopsies of the skin and olfactory mucosa were obtained, and expression levels of TUBB4 mRNA were determined by quantitative real-time polymerase chain reaction in 3 different cell types. All exons of TUBB4 were screened for mutations in 394 unrelated dystonia patients. RESULTS The disease-causing gene was mapped to a 23cM region on chromosome 19p13.3-p13.2 with a maximum multipoint LOD score of 5.338 at markers D9S427 and D9S1034. Genome sequencing revealed a missense variant in the TUBB4 (tubulin beta-4; Arg2Gly) gene as the likely cause of disease. Sequencing of TUBB4 in 394 unrelated dystonia patients revealed another missense variant (Ala271Thr) in a familial case of segmental dystonia with spasmodic dysphonia. mRNA expression studies demonstrated significantly reduced levels of mutant TUBB4 mRNA in different cell types from a heterozygous Arg2Gly mutation carrier compared to controls. INTERPRETATION A mutation in TUBB4 causes DYT4 dystonia in this Australian family with so-called whispering dysphonia, and other mutations in TUBB4 may contribute to spasmodic dysphonia. Given that TUBB4 is a neuronally expressed tubulin, our results imply abnormal microtubule function as a novel mechanism in the pathophysiology of dystonia.
Collapse
Affiliation(s)
- Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Caldwell KA, Shu Y, Roberts NB, Caldwell GA, O’Donnell JM. Invertebrate models of dystonia. Curr Neuropharmacol 2013; 11:16-29. [PMID: 23814534 PMCID: PMC3580786 DOI: 10.2174/157015913804999504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 06/02/2012] [Accepted: 07/03/2012] [Indexed: 01/15/2023] Open
Abstract
The neurological movement disorder dystonia is an umbrella term for a heterogeneous group of related conditions where at least 20 monogenic forms have been identified. Despite the substantial advances resulting from the identification of these loci, the function of many DYT gene products remains unclear. Comparative genomics using simple animal models to examine the evolutionarily conserved functional relationships with monogenic dystonias represents a rapid route toward a comprehensive understanding of these movement disorders. Current studies using the invertebrate animal models Caenorhabditis elegans and Drosophila melanogaster are uncovering cellular functions and mechanisms associated with mutant forms of the well-conserved gene products corresponding to DYT1, DYT5a, DYT5b, and DYT12 dystonias. Here we review recent findings from the invertebrate literature pertaining to molecular mechanisms of these gene products, torsinA, GTP cyclohydrolase I, tyrosine hydroxylase, and the alpha subunit of Na+/K ATPase, respectively. In each study, the application of powerful genetic tools developed over decades of intensive work with both of these invertebrate systems has led to mechanistic insights into these human disorders. These models are particularly amenable to large-scale genetic screens for modifiers or additional alleles, which are bolstering our understanding of the molecular functions associated with these gene products. Moreover, the use of invertebrate models for the evaluation of DYT genetic loci and their genetic interaction networks has predictive value and can provide a path forward for therapeutic intervention.
Collapse
Affiliation(s)
- Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | | | | | | | | |
Collapse
|
10
|
Marras C, Lohmann K, Lang A, Klein C. Fixing the broken system of genetic locus symbols: Parkinson disease and dystonia as examples. Neurology 2012; 78:1016-24. [PMID: 22454269 DOI: 10.1212/wnl.0b013e31824d58ab] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Originally, locus symbols (e.g., DYT1) were introduced to specify chromosomal regions that had been linked to a familial disorder with a yet unknown gene. Symbols were systematically assigned in a numerical series to designate mapped loci for a specific phenotype or group of phenotypes. Since the system of designating and using locus symbols was originally established, both our knowledge and our techniques of gene discovery have evolved substantially. The current system has problems that are sources of confusion, perpetuate misinformation, and misrepresent the system as a useful reference tool for a list of inherited disorders of a particular phenotypic class. These include erroneously assigned loci, duplicated loci, missing symbols, missing loci, unconfirmed loci in a consecutively numbered system, combining causative genes and risk factor genes in the same list, and discordance between phenotype and list assignment. In this article, we describe these problems and their impact, and propose solutions. The system could be significantly improved by creating distinct lists for clinical and research purposes, creating more informative locus symbols, distinguishing disease-causing mutations from risk factors, raising the threshold of evidence prior to assigning a locus symbol, paying strict attention to the predominant phenotype when assigning symbols lists, and having a formal system for reviewing and continually revising the list that includes input from both clinical and genetics experts.
Collapse
Affiliation(s)
- Connie Marras
- Toronto Western Hospital Morton and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson’s Disease, University of Toronto, Toronto, Canada.
| | | | | | | |
Collapse
|
11
|
Untethering the nuclear envelope and cytoskeleton: biologically distinct dystonias arising from a common cellular dysfunction. Int J Cell Biol 2012; 2012:634214. [PMID: 22611399 PMCID: PMC3352338 DOI: 10.1155/2012/634214] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/12/2011] [Accepted: 01/08/2012] [Indexed: 12/31/2022] Open
Abstract
Most cases of early onset DYT1 dystonia in humans are caused by a GAG deletion in the TOR1A gene leading to loss of a glutamic acid (ΔE) in the torsinA protein, which underlies a movement disorder associated with neuronal dysfunction without apparent neurodegeneration. Mutation/deletion of the gene (Dst) encoding dystonin in mice results in a dystonic movement disorder termed dystonia musculorum, which resembles aspects of dystonia in humans. While torsinA and dystonin proteins do not share modular domain architecture, they participate in a similar function by modulating a structural link between the nuclear envelope and the cytoskeleton in neuronal cells. We suggest that through a shared interaction with the nuclear envelope protein nesprin-3α, torsinA and the neuronal dystonin-a2 isoform comprise a bridge complex between the outer nuclear membrane and the cytoskeleton, which is critical for some aspects of neuronal development and function. Elucidation of the overlapping roles of torsinA and dystonin-a2 in nuclear/endoplasmic reticulum dynamics should provide insights into the cellular mechanisms underlying the dystonic phenotype.
Collapse
|
12
|
Abstract
Dystonia is a movement disorder characterized by involuntary muscle contractions resulting in abnormal postures. Although common in the clinic, the etiology of dystonia remains unclear. Most dystonias are idiopathic and are not associated with clear pathological brain abnormalities. Attempts to genetically model these dystonias in rodents have failed to replicate dystonic symptoms. This is at odds with the fact that rodents can exhibit dystonia. Because of this discrepancy, it is necessary to consider alternative approaches to generate phenotypically and genotypically faithful models of dystonia. Conditional knockout of dystonia-related genes is 1 technique that may prove useful for modeling genetic dystonias. Lentiviral-mediated small or short hairpin RNA (shRNA) knockdown of particular genes is another approach. Finally, in cases in which the function of a dystonia-related gene is well-known, pharmacological blockade of the protein product can be used. Such an approach was successfully implemented in the case of rapid-onset dystonia parkinsonism, DYT12. This (DYT12) is a hereditary dystonia caused by mutations in the α₃ isoform of the sodium potassium adenosine triphosphatase (ATPase) pump (sodium pump), which partially hampers its physiological function. It was found that partial selective pharmacological block of the sodium pumps in the cerebellum and basal ganglia of mice recapitulates all of the salient features of DYT12, including dystonia and parkinsonism induced by stress. This DYT12 model is unique in that it faithfully replicates human symptoms of DYT12, while targeting the genetic cause of this disorder. Acute disruption of proteins implicated in dystonia may prove a generally fruitful method to model dystonia in rodents.
Collapse
Affiliation(s)
- Rachel Fremont
- Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461 USA
| | - Kamran Khodakhah
- Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461 USA
| |
Collapse
|
13
|
Wakabayashi-Ito N, Doherty OM, Moriyama H, Breakefield XO, Gusella JF, O'Donnell JM, Ito N. Dtorsin, the Drosophila ortholog of the early-onset dystonia TOR1A (DYT1), plays a novel role in dopamine metabolism. PLoS One 2011; 6:e26183. [PMID: 22022556 PMCID: PMC3192163 DOI: 10.1371/journal.pone.0026183] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 09/22/2011] [Indexed: 12/14/2022] Open
Abstract
Dystonia represents the third most common movement disorder in humans. At least 15 genetic loci (DYT1-15) have been identified and some of these genes have been cloned. TOR1A (formally DYT1), the gene responsible for the most common primary hereditary dystonia, encodes torsinA, an AAA ATPase family protein. However, the function of torsinA has yet to be fully understood. Here, we have generated and characterized a complete loss-of-function mutant for dtorsin, the only Drosophila ortholog of TOR1A. Null mutation of the X-linked dtorsin was semi-lethal with most male flies dying by the pre-pupal stage and the few surviving adults being sterile and slow moving, with reduced cuticle pigmentation and thin, short bristles. Third instar male larvae exhibited locomotion defects that were rescued by feeding dopamine. Moreover, biochemical analysis revealed that the brains of third instar larvae and adults heterozygous for the loss-of-function dtorsin mutation had significantly reduced dopamine levels. The dtorsin mutant showed a very strong genetic interaction with Pu (Punch: GTP cyclohydrolase), the ortholog of the human gene underlying DYT14 dystonia. Biochemical analyses revealed a severe reduction of GTP cyclohydrolase protein and activity, suggesting that dtorsin plays a novel role in dopamine metabolism as a positive-regulator of GTP cyclohydrolase protein. This dtorsin mutant line will be valuable for understanding this relationship and potentially other novel torsin functions that could play a role in human dystonia.
Collapse
Affiliation(s)
- Noriko Wakabayashi-Ito
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurology and Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Olugbenga M. Doherty
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Hideaki Moriyama
- School of Biological Science, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Xandra O. Breakefield
- Department of Neurology and Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James F. Gusella
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Janis M. O'Donnell
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Naoto Ito
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurology and Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Wilcox RA, Winkler S, Lohmann K, Klein C. Whispering dysphonia in an Australian family (DYT4): a clinical and genetic reappraisal. Mov Disord 2011; 26:2404-8. [PMID: 21956287 DOI: 10.1002/mds.23866] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/29/2011] [Accepted: 06/15/2011] [Indexed: 11/11/2022] Open
Abstract
The designation, DYT4, was assigned to an Australian family with whispering dysphonia. The role of known causes of dystonia has not been comprehensively investigated in this family, nor has the possible relationship with Wilson disease (WND) in 2 siblings. Eighteen family members were neurologically examined, and DNA samples were obtained. Linkage analysis was performed to DYT1, DYT6, DYT7, DYT11, DYT13, DYT15, and ATP7B with microsatellite markers and the THAP1 (DYT6), PRKRA (DYT16), and ATP7B (WND) genes were sequenced. Reevaluation of the family identified 9 living affected family members, 6 of whom are newly affected. Phenotypic expression was variable, ranging from isolated spasmodic dysphonia (often with mild craniocervical dystonia) to severe generalized dystonia. Two newly described features included an extrusional tongue dystonia and a unique "hobby horse gait." Genetic analyses excluded all tested loci. Haplotype analysis of the ATP7B region resulted in three different combinations of the two parental alleles in the 8 investigated siblings of the 2 deceased WND patients, indicating that the fourth combination (of two mutated alleles) had occurred only in the deceased WND patients. On these two alleles, we identified a missense (c.2297C>G; p.T766R) and a splice-site mutation (IVS5+1G>T). The c.2297C>G mutation was detected in 3 affected and 4 unaffected family members, whereas the IVS5+1G>T mutation was detected in 1 affected and unaffected family member. Five DYT4 patients carried neither mutation. DYT4 is a familial form of dystonia unrelated to known dystonia genes and loci. ATP7B mutations do not segregate with the dystonia phenotype, indicating two independent genetic diseases in this family.
Collapse
Affiliation(s)
- Robert A Wilcox
- Neurology Department, Flinders Medical Centre, Adelaide, SA, Australia.
| | | | | | | |
Collapse
|
15
|
Kemmotsu N, Price CC, Oyama G, Okun MS, Foote KD, Howe LLS, Bowers D. Pre- and post- GPi DBS neuropsychological profiles in a case of X-linked dystonia-Parkinsonism. Clin Neuropsychol 2011; 25:141-59. [PMID: 21253963 DOI: 10.1080/13854046.2010.532812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We present the pre to post bilateral globus pallidus interna (GPi) deep brain stimulation neuropsychological profiles of a 69-year-old patient with a 12-year history of X-linked dystonia-Parkinsonism (XDP). Pre-operative cognitive function was impaired in almost all domains and this impaired performance was not dependent on his medications. Following DBS, changes in neuropsychological functioning were examined using Reliable Change Indices and standardized z-score comparisons. Results showed reductions in processing speed in the context of stable performance in language and visuospatial domains. Post-operative improvements occurred on a cognitive screening measure, verbal memory, and a test of problem-solving skills. This is the first report on an individual with XDP who was cognitively impaired, but had good outcome following GPi bilateral stimulation to treat debilitating motor symptoms. The possible mechanisms for his stable cognitive performance include the target of his DBS, reduced medication dosage, and improvement in dystonia that may in turn have reduced patient's pain.
Collapse
Affiliation(s)
- Nobuko Kemmotsu
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Schneider SA, Ramirez A, Shafiee K, Kaiser FJ, Erogullari A, Brüggemann N, Winkler S, Bahman I, Osmanovic A, Shafa MA, Bhatia KP, Najmabadi H, Klein C, Lohmann K. Homozygous THAP1 mutations as cause of early-onset generalized dystonia. Mov Disord 2011; 26:858-61. [DOI: 10.1002/mds.23561] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 10/13/2010] [Accepted: 10/21/2010] [Indexed: 11/08/2022] Open
|
18
|
Tassone A, Sciamanna G, Bonsi P, Martella G, Pisani A. Experimental Models of Dystonia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 98:551-72. [DOI: 10.1016/b978-0-12-381328-2.00020-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Abnormal plasticity in dystonia: Disruption of synaptic homeostasis. Neurobiol Dis 2010; 42:162-70. [PMID: 21168494 DOI: 10.1016/j.nbd.2010.12.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/05/2010] [Accepted: 12/10/2010] [Indexed: 11/20/2022] Open
Abstract
Work over the past two decades lead to substantial changes in our understanding of dystonia, which was, until recently, considered an exclusively sporadic movement disorder. The discovery of several gene mutations responsible for many inherited forms of dystonia has prompted much effort in the generation of transgenic mouse models bearing mutations found in patients. The large majority of these rodent models do not exhibit overt phenotypic abnormalities, or neuronal loss in specific brain areas. Nevertheless, both subtle motor abnormalities and significant alterations of synaptic plasticity have been recorded in mice, suggestive of an altered basal ganglia circuitry. In addition, robust evidence from experimental and clinical work supports the assumption that dystonia may indeed be considered a disorder linked to the disruption of synaptic "scaling", with a prevailing facilitation of synaptic potentiation, together with the loss of synaptic inhibitory processes. Notably, neurophysiological studies from patients carrying gene mutations as well as from non-manifesting carriers have shown the presence of synaptic plasticity abnormalities, indicating the presence of specific endophenotypic traits in carriers of the gene mutation. In this survey, we review findings from a broad range of data, obtained both from animal models and human research, and propose that the abnormalities of synaptic plasticity described in mice and humans may be considered an endophenotype to dystonia, and a valid and powerful tool to investigate the pathogenic mechanisms underlying this movement disorder. This article is part of a Special Issue entitled "Advances in dystonia".
Collapse
|
20
|
Bragg DC, Armata IA, Nery FC, Breakefield XO, Sharma N. Molecular pathways in dystonia. Neurobiol Dis 2010; 42:136-47. [PMID: 21134457 DOI: 10.1016/j.nbd.2010.11.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 11/08/2010] [Accepted: 11/26/2010] [Indexed: 11/27/2022] Open
Abstract
The hereditary dystonias comprise a set of diseases defined by a common constellation of motor deficits. These disorders are most likely associated with different molecular etiologies, many of which have yet to be elucidated. Here we discuss recent advances in three forms of hereditary dystonia, DYT1, DYT6 and DYT16, which share a similar clinical picture: onset in childhood or adolescence, progressive spread of symptoms with generalized involvement of body regions and a steady state affliction without treatment. Unlike DYT1, the genes responsible for DYT6 and DYT16 have only recently been identified, with relatively little information about the function of the encoded proteins. Nevertheless, recent data suggest that these proteins may fit together within interacting pathways involved in dopaminergic signaling, transcriptional regulation, and cellular stress responses. This review focuses on these molecular pathways, highlighting potential common themes among these dystonias which may serve as areas for future research. This article is part of a Special Issue entitled "Advances in dystonia".
Collapse
Affiliation(s)
- D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA.
| | | | | | | | | |
Collapse
|
21
|
Kaiser FJ, Osmanoric A, Rakovic A, Erogullari A, Uflacker N, Braunholz D, Lohnau T, Orolicki S, Albrecht M, Gillessen-Kaesbach G, Klein C, Lohmann K. The dystonia gene DYT1 is repressed by the transcription factor THAP1 (DYT6). Ann Neurol 2010; 68:554-9. [DOI: 10.1002/ana.22157] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|