1
|
Kawashima H, Funayama M, Inaba Y, Baba M. Articulatory-based Phonemic Paraphasia in Conduction Aphasia: A Dysfunction in Phoneme-to-Articulation Conversion Uncovered Through Crossed Aphasia. Cogn Behav Neurol 2024; 37:165-179. [PMID: 39091095 DOI: 10.1097/wnn.0000000000000371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/09/2024] [Indexed: 08/04/2024]
Abstract
Phonemic paraphasia, a common characteristic of conduction aphasia, has traditionally been attributed to phonological representation dysfunction. An alternative hypothesis posits that phonemic paraphasia arises from difficulty converting phonemes into their corresponding articulatory maneuvers. However, detailed case studies supporting this theory have been lacking. In this report, we present the case of a 61-year-old right-handed man with right temporo-parietal infarction who exhibited crossed aphasia characterized by typical conduction aphasia symptoms (eg, relatively fluent speech with intact comprehension, frequent phonemic paraphasia, and pronounced difficulties in oral repetition) in the absence of distorted articulation, syllable segmentation, and prosody impairment. Despite the frequent occurrence of phonemic paraphasia and articulatory challenges, our patient's phonological representations remained relatively intact. His phonemic paraphasia was often self-corrected to produce correct responses, a feature known as conduit d'approche. During the oral repetition of individual mora (ie, the smallest unit of speech in Japanese), we observed that the patient consistently traced the corresponding Hiragana phonetic symbol accurately, despite his difficulties in articulation. We substantiated this phenomenon through objective assessment and posit that it resulted from an unusual separation of language functions in crossed aphasia-specifically, a disconnection between phonological representations in the right temporo-parietal cortex and speech articulation engrams in the left hemisphere. In this case of conduction aphasia, articulatory-based phonemic paraphasia may be viewed as an inability to convert phonemes into the appropriate articulatory maneuvers rather than as phonological representation dysfunction or apraxia of speech.
Collapse
Affiliation(s)
- Hiroaki Kawashima
- Department of Rehabilitation, Ashikaga Red Cross Hospital, Ashikaga-City, Tochigi, Japan
| | - Michitaka Funayama
- Department of Neuropsychiatry, Ashikaga Red Cross Hospital, Ashikaga-City, Tochigi, Japan
| | - Yoshie Inaba
- Department of Rehabilitation, Ashikaga Red Cross Hospital, Ashikaga-City, Tochigi, Japan
| | - Mikoto Baba
- Department of Rehabilitation, Ashikaga Red Cross Hospital, Ashikaga-City, Tochigi, Japan
| |
Collapse
|
2
|
Khoshhal Mollasaraei Z, Behroozmand R. Impairment of the internal forward model and feedback mechanisms for vocal sensorimotor control in post-stroke aphasia: evidence from directional responses to altered auditory feedback. Exp Brain Res 2024; 242:225-239. [PMID: 37999725 PMCID: PMC10849397 DOI: 10.1007/s00221-023-06743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023]
Abstract
The present study examined opposing and following vocal responses to altered auditory feedback (AAF) to determine how damage to left-hemisphere brain networks impairs the internal forward model and feedback mechanisms in post-stroke aphasia. Forty-nine subjects with aphasia and sixty age-matched controls performed speech vowel production tasks while their auditory feedback was altered using randomized ± 100 cents upward and downward pitch-shift stimuli. Data analysis revealed that when vocal responses were averaged across all trials (i.e., opposing and following), the overall magnitude of vocal compensation was significantly reduced in the aphasia group compared with controls. In addition, when vocal responses were analyzed separately for opposing and following trials, subjects in the aphasia group showed a significantly lower percentage of opposing and higher percentage of following vocal response trials compared with controls, particularly for the upward pitch-shift stimuli. However, there was no significant difference in the magnitude of opposing and following vocal responses between the two groups. These findings further support previous evidence on the impairment of vocal sensorimotor control in aphasia and provide new insights into the distinctive impact of left-hemisphere stroke on the internal forward model and feedback mechanisms. In this context, we propose that the lower percentage of opposing responses in aphasia may be accounted for by deficits in feedback-dependent mechanisms of audio-vocal integration and motor control. In addition, the higher percentage of following responses may reflect aberrantly increased reliance of the speech system on the internal forward model for generating sensory predictions during vocal error detection and motor control.
Collapse
Affiliation(s)
- Zeinab Khoshhal Mollasaraei
- NeuroSyntax Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Columbia, SC, 29208, USA
| | - Roozbeh Behroozmand
- Speech Neuroscience Lab, Department of Speech, Language, and Hearing, Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 2811 N. Floyd Rd, Richardson, TX, 75080, USA.
| |
Collapse
|
3
|
Bae CR, Na Y, Cho M, Hwang YM, Tae WS, Pyun SB. Structural Changes in the Arcuate Fasciculus and Recovery of Post-stroke Aphasia: A 6-Month Follow-up Study using Diffusion Tensor Imaging. Neurorehabil Neural Repair 2022; 36:633-644. [PMID: 36036555 DOI: 10.1177/15459683221121752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Temporal changes in the structural connectivity of major language tracts after stroke and their contribution to aphasia recovery are unclear. OBJECTIVE To investigate longitudinal arcuate fasciculus (AF) integrity changes and their relationship with post-stroke aphasia recovery using diffusion tensor imaging (DTI). METHODS Thirty-five patients with aphasia due to first-ever left hemispheric stroke underwent the Korean version of the Western Aphasia Battery and DTI at 1- and 6-month post stroke onset. Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) of both AF tracts were analyzed to evaluate the temporal changes in tract integrity and determine the correlation between changes (Δ; follow-up - initial) in DTI parameters and language scores. RESULTS At 6 months post-stroke, the mean FA decreased, and mean MD and RD increased in both hemispheres; however, compared with mean AD observed after 1 month, the mean observed at 6 months increased only in the left hemisphere (P < .05). ΔFA of the left AF and proportional change in the aphasia quotient showed a significant positive correlation (r = 0.365, P = .031). No correlation was found between changes in the right AF parameters and language score. The group with increased FA in the left AF showed more significant language improvement than the group with decreased FA. CONCLUSIONS During the subacute stage, the integrity of AF decreased in both hemispheres in patients with aphasia, and the change in structural connectivity of the left AF was associated with language improvement.
Collapse
Affiliation(s)
- Cho Rong Bae
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yoonhye Na
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.,Brain Convergence Research Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Minjae Cho
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.,Brain Convergence Research Center, Korea University College of Medicine, Seoul, Republic of Korea.,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yu Mi Hwang
- Brain Convergence Research Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sung-Bom Pyun
- Department of Physical Medicine and Rehabilitation, Korea University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.,Brain Convergence Research Center, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Effect of Rehabilitation on Brain Functional Connectivity in a Stroke Patient Affected by Conduction Aphasia. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Stroke is a medical condition that affects the brain and represents a leading cause of death and disability. Associated with drug therapy, rehabilitative treatment is essential for promoting recovery. In the present work, we report an EEG-based study concerning a left ischemic stroke patient affected by conduction aphasia. Specifically, the objective is to compare the brain functional connectivity before and after an intensive rehabilitative treatment. The analysis was performed by means of local and global efficiency measures related to the execution of three tasks: naming, repetition and reading. As expected, the results showed that the treatment led to a balancing of the values of both parameters between the two hemispheres since the rehabilitation contributed to the creation of new neural patterns to compensate for the disrupted ones. Moreover, we observed that for both name and repetition tasks, shortly after the stroke, the global and local connectivity are lower in the affected lobe (left hemisphere) than in the unaffected one (right hemisphere). Conversely, for the reading task, global and local connectivity are higher in the impaired lobe. This apparently contrasting trend can be due to the effects of stroke, which affect not only the site of structural damage but also brain regions belonging to a functional network. Moreover, changes in network connectivity can be task-dependent. This work can be considered a first step for future EEG-based studies to establish the most suitable connectivity measures for supporting the treatment of stroke and monitoring the recovery process.
Collapse
|
5
|
Buklina SB, Kaftanov AN, Melikyan AG, Kopachev DN, Batalov AI. [Crossed aphasia in neurosurgical practice: case report and literature review]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2022; 86:103-111. [PMID: 35170283 DOI: 10.17116/neiro202286011103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Crossed aphasia in dexstral (CAD) is an extremely rare disorder. To date, about 200 cases have been described in the literature. MATERIAL AND METHODS The authors report 4 cases of CAD. Luria's neuropsychological examination was carried out. Functional asymmetry in the arm was analyzed using the Annett questionnaire. MRI and intraoperative findings confirmed localization of lesion in the right hemisphere in all patients. RESULTS A 59-year-old right-handed man developed frontotemporal aphasia after previous resection of right-sided glioblastoma of fronto-insular-temporal region. In a 31-year-old right-handed man, crossed aphasia occurred after extensive hemorrhage from arteriovenous malformation into the right frontotemporoparietal region. A 39-year-old right-handed man developed severe combined aphasia after resection of diffuse glioma of the right insular-temporal region. A 10-year-old right-handed boy developed aphasia with word forgetting after resection of a large tumor of the right temporal lobe. All patients had impaired dynamic praxis. Other cognitive functions were intact. CONCLUSION The authors discuss possible combinations of functions in one hemisphere for both right-handers and left-handers and emphasize diverse types of functional asymmetries described in the literature. Different localizations of functions in right-handers and left-handers indicate that local zones with different methods of information processing (successive or simultaneous) can coexist in one hemisphere. Therefore, the functions requiring different processing of information (for example, speech with praxis or spatial functions) can develop in one hemisphere. Cognitive impairment depends not only on the type of functional asymmetry, but also on localization of lesion. Crossed aphasia in right-handers indicates the rarest normal type of functional brain asymmetry with localization of speech functions in the right hemisphere. Possible aphasia in right-handers following damage to homologues of speech zones in the right hemisphere can require additional examination of these patients.
Collapse
Affiliation(s)
- S B Buklina
- Burdenko Neurosurgical Center, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | | | | | | | - A I Batalov
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
6
|
Baboyan V, Basilakos A, Yourganov G, Rorden C, Bonilha L, Fridriksson J, Hickok G. Isolating the white matter circuitry of the dorsal language stream: Connectome-Symptom Mapping in stroke induced aphasia. Hum Brain Mapp 2021; 42:5689-5702. [PMID: 34469044 PMCID: PMC8559486 DOI: 10.1002/hbm.25647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/21/2021] [Indexed: 12/02/2022] Open
Abstract
The application of ℓ1-regularized machine learning models to high-dimensional connectomes offers a promising methodology to assess clinical-anatomical correlations in humans. Here, we integrate the connectome-based lesion-symptom mapping framework with sparse partial least squares regression (sPLS-R) to isolate elements of the connectome associated with speech repetition deficits. By mapping over 2,500 connections of the structural connectome in a cohort of 71 stroke-induced cases of aphasia presenting with varying left-hemisphere lesions and repetition impairment, sPLS-R was trained on 50 subjects to algorithmically identify connectomic features on the basis of their predictive value. The highest ranking features were subsequently used to generate a parsimonious predictive model for speech repetition whose predictions were evaluated on a held-out set of 21 subjects. A set of 10 short- and long-range parieto-temporal connections were identified, collectively delineating the broader circuitry of the dorsal white matter network of the language system. The strongest contributing feature was a short-range connection in the supramarginal gyrus, approximating the cortical localization of area Spt, with parallel long-range pathways interconnecting posterior nodes in supramarginal and superior temporal cortex with anterior nodes in both ventral and-notably-in dorsal premotor cortex, respectively. The collective disruption of these pathways indexed repetition performance in the held-out set of participants, suggesting that these impairments might be characterized as a parietotemporal disconnection syndrome impacting cortical area Spt and its associated white matter circuits of the frontal lobe as opposed to being purely a disconnection of the arcuate fasciculus.
Collapse
Affiliation(s)
- Vatche Baboyan
- Department of Cognitive ScienceUniversity of CaliforniaIrvineCaliforniaUSA
| | - Alexandra Basilakos
- Department of Communication Sciences and DisordersUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Grigori Yourganov
- Department of PsychologyUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Chris Rorden
- Department of PsychologyUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Leonardo Bonilha
- Department of NeurologyMedical University of South CarolinaColumbiaSouth CarolinaUSA
| | - Julius Fridriksson
- Department of Communication Sciences and DisordersUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Gregory Hickok
- Department of Cognitive ScienceUniversity of CaliforniaIrvineCaliforniaUSA
| |
Collapse
|
7
|
Dickens JV, DeMarco AT, van der Stelt CM, Snider SF, Lacey EH, Medaglia JD, Friedman RB, Turkeltaub PE. Two types of phonological reading impairment in stroke aphasia. Brain Commun 2021; 3:fcab194. [PMID: 34522884 PMCID: PMC8432944 DOI: 10.1093/braincomms/fcab194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 11/12/2022] Open
Abstract
Alexia is common in the context of aphasia. It is widely agreed that damage to phonological and semantic systems not specific to reading causes co-morbid alexia and aphasia. Studies of alexia to date have only examined phonology and semantics as singular processes or axes of impairment, typically in the context of stereotyped alexia syndromes. However, phonology, in particular, is known to rely on subprocesses, including sensory-phonological processing, motor-phonological processing, and sensory-motor integration. Moreover, many people with stroke aphasia demonstrate mild or mixed patterns of reading impairment that do not fit neatly with one syndrome. This cross-sectional study tested whether the hallmark symptom of phonological reading impairment, the lexicality effect, emerges from damage to a specific subprocess of phonology in stroke patients not selected for alexia syndromes. Participants were 30 subjects with left-hemispheric stroke and 37 age- and education-matched controls. A logistic mixed-effects model tested whether post-stroke impairments in sensory phonology, motor phonology, or sensory-motor integration modulated the effect of item lexicality on patient accuracy in reading aloud. Support vector regression voxel-based lesion-symptom mapping localized brain regions necessary for reading and non-orthographic phonological processing. Additionally, a novel support vector regression structural connectome-symptom mapping method identified the contribution of both lesioned and spared but disconnected, brain regions to reading accuracy and non-orthographic phonological processing. Specifically, we derived whole-brain structural connectomes using constrained spherical deconvolution-based probabilistic tractography and identified lesioned connections based on comparisons between patients and controls. Logistic mixed-effects regression revealed that only greater motor-phonological impairment related to lower accuracy reading aloud pseudowords versus words. Impaired sensory-motor integration was related to lower overall accuracy in reading aloud. No relationship was identified between sensory-phonological impairment and reading accuracy. Voxel-based and structural connectome lesion-symptom mapping revealed that lesioned and disconnected left ventral precentral gyrus related to both greater motor-phonological impairment and lower sublexical reading accuracy. In contrast, lesioned and disconnected left temporoparietal cortex is related to both impaired sensory-motor integration and reduced overall reading accuracy. These results clarify that at least two dissociable phonological processes contribute to the pattern of reading impairment in aphasia. First, impaired sensory-motor integration, caused by lesions disrupting the left temporoparietal cortex and its structural connections, non-selectively reduces accuracy in reading aloud. Second, impaired motor-phonological processing, caused at least partially by lesions disrupting left ventral premotor cortex and structural connections, selectively reduces sublexical reading accuracy. These results motivate a revised cognitive model of reading aloud that incorporates a sensory-motor phonological circuit.
Collapse
Affiliation(s)
- Jonathan Vivian Dickens
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Andrew T DeMarco
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, Washington, DC 20007, USA.,Department of Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Candace M van der Stelt
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Sarah F Snider
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Elizabeth H Lacey
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC 20007, USA
| | - John D Medaglia
- Drexel University, Philadelphia, PA 19104, USA.,University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rhonda B Friedman
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Peter E Turkeltaub
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, Washington, DC 20007, USA.,Department of Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC 20007, USA.,Research Division, MedStar National Rehabilitation Hospital, Washington, DC 20001, USA
| |
Collapse
|
8
|
Buklina SB, Zhukov VY, Goryainov SA, Batalov AI, Afandiev RM, Maryashev SA, Vologdina YO, Bykanov AE. [Conduction aphasia in patients with glioma in the left hemisphere]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2021; 85:29-40. [PMID: 34463448 DOI: 10.17116/neiro20218504129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background. According to Wernicke-Geschwind model, conduction aphasia following arcuate tract lesion was canonized as primary disorder of repetition in relatively intact speech. OBJECTIVE Syndromic analysis of speech and writing disorders in patients with arcuate tract lesion using the method by A.R. Luria and their comparison with well-known types of aphasia. MATERIAL AND METHODS Clinical and neuropsychological survey was performed in 14 patients with gliomas who underwent surgical treatment at the Burdenko Neurosurgical Center (10 gliomas of the frontal lobe and 4 tumors of the temporal lobe). All patients underwent MRI, HARDI MRI tractography and A.R. Luria's neuropsychological examination prior to surgery and after 5-6 postoperative days. Thirteen patients underwent awake craniotomy, 3 of them were examined one year after surgery. RESULTS In all patients, the tumor was localized near arcuate tract and its infiltration was noted. No intraoperative damage to the tract was ever noted according to speech monitoring data. However, postoperative edema followed by infiltration and dislocation of the tract (in all patients), as well as local ischemia in 4 patients were observed. After resection of prefrontal and premotor gliomas, aphasia included frontal (perseveration) and temporal components (disorders of naming, auditory-speech memory). Unusual verbal paraphrases were noted. We also observed severe violation of writing (temporal type) even if spontaneous speech and repetition were preserved. In case of resection of deep posterior temporal gliomas, speech disorders included signs of frontal lobe lesion (perseveration) and writing disorders. Similar motor abnormalities were identified in writing. CONCLUSION Arcuate tract lesion can result speech and writing disorders as signs of damage to certain cortical speech zones (frontal and temporal lobe). Violations of repetition were not predominant in any case. At the same time, interruption of connection between motor and auditory image of the word could be revealed in writing.
Collapse
Affiliation(s)
- S B Buklina
- Burdenko Neurosurgical Center, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - V Yu Zhukov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - A I Batalov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | | | | | - A E Bykanov
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
9
|
Martinez Oeckel A, Rijntjes M, Glauche V, Kümmerer D, Kaller CP, Egger K, Weiller C. The extreme capsule and aphasia: proof-of-concept of a new way relating structure to neurological symptoms. Brain Commun 2021; 3:fcab040. [PMID: 33870191 PMCID: PMC8042249 DOI: 10.1093/braincomms/fcab040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/15/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
We present anatomy-based symptom-lesion mapping to assess the association between lesions of tracts in the extreme capsule and aphasia. The study cohort consisted of 123 patients with acute left-hemispheric stroke without a lesion of language-related cortical areas of the Stanford atlas of functional regions of interest. On templates generated through global fibre tractography, lesions of the extreme capsule and of the arcuate fascicle were quantified and correlated with the occurrence of aphasia (n = 18) as defined by the Token Test. More than 15% damage of the slice plane through the extreme capsule was a strong independent predictor of aphasia in stroke patients, odds ratio 16.37, 95% confidence interval: 3.11–86.16, P < 0.01. In contrast, stroke lesions of >15% in the arcuate fascicle were not associated with aphasia. Our results support the relevance of a ventral pathway in the language network running through the extreme capsule.
Collapse
Affiliation(s)
- Ariane Martinez Oeckel
- Department of Neurology and Clinical Neurosciences, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Michel Rijntjes
- Department of Neurology and Clinical Neurosciences, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Volkmar Glauche
- Department of Neurology and Clinical Neurosciences, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Dorothee Kümmerer
- Department of Neurology and Clinical Neurosciences, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Christoph P Kaller
- Department of Neuroradiology, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Karl Egger
- Department of Neuroradiology, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Cornelius Weiller
- Department of Neurology and Clinical Neurosciences, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| |
Collapse
|
10
|
Yue Q, Martin RC. Maintaining verbal short-term memory representations in non-perceptual parietal regions. Cortex 2021; 138:72-89. [PMID: 33677329 DOI: 10.1016/j.cortex.2021.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 11/09/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
Buffer accounts of verbal short-term memory (STM) assume dedicated buffers for maintaining different types of information (e.g., phonological, visual) whereas embedded processes accounts argue against the existence of buffers and claim that STM consists of the activated portion of long-term memory (LTM). We addressed this debate by determining whether STM recruits the same neural substrate as LTM, or whether additional regions are involved in short-term storage. Using fMRI with representational similarity analysis (RSA), we examined the representational correspondence of multi-voxel neural activation patterns with the theoretical predictions for the maintenance of both phonological and semantic codes in STM. We found that during the delay period of a phonological STM task, phonological representations could be decoded in the left supramarginal gyrus (SMG) but not the superior temporal gyrus (STG), a speech processing region, for word stimuli. Whereas the pattern in the SMG was specific to phonology, a different region in the left angular gyrus showed RSA decoding evidence for the retention of either phonological or semantic codes, depending on the task context. Taken together, the results provide clear support for a dedicated buffer account of phonological STM, although evidence for a semantic buffer is equivocal.
Collapse
Affiliation(s)
- Qiuhai Yue
- Department of Psychological Sciences, Rice University, Houston, TX 77005, USA; Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA.
| | - Randi C Martin
- Department of Psychological Sciences, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
11
|
Cortical Reorganization after Rehabilitation in a Patient with Conduction Aphasia Using High-Density EEG. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Conduction aphasia is a language disorder occurred after a left-brain injury. It is characterized by fluent speech production, reading, writing and normal comprehension, while speech repetition is impaired. The aim of this study is to investigate the cortical responses, induced by language activities, in a sub-acute stroke patient affected by conduction aphasia before and after an intensive speech therapy training. The patient was examined by using High-Density Electroencephalogram (HD-EEG) examination, while was performing language tasks. the patient was evaluated at baseline and after two months after rehabilitative treatment. Our results showed that an intensive rehabilitative process, in sub-acute stroke, could be useful for a good outcome of language deficits. HD-EEG results showed that left parieto-temporol-frontal areas were more activated after 2 months of rehabilitation training compared with baseline. Our results provided evidence that an intensive rehabilitation process could contribute to an inter- and intra-hemispheric reorganization.
Collapse
|
12
|
Ardila A, Akhutina TV, Mikadze YV. A.R. Luria's contribution to studies of the brain organization of language. NEUROLOGY, NEUROPSYCHIATRY, PSYCHOSOMATICS 2020. [DOI: 10.14412/2074-2711-2020-1-4-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- A. Ardila
- Albizu University, Miami, Florida;
I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
| | - T. V. Akhutina
- Faculty of Psychology, M.V. Lomonosov Moscow State University
| | - Yu. V. Mikadze
- Faculty of Psychology, M.V. Lomonosov Moscow State University;
N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia;
Federal Center for Cerebrovascular Pathology and Stroke, Ministry of Health of Russia
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW This article summarizes the clinical and anatomic features of the three named variants of primary progressive aphasia (PPA): semantic variant PPA, nonfluent/agrammatic variant PPA, and logopenic variant PPA. Three stroke aphasia syndromes that resemble the PPA variants (Broca aphasia, Wernicke aphasia, and conduction aphasia) are also presented. RECENT FINDINGS Semantic variant PPA and Wernicke aphasia are characterized by fluent speech with naming and comprehension difficulty; these syndromes are associated with disease in different portions of the left temporal lobe. Patients with nonfluent/agrammatic variant PPA or Broca aphasia have nonfluent speech with grammatical difficulty; these syndromes are associated with disease centered in the left inferior frontal lobe. Patients with logopenic variant PPA or conduction aphasia have difficulty with repetition and word finding in conversational speech; these syndromes are associated with disease in the left inferior parietal lobe. While PPA and stroke aphasias resemble one another, this article also presents their distinguishing features. SUMMARY Primary progressive and stroke aphasia syndromes interrupt the left perisylvian language network, resulting in identifiable aphasic syndromes.
Collapse
|
14
|
Yu Q, Wang H, Li S, Dai Y. Predictive role of subcomponents of the left arcuate fasciculus in prognosis of aphasia after stroke: A retrospective observational study. Medicine (Baltimore) 2019; 98:e15775. [PMID: 31169676 PMCID: PMC6571406 DOI: 10.1097/md.0000000000015775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/31/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022] Open
Abstract
The relationship between the left arcuate fasciculus (AF) and stroke-related aphasia is unclear. In this retrospective study, we aimed to investigate the role of subcomponents of the left AF in predicting prognosis of aphasia after stroke. Twenty stroke patients with aphasia were recruited and received language assessment as well as diffusion tensor tractography scanning at admission. According to injury of the left AF, the participants were classified into four groups: group A (4 cases), the AF preserved intactly; group B (6 cases), the anterior segment injured; group C (4 cases), the posterior segment injured; and group D (6 cases), completely injured. After a consecutive speech therapy, language assessment was performed again. Changes of language functions among the groups were compared and the relation between these changes with segments injury of the AF was analyzed. After therapy, relatively high increase score percentage changes in terms of all the subcategories of language assessment were observed both in group A and C; by contrast, only naming in group B, and spontaneous speech in group D. Although no statistical difference was demonstrated among the four groups. In addition, there was no significant correlation between improvement of language function with segments injury of the AF. The predictive role of subcomponents of the left AF in prognosis of aphasia is obscure in our study. Nevertheless, it indicates the importance of integrity of the left AF for recovery of aphasia, namely that preservation of the left AF on diffusion tensor tractography could mean recovery potential of aphasia after stroke.
Collapse
Affiliation(s)
- Qiwei Yu
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University
| | - Hong Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University
- Integrated Traditional Chinese And Western Medicine Hospital Affiliated of Jinan University, Guangzhou, Guangdong, China
| | - Shuqing Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University
| | - Yanhong Dai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University
| |
Collapse
|
15
|
Zhukov VY, Goryaynov SA, Buklina SB, Vologdina YO, Batalov AI, Ogurtsova AA, Kulikov AS, Kobyakov GL, Sitnikov AR, Chernyshov KA, Chelushkin DM, Zakharova NE, Potapov AA. [Intraoperative mapping of long association fibers in surgery of gliomas of the speech-dominant frontal lobe]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2019; 82:5-20. [PMID: 30412152 DOI: 10.17116/neiro2018820515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Surgery of intracerebral tumors involving long association fibers is a challenge. In this study, we analyze the results of intraoperative mapping of the superior longitudinal, arcuate, and frontal aslant tracts in surgery of brain gliomas. PURPOSE The study purpose was to compare the results of intraoperative mapping and the postoperative speech function in patients with gliomas of the premotor area of the speech-dominant frontal lobe, which involved the superior longitudinal, arcuate, and frontal aslant tracts, who were operated on using awake craniotomy. MATERIAL AND METHODS Twelve patients with left frontal lobe gliomas were operated on: 11 patients were right-handed, and one patient was a left-hander retrained at an early age. Histological types of tumors were represented by Grade II diffuse astrocytomas (6 patients), Grade III anaplastic astrocytomas (1 patient), Grade IV glioblastoma (1 patient), Grade II oligodendroglioma (1 patient), and Grade III anaplastic oligodendrogliomas (3 patients). The mean age of patients was 45 (29-67) years; there were 6 males and 6 females. All patients underwent preoperative and postoperative MRI with reconstruction of the long association fibers and determination of the topographic anatomical relationships between the fibers and the tumor. Surgery was performed using the asleep-awake-asleep protocol with intraoperative awakening of patients. All patients underwent cortical and subcortical electrophysiological stimulation to control the localization of eloquent structures and to clarify the safe limits of resection. For intraoperative speech monitoring, a computerized naming test was used with naming of nouns or verbs, and automatic speech was evaluated (counting from 1 to 10, enumeration of months and days of the week), which was complemented by a talk with the patient. Speech disorders before, during, and after surgery were evaluated by a neuropsychologist. The mean current strength during direct electrical stimulation was 3 (1.9-6.5) mA. RESULTS The association fibers were intraoperatively identified in all patients (SLF/AF in 11 patients; FAT in one patient). In 4 patients, the cortical motor speech area was intraoperatively mapped; in three cases, tumor resection was accompanied by speech disturbances outside the stimulation. During direct electrical stimulation, speech disturbances developed in 7 of 12 cases. All patients underwent control MRI within the first 48-72 h: total resection (more than 90% of the tumor) was performed in 7 cases; subtotal resection was achieved in two patients; partial resection was performed in two cases. According to postoperative MR tractography, the resected tumor bed was adjacent to the SLF/AF complex in 7 cases, located near the SLF/AF complex in three cases, and adjacent to the FAT in two cases. Postoperatively, 11 out of 12 patients had worsening of neurological symptoms in the form of various speech disturbances. In one patient, speech disturbances developed 2 days after surgery, which was associated with an increase in edema. On examination 3 months after surgery, severe speech disturbances remained in 1 patient. CONCLUSION Resection of frontal lobe tumors in the speech-dominant hemisphere using early postoperative awakening is associated with a high rate of complex speech disorders due to injury to the SLF/AF complex and FAT. In these cases, intraoperative speech mapping with allowance for the course of long association fibers is an essential procedure. Preoperative tractography in combination with intraoperative speech mapping enables identification of association fibers of the SLF/AF complex and FAT, which may help to avoid severe conduction aphasia with poor speech recovery after tumor resection.
Collapse
Affiliation(s)
- V Yu Zhukov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | - S B Buklina
- Burdenko Neurosurgical Institute, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - A I Batalov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | - A S Kulikov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - G L Kobyakov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A R Sitnikov
- Treatment and Rehabilitation Center of the Russian Ministry of Health, Moscow, Russia
| | - K A Chernyshov
- Sechenov First Moscow State Medical University, Moscow, Russia
| | | | | | - A A Potapov
- Burdenko Neurosurgical Institute, Moscow, Russia
| |
Collapse
|
16
|
Xing S, Mandal A, Lacey EH, Skipper-Kallal LM, Zeng J, Turkeltaub PE. Behavioral Effects of Chronic Gray and White Matter Stroke Lesions in a Functionally Defined Connectome for Naming. Neurorehabil Neural Repair 2018; 32:613-623. [PMID: 29890878 DOI: 10.1177/1545968318780351] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND In functional magnetic resonance imaging studies, picture naming engages widely distributed brain regions in the parietal, frontal, and temporal cortices. However, it remains unknown whether those activated areas, along with white matter pathways between them, are actually crucial for naming. OBJECTIVE We aimed to identify nodes and pathways implicated in naming in healthy older adults and test the impact of lesions to the connectome on naming ability. METHODS We first identified 24 cortical nodes activated by a naming task and reconstructed anatomical connections between these nodes using probabilistic tractography in healthy adults. We then used structural scans and fractional anisotropy (FA) maps in 45 patients with left hemisphere stroke to assess the relationships of node and pathway integrity to naming, phonology, and nonverbal semantic ability. RESULTS We found that mean FA values in 13 left hemisphere white matter tracts within the dorsal and ventral streams and 1 interhemispheric tract significantly related to naming scores after controlling for lesion size and demographic factors. In contrast, lesion loads in the cortical nodes were not related to naming performance after controlling for the same variables. Among the identified tracts, the integrity of 4 left hemisphere ventral stream tracts related to nonverbal semantic processing and 1 left hemisphere dorsal stream tract related to phonological processing. CONCLUSIONS Our findings reveal white matter structures vital for naming and its subprocesses. These findings demonstrate the value of multimodal methods that integrate functional imaging, structural connectivity, and lesion data to understand relationships between brain networks and behavior.
Collapse
Affiliation(s)
- Shihui Xing
- 1 First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,2 Georgetown University Medical Center, Washington, DC, USA
| | - Ayan Mandal
- 2 Georgetown University Medical Center, Washington, DC, USA
| | - Elizabeth H Lacey
- 2 Georgetown University Medical Center, Washington, DC, USA.,3 MedStar National Rehabilitation Hospital, Washington, DC, USA
| | - Laura M Skipper-Kallal
- 2 Georgetown University Medical Center, Washington, DC, USA.,4 National Science Foundation, Arlington, VA, USA
| | - Jinsheng Zeng
- 1 First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Peter E Turkeltaub
- 2 Georgetown University Medical Center, Washington, DC, USA.,3 MedStar National Rehabilitation Hospital, Washington, DC, USA
| |
Collapse
|
17
|
Zhang H, Chen Y, Hu R, Yang L, Wang M, Zhang J, Lu H, Wu Y, Du X. rTMS treatments combined with speech training for a conduction aphasia patient: A case report with MRI study. Medicine (Baltimore) 2017; 96:e7399. [PMID: 28796033 PMCID: PMC5556199 DOI: 10.1097/md.0000000000007399] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
RATIONALE To date, little is known regarding the neural mechanisms of the functional recovery of language after repetitive transcranial magnetic stimulation (rTMS) in aphasia. Our aim was to investigate the mechanism that underlies rTMS and speech training in a case report. PATIENT CONCERNS AND DIAGNOSES We report the case of a 39-year-old woman who was initially diagnosed with conduction aphasia following a left hemisphere stroke. INTERVENTIONS The rTMS location comprised the left Broca area, and a frequency of 5 Hz for 20 min/d for 10 days during a 2-week period was used. She had received speech rehabilitation training 1 month after stroke. Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging were used to investigate the functional and microstructural changes before and after rTMS treatment. OUTCOMES The results demonstrated that the Western Aphasia Battery scores significantly improved for language ability at 2 weeks post-treatment, and the gains were steadily increased at 2.5 months post-treatment. The fMRI results indicated a more focused activation pattern and showed significant activation in the left dominant hemisphere relative to the right hemisphere, especially in the perilesional areas, post-treatment during 2 language tasks compared with pretreatment. Moreover, the fractional anisotropy increased in the left superior temporal gyrus, which comprises an important area that is involved in language processing. LESSONS Our findings suggest that rTMS combined with speech training improved the speech-language ability of this chronic conduction aphasia patient and enhanced the cerebral functional and microstructural reorganization.
Collapse
Affiliation(s)
- Hui Zhang
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University
| | - Ying Chen
- Department of Rehabilitation Medicine, Huashan Hospital
| | - Ruiping Hu
- Department of Rehabilitation Medicine, Huashan Hospital
- Department of Rehabilitation Medicine, Shanghai Third Rehabilitation Hospital
| | | | - Mengxing Wang
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University
| | - Jilei Zhang
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University
| | - Haifeng Lu
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital
- Department of Sports Medicine and Rehabilitation, Huashan Hospital
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Xiaoxia Du
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University
| |
Collapse
|
18
|
Kasselimis DS, Simos PG, Peppas C, Evdokimidis I, Potagas C. The unbridged gap between clinical diagnosis and contemporary research on aphasia: A short discussion on the validity and clinical utility of taxonomic categories. BRAIN AND LANGUAGE 2017; 164:63-67. [PMID: 27810646 DOI: 10.1016/j.bandl.2016.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/14/2016] [Accepted: 10/22/2016] [Indexed: 06/06/2023]
Abstract
Even if the traditional aphasia classification is continuously questioned by many scholars, it remains widely accepted among clinicians and included in textbooks as the gold standard. The present study aims to investigate the validity and clinical utility of this taxonomy. For this purpose, 65 left-hemisphere stroke patients were assessed and classified with respect to aphasia type based on performance on a Greek adaptation of the Boston Diagnostic Aphasia Examination. MRI and/or CT scans were obtained for each patient and lesions were identified and coded according to location. Results indicate that 26.5% of the aphasic profiles remained unclassified. More importantly, we failed to confirm the traditional lesion-to-syndrome correspondence for 63.5% of patients. Overall, our findings elucidate crucial vulnerabilities of the neo-associationist classification, and further support a deficit-rather than a syndrome-based approach. The issue of unclassifiable patients is also discussed.
Collapse
Affiliation(s)
- Dimitrios S Kasselimis
- Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Greece.
| | - Panagiotis G Simos
- Department of Psychiatry, School of Medicine, University of Crete, Greece
| | - Christos Peppas
- Department of Radiology, Therapeutic Center of Athens "Lefkos Stavros", Greece
| | - Ioannis Evdokimidis
- Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Constantin Potagas
- Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
19
|
Ocklenburg S, Friedrich P, Güntürkün O, Genç E. Intrahemispheric white matter asymmetries: the missing link between brain structure and functional lateralization? Rev Neurosci 2016; 27:465-80. [DOI: 10.1515/revneuro-2015-0052] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/29/2015] [Indexed: 01/01/2023]
Abstract
AbstractHemispheric asymmetries are a central principle of nervous system architecture and shape the functional organization of most cognitive systems. Structural gray matter asymmetries and callosal interactions have been identified as contributing neural factors but always fell short to constitute a full explanans. Meanwhile, recent advances in in vivo white matter tractography have unrevealed the asymmetrical organization of many intrahemispheric white matter pathways, which might serve as the missing link to explain the substrate of functional lateralization. By taking into account callosal interactions, gray matter asymmetries and asymmetrical interhemispheric pathways, we opt for a new triadic model that has the potential to explain many observations which cannot be elucidated within the current frameworks of lateralized cognition.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- 1Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University of Bochum, D-44780 Bochum, Germany
| | - Patrick Friedrich
- 1Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University of Bochum, D-44780 Bochum, Germany
| | - Onur Güntürkün
- 1Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University of Bochum, D-44780 Bochum, Germany
| | - Erhan Genç
- 1Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University of Bochum, D-44780 Bochum, Germany
| |
Collapse
|
20
|
Moseley RL, Correia MM, Baron-Cohen S, Shtyrov Y, Pulvermüller F, Mohr B. Reduced Volume of the Arcuate Fasciculus in Adults with High-Functioning Autism Spectrum Conditions. Front Hum Neurosci 2016; 10:214. [PMID: 27242478 PMCID: PMC4867673 DOI: 10.3389/fnhum.2016.00214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/25/2016] [Indexed: 11/17/2022] Open
Abstract
Atypical language is a fundamental feature of autism spectrum conditions (ASC), but few studies have examined the structural integrity of the arcuate fasciculus, the major white matter tract connecting frontal and temporal language regions, which is usually implicated as the main transfer route used in processing linguistic information by the brain. Abnormalities in the arcuate have been reported in young children with ASC, mostly in low-functioning or non-verbal individuals, but little is known regarding the structural properties of the arcuate in adults with ASC or, in particular, in individuals with ASC who have intact language, such as those with high-functioning autism or Asperger syndrome. We used probabilistic tractography of diffusion-weighted imaging to isolate and scrutinize the arcuate in a mixed-gender sample of 18 high-functioning adults with ASC (17 Asperger syndrome) and 14 age- and IQ-matched typically developing controls. Arcuate volume was significantly reduced bilaterally with clearest differences in the right hemisphere. This finding remained significant in an analysis of all male participants alone. Volumetric reduction in the arcuate was significantly correlated with the severity of autistic symptoms as measured by the Autism-Spectrum Quotient. These data reveal that structural differences are present even in high-functioning adults with ASC, who presented with no clinically manifest language deficits and had no reported developmental language delay. Arcuate structural integrity may be useful as an index of ASC severity and thus as a predictor and biomarker for ASC. Implications for future research are discussed.
Collapse
Affiliation(s)
- Rachel L Moseley
- Department of Psychology, Bournemouth UniversityDorset, UK; Medical Research Council Cognition and Brain Sciences UnitCambridge, UK; Brain Mapping Unit, Department of Psychiatry, University of CambridgeCambridge, UK; Autism Research Centre, Department of Psychiatry, University of CambridgeCambridge, UK
| | - Marta M Correia
- Medical Research Council Cognition and Brain Sciences Unit Cambridge, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of CambridgeCambridge, UK; Cambridge Lifespan Asperger Syndrome Service Clinic, Cambridgeshire and Peterborough National Health Service Foundation TrustCambridge, UK
| | - Yury Shtyrov
- Medical Research Council Cognition and Brain Sciences UnitCambridge, UK; Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus UniversityAarhus, Denmark; Centre for Cognition and Decision Making, National Research University Higher School of EconomicsMoscow, Russia
| | - Friedemann Pulvermüller
- Medical Research Council Cognition and Brain Sciences UnitCambridge, UK; Brain Language Laboratory, Freie Universität BerlinBerlin, Germany
| | - Bettina Mohr
- Department of Psychiatry, Charité-Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
21
|
Campana S, Caltagirone C, Marangolo P. Combining Voxel-based Lesion-symptom Mapping (VLSM) With A-tDCS Language Treatment: Predicting Outcome of Recovery in Nonfluent Chronic Aphasia. Brain Stimul 2015; 8:769-76. [DOI: 10.1016/j.brs.2015.01.413] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/18/2015] [Accepted: 01/23/2015] [Indexed: 10/24/2022] Open
|
22
|
Tomasino B, Marin D, Maieron M, D'Agostini S, Medeossi I, Fabbro F, Skrap M, Luzzatti C. A multimodal mapping study of conduction aphasia with impaired repetition and spared reading aloud. Neuropsychologia 2015; 70:214-26. [PMID: 25701795 DOI: 10.1016/j.neuropsychologia.2015.02.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 11/26/2022]
Abstract
The present study explores the functional neuroanatomy of the phonological production system in an Italian aphasic patient (SP) who developed conduction aphasia of the reproduction type following brain surgery. SP presented with two peculiar features: (1) his lesion was localized in the superior temporal gyrus, just posterior to the primary auditory cortex and anterior/inferior to and neighboring the Sylvian parietal temporal (Spt) area, and (2) he presented with severely impaired repetition and spelling from dictation of words and pseudowords but spared reading-aloud of words and pseudowords. Structural, functional, fiber tracking and intraoperative findings were combined to analyze SP's pattern of performance within a widely used sensorimotor control scheme of speech production. We found a dissociation between an interrupted sector of the arcuate fasciculus terminating in STG, known to be involved in phonological processing, and a part of the arcuate fasciculus terminating in MTG, which is held to be involved in lexical-semantic processing. We argue that this phonological deficit should be interpreted as a disorder of the feedback system, in particular of the auditory and somatosensory target maps, which are assumed to be located along the Spt area. In patient SP, the spared part of the left arcuate fasciculus originating in MTG may support an unimpaired reading performance, while the damaged part of the left arcuate fasciculus originating in STG may be responsible for his impaired repetition and spelling from dictation.
Collapse
Affiliation(s)
| | - Dario Marin
- IRCCS "E. Medea", San Vito al Tagliamento (PN), Italy
| | - Marta Maieron
- Fisica Medica, A.O. Santa Maria della Misericordia, Udine, Italy
| | - Serena D'Agostini
- Unità Operativa di Neuroradiologia, A.O. Santa Maria della Misericordia, Udine, Italy
| | | | - Franco Fabbro
- IRCCS "E. Medea", San Vito al Tagliamento (PN), Italy; Dipartimento di Scienze Umane, Università di Udine, Italy
| | - Miran Skrap
- Unità Operativa di Neuroradiologia, A.O. Santa Maria della Misericordia, Udine, Italy
| | - Claudio Luzzatti
- Dipartimento di Psicologia, Università di Milano-Bicocca, Milano, Italy
| |
Collapse
|
23
|
Iwabuchi SJ, Kirk IJ. Association between structural and functional connectivity in the verb generation network. Brain Connect 2015; 4:221-9. [PMID: 24575720 DOI: 10.1089/brain.2013.0149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The decade-long endeavor to link brain structure with brain function has met with varying degrees of success. Recent advances in imaging techniques allow a fresh look at the issue, however. In the current investigation, functional magnetic resonance imaging and diffusion tensor imaging (DTI) were employed to directly investigate the link between functional connectivity during a verb generation task and the underlying structural substrate. Nineteen participants performed a verb generation task during functional scanning and also underwent DTI. A psychophysiological interaction analysis was used to map the functional networks recruited during the task and as an index of functional connectivity. The degree to which this correlated with diffusion measures was used to explore the existence of anatomofunctional relationships within the identified connections. A significant correlation was seen for the middle frontal (MFG) to precentral gyrus pathway, where a pattern of low fractional anisotropy and high perpendicular diffusion was associated with low functional connectivity. A second pathway between the MFG and inferior temporal gyrus did not show a significant correlation, which may be attributed to two independent factors that might be influencing the structural properties of this pathway. The variation in structure function relationships within this network may relate to each pathways involvement in different cognitive functions.
Collapse
Affiliation(s)
- Sarina Jennifer Iwabuchi
- Research Centre for Cognitive Neuroscience, School of Psychology, University of Auckland , Auckland, New Zealand
| | | |
Collapse
|
24
|
Abstract
The field of the neurobiology of language is experiencing a paradigm shift in which the predominant Broca–Wernicke–Geschwind language model is being revised in favor of models that acknowledge that language is processed within a distributed cortical and subcortical system. While it is important to identify the brain regions that are part of this system, it is equally important to establish the anatomical connectivity supporting their functional interactions. The most promising framework moving forward is one in which language is processed via two interacting “streams”—a dorsal and ventral stream—anchored by long association fiber pathways, namely the superior longitudinal fasciculus/arcuate fasciculus, uncinate fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, and two less well-established pathways, the middle longitudinal fasciculus and extreme capsule. In this article, we review the most up-to-date literature on the anatomical connectivity and function of these pathways. We also review and emphasize the importance of the often overlooked cortico-subcortical connectivity for speech via the “motor stream” and associated fiber systems, including a recently identified cortical association tract, the frontal aslant tract. These pathways anchor the distributed cortical and subcortical systems that implement speech and language in the human brain.
Collapse
Affiliation(s)
| | - Byron Bernal
- Department of Radiology, Miami Children’s Hospital, Miami, FL, USA
| | - Pascale Tremblay
- Université Laval and Centre de Recherche de l’Institut Universitaire en Santé mentale de Québec, Quebec, Canada
| |
Collapse
|
25
|
|
26
|
Song X, Dornbos D, Lai Z, Zhang Y, Li T, Chen H, Yang Z. Diffusion tensor imaging and diffusion tensor imaging-fibre tractograph depict the mechanisms of Broca-like and Wernicke-like conduction aphasia. Neurol Res 2013; 33:529-35. [DOI: 10.1179/016164111x13007856084322] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
27
|
Herman AB, Houde JF, Vinogradov S, Nagarajan SS. Parsing the phonological loop: activation timing in the dorsal speech stream determines accuracy in speech reproduction. J Neurosci 2013; 33:5439-53. [PMID: 23536060 PMCID: PMC3711632 DOI: 10.1523/jneurosci.1472-12.2013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 12/07/2012] [Accepted: 12/18/2012] [Indexed: 11/21/2022] Open
Abstract
Despite significant research and important clinical correlates, direct neural evidence for a phonological loop linking speech perception, short-term memory and production remains elusive. To investigate these processes, we acquired whole-head magnetoencephalographic (MEG) recordings from human subjects performing a variable-length syllable sequence reproduction task. The MEG sensor data were source localized using a time-frequency optimized spatially adaptive filter, and we examined the time courses of cortical oscillatory power and the correlations of oscillatory power with behavior between onset of the audio stimulus and the overt speech response. We found dissociations between time courses of behaviorally relevant activations in a network of regions falling primarily within the dorsal speech stream. In particular, verbal working memory load modulated high gamma power in both Sylvian-parietal-temporal and Broca's areas. The time courses of the correlations between high gamma power and subject performance clearly alternated between these two regions throughout the task. Our results provide the first evidence of a reverberating input-output buffer system in the dorsal stream underlying speech sensorimotor integration, consistent with recent phonological loop, competitive queuing, and speech-motor control models. These findings also shed new light on potential sources of speech dysfunction in aphasia and neuropsychiatric disorders, identifying anatomically and behaviorally dissociable activation time windows critical for successful speech reproduction.
Collapse
Affiliation(s)
- Alexander B. Herman
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, and
| | - John F. Houde
- Departments of Otolaryngology–Head and Neck Surgery and
| | - Sophia Vinogradov
- Psychiatry, University of California, San Francisco, San Francisco, California 94143
| | | |
Collapse
|
28
|
Dick AS, Tremblay P. Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language. Brain 2012; 135:3529-50. [PMID: 23107648 DOI: 10.1093/brain/aws222] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The growing consensus that language is distributed into large-scale cortical and subcortical networks has brought with it an increasing focus on the connectional anatomy of language, or how particular fibre pathways connect regions within the language network. Understanding connectivity of the language network could provide critical insights into function, but recent investigations using a variety of methodologies in both humans and non-human primates have provided conflicting accounts of pathways central to language. Some of the pathways classically considered language pathways, such as the arcuate fasciculus, are now argued to be domain-general rather than specialized, which represents a radical shift in perspective. Other pathways described in the non-human primate remain to be verified in humans. In this review, we examine the consensus and controversy in the study of fibre pathway connectivity for language. We focus on seven fibre pathways-the superior longitudinal fasciculus and arcuate fasciculus, the uncinate fasciculus, extreme capsule, middle longitudinal fasciculus, inferior longitudinal fasciculus and inferior fronto-occipital fasciculus-that have been proposed to support language in the human. We examine the methods in humans and non-human primate used to investigate the connectivity of these pathways, the historical context leading to the most current understanding of their anatomy, and the functional and clinical correlates of each pathway with reference to language. We conclude with a challenge for researchers and clinicians to establish a coherent framework within which fibre pathway connectivity can be systematically incorporated to the study of language.
Collapse
Affiliation(s)
- Anthony Steven Dick
- Department of Psychology, Florida International University, Modesto A. Maidique Campus, Deuxieme Maison 296B, 11200 S. W. 8th Street, Miami, FL 33199, USA.
| | | |
Collapse
|
29
|
Kim SH, Jang SH. Prediction of aphasia outcome using diffusion tensor tractography for arcuate fasciculus in stroke. AJNR Am J Neuroradiol 2012; 34:785-90. [PMID: 23042924 DOI: 10.3174/ajnr.a3259] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The AF is an important neural tract in language function. We investigated aphasia outcome according to DTT findings for AF in the early stage of stroke. MATERIALS AND METHODS Twenty-five consecutive patients with aphasia and stroke and 12 control subjects were recruited. The AQ of K-WAB was used for the assessment of aphasia in the early stage of stroke (10-30 days) and at approximately 6 months after onset. We classified the patients into 3 groups according to the severity of left AF injury: type A, the AF was not reconstructed; type B, the AF was disrupted; and type C, the AF was preserved around the lesion. RESULTS When comparing AQ among AF types at early evaluation, the type C score (32.84±18.05) was significantly higher than type A (3.60±2.73) (P<.05). However, no significant difference was observed between types A and B (18.02±17.19) or between types B and C (P>.05). At late evaluation, the AQ values of types B (52.43±25.75) and C (68.08±15.76) were higher than that of type A (10.98±3.90) (P<.05). However, there was no significant difference between types B and C. CONCLUSIONS The aphasia outcome of the patients whose left AF could be reconstructed was better than that in patients whose left AF could not be reconstructed, irrespective of its integrity. We believe that evaluation of the left AF by using DTT in the early stage of stroke could be helpful in predicting aphasia outcome in patients with stroke.
Collapse
Affiliation(s)
- S H Kim
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Taegu, Republic of Korea
| | | |
Collapse
|
30
|
Hayashi Y, Kinoshita M, Nakada M, Hamada JI. Correlation between language function and the left arcuate fasciculus detected by diffusion tensor imaging tractography after brain tumor surgery. J Neurosurg 2012; 117:839-43. [PMID: 22937935 DOI: 10.3171/2012.8.jns12348] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Disturbance of the arcuate fasciculus in the dominant hemisphere is thought to be associated with language-processing disorders, including conduction aphasia. Although the arcuate fasciculus can be visualized in vivo with diffusion tensor imaging (DTI) tractography, its involvement in functional processes associated with language has not been shown dynamically using DTI tractography. In the present study, to clarify the participation of the arcuate fasciculus in language functions, postoperative changes in the arcuate fasciculus detected by DTI tractography were evaluated chronologically in relation to postoperative changes in language function after brain tumor surgery. METHODS Preoperative and postoperative arcuate fasciculus area and language function were examined in 7 right-handed patients with a brain tumor in the left hemisphere located in proximity to part of the arcuate fasciculus. The arcuate fasciculus was depicted, and its area was calculated using DTI tractography. Language functions were measured using the Western Aphasia Battery (WAB). RESULTS After tumor resection, visualization of the arcuate fasciculus was increased in 5 of the 7 patients, and the total WAB score improved in 6 of the 7 patients. The relative ratio of postoperative visualized area of the arcuate fasciculus to preoperative visualized area of the arcuate fasciculus was increased in association with an improvement in postoperative language function (p = 0.0039). CONCLUSIONS The role of the left arcuate fasciculus in language functions can be evaluated chronologically in vivo by DTI tractography after brain tumor surgery. Because increased postoperative visualization of the fasciculus was significantly associated with postoperative improvement in language functions, the arcuate fasciculus may play an important role in language function, as previously thought. In addition, postoperative changes in the arcuate fasciculus detected by DTI tractography could represent a predicting factor for postoperative language-dependent functional outcomes in patients with brain tumor.
Collapse
Affiliation(s)
- Yutaka Hayashi
- Department of Neurosurgery, Kanazawa University, Kanazawa, Japan.
| | | | | | | |
Collapse
|
31
|
Roby-Brami A, Hermsdörfer J, Roy AC, Jacobs S. A neuropsychological perspective on the link between language and praxis in modern humans. Philos Trans R Soc Lond B Biol Sci 2012; 367:144-60. [PMID: 22106433 DOI: 10.1098/rstb.2011.0122] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Hypotheses about the emergence of human cognitive abilities postulate strong evolutionary links between language and praxis, including the possibility that language was originally gestural. The present review considers functional and neuroanatomical links between language and praxis in brain-damaged patients with aphasia and/or apraxia. The neural systems supporting these functions are predominantly located in the left hemisphere. There are many parallels between action and language for recognition, imitation and gestural communication suggesting that they rely partially on large, common networks, differentially recruited depending on the nature of the task. However, this relationship is not unequivocal and the production and understanding of gestural communication are dependent on the context in apraxic patients and remains to be clarified in aphasic patients. The phonological, semantic and syntactic levels of language seem to share some common cognitive resources with the praxic system. In conclusion, neuropsychological observations do not allow support or rejection of the hypothesis that gestural communication may have constituted an evolutionary link between tool use and language. Rather they suggest that the complexity of human behaviour is based on large interconnected networks and on the evolution of specific properties within strategic areas of the left cerebral hemisphere.
Collapse
Affiliation(s)
- Agnes Roby-Brami
- Laboratory of Neurophysics and Physiology, University Paris Descartes, CNRS UMR 8119, 45 rue des Saints Pères, 75006 Paris, France.
| | | | | | | |
Collapse
|
32
|
Berthier ML, Lambon Ralph MA, Pujol J, Green C. Arcuate fasciculus variability and repetition: The left sometimes can be right. Cortex 2012; 48:133-43. [DOI: 10.1016/j.cortex.2011.06.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 06/01/2011] [Accepted: 06/14/2011] [Indexed: 11/24/2022]
|