1
|
Dong Y, Jia M, Tan S, Li XY, Song Y, Wang X, Wang Z, Wang C. Clinical, genetic, and neuroimaging profiles of autosomal recessive spinocerebellar ataxia type 4 caused by novel VPS13D variants in Chinese. Am J Med Genet A 2024; 194:e63828. [PMID: 39058251 DOI: 10.1002/ajmg.a.63828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/20/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
Autosomal recessive spinocerebellar ataxias (SCARs) are a heterogeneous group of neurodegenerative disorders. VPS13D gene is currently the only gene associated with autosomal recessive spinocerebellar ataxia type 4 (SCAR4), also known as VPS13D dyskinesia. SCAR4 is a rare inherited disease, with only 34 reported cases reported worldwide. In this study, we reported three independent SCAR4 cases with adolescent onsets caused by five novel variants of the VPS13D gene. Each patient carried one frameshift and one missense variant: Patient 1 with c.10474del and c.9734C > A (p.Leu3492Tyrfs*43 and p.Thr3245Asn), Patient 2 with c.6094_6107delGTTCTCTTGATCCC and c.9734C > A (p.Val2032Argfs*7 and p.Thr3245Asn), and Patient 3 with c.11954_11963del and c.9833 T > G (p.Phe3985Serfs*10 and p.Ile3278Ser). Two of the three patients shared nystagmus with an identical variant c.9734C > A. Magnetic resonance imaging indicated thoracic spinal atrophy in all three patients and corpus callosum atrophy in one patient, along with other typical manifestations of white matter degradation, cerebral atrophy, and cerebellar atrophy. These findings expanded the genetic, clinical, and neuroimaging spectrum of SCAR4, and provided new insights into the genetic counseling, molecular mechanisms, and differential diagnosis of the disease.
Collapse
Affiliation(s)
- Yue Dong
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Milan Jia
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Shuang Tan
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xu-Ying Li
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yang Song
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xianling Wang
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhanjun Wang
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Chaodong Wang
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Mokhtari D, Jahanpanah M, Jabbari N, Azari H, Davarnia S, Mokaber H, Arish S, Molatefi R, Abbasi V, Davarnia B. Genetic investigation of patients with autosomal recessive ataxia and identification of two novel variants in the SQSTM1 and SYNE1 genes. Hum Genome Var 2024; 11:35. [PMID: 39214971 PMCID: PMC11364807 DOI: 10.1038/s41439-024-00292-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024] Open
Abstract
Hereditary ataxias are classified by inheritance patterns into autosomal dominant, autosomal recessive, X-linked, and mitochondrial modes of inheritance. A large group of adult hereditary ataxias have autosomal dominant inheritance, and autosomal recessive cerebellar ataxias (ARCAs) are rare, with greater diversity in phenotypic and genotypic features. Therefore, comprehensive genetic testing is useful for identifying the genes responsible for ARCAs. We identified two novel pathogenic variants of the SQSTM1 and SYNE1 genes via whole-exome sequencing in patients with ARCAs.
Collapse
Affiliation(s)
- Diana Mokhtari
- Department of Genetics and Pathology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Jahanpanah
- Department of Genetics and Pathology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nasim Jabbari
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Hamed Azari
- Department of Genetics and Pathology, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Haleh Mokaber
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Sara Arish
- Department of Genetics and Pathology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Rasol Molatefi
- Department of Pediatrics, Bo-Ali Children's Hospital of Ardabil University of Medical Sciences, Ardabil, Iran
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Abbasi
- Department of Neurology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Behzad Davarnia
- Department of Genetics and Pathology, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
3
|
Li C, Zhang H, Tong K, Cai M, Gao F, Yang J, Xu Y, Wang H, Chen H, Hu Y, He W, Zhang J. Genetic Deletion of Thorase Causes Purkinje Cell Loss and Impaired Motor Coordination Behavior. Cells 2023; 12:2032. [PMID: 37626842 PMCID: PMC10453921 DOI: 10.3390/cells12162032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Thorase belongs to the AAA+ ATPase family, which plays a critical role in maintaining cellular homeostasis. Our previous work reported that Thorase was highly expressed in brain tissue, especially in the cerebellum. However, the roles of Thorase in the cerebellum have still not been characterized. In this study, we generated conditional knockout mice (cKO) with Thorase deletion in Purkinje cells. Thorase cKO mice exhibited cerebellar degenerative diseases-like behavior and significant impairment in motor coordination. Thorase deletion resulted in more Purkinje neuron apoptosis, leading to Purkinje cell loss in the cerebellum of Thorase cKO mice. We also found enhanced expression of the inflammatory protein ASC, IL-1β, IL-6 and TNF-α in the Thorase cKO cerebellum, which contributed to the pathogenesis of cerebellar degenerative disease. Our findings provide a better understanding of the role of Thorase in the cerebellum, which is a theoretical basis for Thorase as a therapeutic drug target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Chao Li
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (C.L.); (H.Z.); (K.T.); (M.C.); (F.G.); (J.Y.); (Y.X.); (H.W.); (H.C.); (Y.H.)
| | - Han Zhang
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (C.L.); (H.Z.); (K.T.); (M.C.); (F.G.); (J.Y.); (Y.X.); (H.W.); (H.C.); (Y.H.)
| | - Kexin Tong
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (C.L.); (H.Z.); (K.T.); (M.C.); (F.G.); (J.Y.); (Y.X.); (H.W.); (H.C.); (Y.H.)
| | - Menghua Cai
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (C.L.); (H.Z.); (K.T.); (M.C.); (F.G.); (J.Y.); (Y.X.); (H.W.); (H.C.); (Y.H.)
| | - Fei Gao
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (C.L.); (H.Z.); (K.T.); (M.C.); (F.G.); (J.Y.); (Y.X.); (H.W.); (H.C.); (Y.H.)
| | - Jia Yang
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (C.L.); (H.Z.); (K.T.); (M.C.); (F.G.); (J.Y.); (Y.X.); (H.W.); (H.C.); (Y.H.)
| | - Yi Xu
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (C.L.); (H.Z.); (K.T.); (M.C.); (F.G.); (J.Y.); (Y.X.); (H.W.); (H.C.); (Y.H.)
| | - Huaishan Wang
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (C.L.); (H.Z.); (K.T.); (M.C.); (F.G.); (J.Y.); (Y.X.); (H.W.); (H.C.); (Y.H.)
| | - Hui Chen
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (C.L.); (H.Z.); (K.T.); (M.C.); (F.G.); (J.Y.); (Y.X.); (H.W.); (H.C.); (Y.H.)
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300010, China
| | - Yu Hu
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (C.L.); (H.Z.); (K.T.); (M.C.); (F.G.); (J.Y.); (Y.X.); (H.W.); (H.C.); (Y.H.)
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300010, China
| | - Wei He
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (C.L.); (H.Z.); (K.T.); (M.C.); (F.G.); (J.Y.); (Y.X.); (H.W.); (H.C.); (Y.H.)
| | - Jianmin Zhang
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (C.L.); (H.Z.); (K.T.); (M.C.); (F.G.); (J.Y.); (Y.X.); (H.W.); (H.C.); (Y.H.)
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300010, China
| |
Collapse
|
4
|
Noted Tension Headache, Anxiety, and Depression in a Chinese Patient with Spinocerebellar Ataxia, Autosomal Recessive 10 Caused by a Novel Anoctamin 10 Mutation. J Transl Int Med 2023; 10:373-375. [PMID: 36860629 PMCID: PMC9969569 DOI: 10.2478/jtim-2022-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
5
|
Ruan M, Wang H, Zhu M, Sun R, Shi J, Wang Q, Chen Y, Wang Y, Wang D. Heterozygous pathogenic variants in CWF19L1 in a Chinese family with spinocerebellar ataxia, autosomal recessive 17. J Clin Lab Anal 2022; 36:e24767. [PMID: 36357319 PMCID: PMC9757004 DOI: 10.1002/jcla.24767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND CWF19L1 is responsible for spinocerebellar ataxia, autosomal recessive 17, which presents with cerebellar ataxia, and atrophy. Here, we report novel compound heterozygous variants of CWF19L1 in a Chinese family with progressive ataxia and mental retardation of unknown etiology by analyzing clinical characteristics and genetic variations. METHODS Clinical profiles and genomic DNA extracts of family members were collected. Whole-exome and Sanger sequencing were performed to detect associated genetic variants. Pathogenicity prediction and conservation analysis of the identified variants were performed using bioinformatics tools. RESULTS We identified heterozygous variants at the invariant +2 position (c.1555_c.1557delGAG in exon 14 and c.1070G > T in exon 11) of the CWF19L1 gene. Two novel heterozygous variants of the CWF19L1 gene were identified in the CWF19L1 gene associated with autosomal recessive cerebellar ataxia. CONCLUSION Our results suggest that CWF19L1 variants may be a novel cause of recessive ataxia with developmental delay. Whole-exome sequencing is an efficient tool for screening variants associated with the disease. This case report may help diagnose and identify the causes of other ataxias, leading to novel therapies, especially in China. This finding enriches the variant spectrum of the CWF19L1 gene and lays the foundation for future studies on the correlation between genotype and phenotype.
Collapse
Affiliation(s)
- Miaohua Ruan
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongwei Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mianmian Zhu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongyue Sun
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiamin Shi
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiu Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuan Chen
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yihong Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Ceylan AC, Acar Arslan E, Erdem HB, Kavus H, Arslan M, Topaloğlu H. Autosomal recessive spinocerebellar ataxia 18 caused by homozygous exon 14 duplication in GRID2 and review of the literature. Acta Neurol Belg 2021; 121:1457-1462. [PMID: 32170608 DOI: 10.1007/s13760-020-01328-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/29/2020] [Indexed: 01/19/2023]
Abstract
Autosomal recessive cerebellar ataxias (ARCA) are characterized by the abnormal structure of the cerebellum and spinal cord. Spinocerebellar ataxia type 18 (MIM 616204), one of the ARCA, is caused by the loss-of-function mutations of the GRID2 gene due to deletions. Missense mutations in the GRID2 cause ataxia with the gain-of-function mechanism. We report a homozygous GRID2 duplication in childhood-onset ataxia in two siblings. The clinical exome sequencing was performed on one of the siblings. No disease-causing mutations were reported as a result of the clinical exome test. Chromosomal microarray analysis was performed on the entire family using Affymetrix Optima® chips. Chromosomal microarray analysis showed a ~ 121-kb homozygous duplication of GRID2 (arr[GRCh37]4q22.2(94426536_94613158) × 4), including exon 14, in both siblings. Previously, GRID2 has been associated with an autosomal recessive (loss-of-function) and autosomal semi-dominant (gain-of-function) forms of ataxia. To the best of our knowledge, this is the first study to identify a homozygous duplication of GRID2 causing loss of function of the GluRD2 protein. These findings provide us with the conclusion that copy number variation analyses should be in the diagnostic process of autosomal recessive ataxia types.
Collapse
|
7
|
Reframing Psychiatry for Precision Medicine. J Pers Med 2020; 10:jpm10040144. [PMID: 32992686 PMCID: PMC7711577 DOI: 10.3390/jpm10040144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
The art of observing and describing behaviors has driven diagnosis and informed basic science in psychiatry. In recent times, studies of mental illness are focused on understanding the brain's neurobiology but there is a paucity of information on the potential contributions from peripheral activity to mental health. In precision medicine, this common practice leaves a gap between bodily behaviors and genomics that we here propose to address with a new layer of inquiry that includes gene expression on tissues inclusive of brain, heart, muscle-skeletal and organs for vital bodily functions. We interrogate gene expression on human tissue as a function of disease-associated genes. By removing genes linked to disease from the typical human set, and recomputing gene expression on the tissues, we can compare the outcomes across mental illnesses, well-known neurological conditions, and non-neurological conditions. We find that major neuropsychiatric conditions that are behaviorally defined today (e.g., autism, schizophrenia, and depression) through DSM-observation criteria have strong convergence with well-known neurological conditions (e.g., ataxias and Parkinson's disease), but less overlap with non-neurological conditions. Surprisingly, tissues majorly involved in the central control, coordination, adaptation and learning of movements, emotion and memory are maximally affected in psychiatric diagnoses along with peripheral heart and muscle-skeletal tissues. Our results underscore the importance of considering both the brain-body connection and the contributions of the peripheral nervous systems to mental health.
Collapse
|
8
|
Pedroso JL, de Rezende Pinto WBV, Barsottini OGP, Oliveira ASB. Should we investigate mitochondrial disorders in progressive adult-onset undetermined ataxias? CEREBELLUM & ATAXIAS 2020; 7:13. [PMID: 32922825 PMCID: PMC7444269 DOI: 10.1186/s40673-020-00122-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 11/28/2022]
Abstract
Background Despite the broad development of next-generation sequencing approaches recently, such as whole-exome sequencing, diagnostic workup of adult-onset progressive cerebellar ataxias without remarkable family history and with negative genetic panel testing for SCAs remains a complex and expensive clinical challenge. Case presentation In this article, we report a Brazilian man with adult-onset slowly progressive pure cerebellar ataxia, which developed neuropathy and hearing loss after fifteen years of ataxia onset, in which a primary mitochondrial DNA defect (MERRF syndrome - myoclonus epilepsy with ragged-red fibers) was confirmed through muscle biopsy evaluation and whole-exome sequencing. Conclusions Mitochondrial disorders are a clinically and genetically complex and heterogenous group of metabolic diseases, resulting from pathogenic variants in the mitochondrial DNA or nuclear DNA. In our case, a correlation with histopathological changes identified on muscle biopsy helped to clarify the definitive diagnosis. Moreover, in neurodegenerative and neurogenetic disorders, some symptoms may be evinced later during disease course. We suggest that late-onset and adult pure undetermined ataxias should be considered and investigated for mitochondrial disorders, particularly MERRF syndrome and other primary mitochondrial DNA defects, together with other more commonly known nuclear genes.
Collapse
Affiliation(s)
- José Luiz Pedroso
- Ataxia Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Pedro de Toledo Street, 650. ZIP CODE: 04039-002. Vila Clementino, São Paulo, SP Brazil
| | | | - Orlando Graziani Povoas Barsottini
- Ataxia Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Pedro de Toledo Street, 650. ZIP CODE: 04039-002. Vila Clementino, São Paulo, SP Brazil
| | - Acary Souza Bulle Oliveira
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP Brazil
| |
Collapse
|
9
|
Novel Missense CACNA1G Mutations Associated with Infantile-Onset Developmental and Epileptic Encephalopathy. Int J Mol Sci 2020; 21:ijms21176333. [PMID: 32878331 PMCID: PMC7503748 DOI: 10.3390/ijms21176333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/29/2020] [Accepted: 08/29/2020] [Indexed: 11/17/2022] Open
Abstract
The CACNA1G gene encodes the low-voltage-activated Cav3.1 channel, which is expressed in various areas of the CNS, including the cerebellum. We studied two missense CACNA1G variants, p.L208P and p.L909F, and evaluated the relationships between the severity of Cav3.1 dysfunction and the clinical phenotype. The presentation was of a developmental and epileptic encephalopathy without evident cerebellar atrophy. Both patients exhibited axial hypotonia, developmental delay, and severe to profound cognitive impairment. The patient with the L909F mutation had initially refractory seizures and cerebellar ataxia, whereas the L208P patient had seizures only transiently but was overall more severely affected. In transfected mammalian cells, we determined the biophysical characteristics of L208P and L909F variants, relative to the wild-type channel and a previously reported gain-of-function Cav3.1 variant. The L208P mutation shifted the activation and inactivation curves to the hyperpolarized direction, slowed the kinetics of inactivation and deactivation, and reduced the availability of Ca2+ current during repetitive stimuli. The L909F mutation impacted channel function less severely, resulting in a hyperpolarizing shift of the activation curve and slower deactivation. These data suggest that L909F results in gain-of-function, whereas L208P exhibits mixed gain-of-function and loss-of-function effects due to opposing changes in the biophysical properties. Our study expands the clinical spectrum associated with CACNA1G mutations, corroborating further the causal association with distinct complex phenotypes.
Collapse
|
10
|
Inter-Regulation of K v4.3 and Voltage-Gated Sodium Channels Underlies Predisposition to Cardiac and Neuronal Channelopathies. Int J Mol Sci 2020; 21:ijms21145057. [PMID: 32709127 PMCID: PMC7404392 DOI: 10.3390/ijms21145057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Genetic variants in voltage-gated sodium channels (Nav) encoded by SCNXA genes, responsible for INa, and Kv4.3 channels encoded by KCND3, responsible for the transient outward current (Ito), contribute to the manifestation of both Brugada syndrome (BrS) and spinocerebellar ataxia (SCA19/22). We examined the hypothesis that Kv4.3 and Nav variants regulate each other’s function, thus modulating INa/Ito balance in cardiomyocytes and INa/I(A) balance in neurons. Methods: Bicistronic and other constructs were used to express WT or variant Nav1.5 and Kv4.3 channels in HEK293 cells. INa and Ito were recorded. Results: SCN5A variants associated with BrS reduced INa, but increased Ito. Moreover, BrS and SCA19/22 KCND3 variants associated with a gain of function of Ito, significantly reduced INa, whereas the SCA19/22 KCND3 variants associated with a loss of function (LOF) of Ito significantly increased INa. Auxiliary subunits Navβ1, MiRP3 and KChIP2 also modulated INa/Ito balance. Co-immunoprecipitation and Duolink studies suggested that the two channels interact within the intracellular compartments and biotinylation showed that LOF SCN5A variants can increase Kv4.3 cell-surface expression. Conclusion: Nav and Kv4.3 channels modulate each other’s function via trafficking and gating mechanisms, which have important implications for improved understanding of these allelic cardiac and neuronal syndromes.
Collapse
|
11
|
Orrù G, Cesari V, Conversano C, Gemignani A. The clinical application of transcranial direct current stimulation in patients with cerebellar ataxia: a systematic review. Int J Neurosci 2020; 131:681-688. [PMID: 32228395 DOI: 10.1080/00207454.2020.1750399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AIM The aim of this review was to investigate the effects of transcranial direct current stimulation (tDCS) on motor function in patients with cerebellar ataxia. MATERIALS AND METHODS Our systematic review has been performed by searching full-text articles on Pubmed and Scopus. Only studies investigating the motor effects of tDCS in patients with cerebellar ataxias were considered. A qualitative analysis of data was performed, as the methodology of the selected studies was highly heterogeneous. RESULTS Our search yielded a total of twenty-seven hits. Based on the inclusion criteria, 19 of these were excluded and 89 were retained (number of patients = 81).The results reviewed so far suggest that tDCS over cerebellum combined or not with extra-cerebellar areas might be promising approach to improve motor outcomes, with a greater success in patients less impaired. In particular, it is been shown an improvement in both clinical measures assessing cerebellar deficits (i.e. gait, stance and oculomotor disorders) and performance measures (finger dexterity, upper limb coordination and gait speed). Some of the assessed investigations highlighted a restore effect of cerebellar brain inhibition pathway and resting motor threshold after tDCS. CONCLUSIONS tDCS could be considered an effective approach to promote plasticity in patient with cerebellar ataxia with significant motor effects. Future studies, with larger sample sizes are needed in order to evaluate the effective tDCS benefits on motor functionality. Due to the limited number of studies available so far, conclusions on the effectiveness of the reported approaches are premature.
Collapse
Affiliation(s)
- Graziella Orrù
- Department of Surgical, Medical, Molecular & Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Valentina Cesari
- Department of Surgical, Medical, Molecular & Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Ciro Conversano
- Department of Surgical, Medical, Molecular & Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical, Molecular & Critical Area Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
12
|
Hajjari M, Tahmasebi-Birgani M, Mohammadi-asl J, Nasiri H, Kollaee A, Mahmoodi M, Ansari H. Exome sequencing found a novel homozygous deletion in ADCK3 gene involved in autosomal recessive spinocerebellar ataxia. Gene 2019; 708:10-13. [DOI: 10.1016/j.gene.2019.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 11/12/2022]
|
13
|
Noh W, Pak S, Choi G, Yang S, Yang S. Transient Potassium Channels: Therapeutic Targets for Brain Disorders. Front Cell Neurosci 2019; 13:265. [PMID: 31263403 PMCID: PMC6585177 DOI: 10.3389/fncel.2019.00265] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/28/2019] [Indexed: 01/04/2023] Open
Abstract
Transient potassium current channels (IA channels), which are expressed in most brain areas, have a central role in modulating feedforward and feedback inhibition along the dendroaxonic axis. Loss of the modulatory channels is tightly associated with a number of brain diseases such as Alzheimer’s disease, epilepsy, fragile X syndrome (FXS), Parkinson’s disease, chronic pain, tinnitus, and ataxia. However, the functional significance of IA channels in these diseases has so far been underestimated. In this review, we discuss the distribution and function of IA channels. Particularly, we posit that downregulation of IA channels results in neuronal (mostly dendritic) hyperexcitability accompanied by the imbalanced excitation and inhibition ratio in the brain’s networks, eventually causing the brain diseases. Finally, we propose a potential therapeutic target: the enhanced action of IA channels to counteract Ca2+-permeable channels including NMDA receptors could be harnessed to restore dendritic excitability, leading to a balanced neuronal state.
Collapse
Affiliation(s)
- Wonjun Noh
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - Sojeong Pak
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Geunho Choi
- Department of Computer Science and Engineering, Incheon National University, Incheon, South Korea
| | - Sungchil Yang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Sunggu Yang
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| |
Collapse
|
14
|
Arias M. Keys to overcoming the challenge of diagnosing autosomal recessive spinocerebellar ataxia. NEUROLOGÍA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.nrleng.2018.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
15
|
Shaafi Kabiri N, Syed S, Bali T, Karlin DR, Binneman B, Tan Y, Steinman A, Cote AC, Thomas KC. Evaluation of the use of the Scale for the Assessment and Rating of Ataxia (SARA) in healthy volunteers and patients with schizophrenia. J Neurol Sci 2018; 391:40-44. [PMID: 30103968 DOI: 10.1016/j.jns.2018.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/23/2018] [Accepted: 05/21/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The Scale for the Assessment and Rating of Ataxia (SARA) is a semi-quantitative assessment used to evaluate ataxia. The goal of these studies was to assess and evaluate the utility of this instrument in a Healthy Volunteer (HV) group and subjects with Schizophrenia (SCZ). METHODS Two studies were completed to collect SARA data, in a HV group and in a stable SCZ group. 177 HVs (18-65 years) and 16 SCZs (18-58 years) provided written consent and were assessed using the SARA. Of 177 HV subjects, 88 had 2 SARA assessments (within 2 days of initial visit) while all 16 SCZ had 3 SARA assessments (within 14 days of initial visit). RESULTS For the HV group, the mean score ± Std for the SARA on visit-1 was 0.39 ± 0.72, and 0.34 ± 0.64 for visit-2. The Pearson correlation coefficient between visit-1 and visit-2 was 0.7486 and an ICC of 0.743. For the SCZ group, the mean score for the SARA was 0.63 ± 0.65 on visit-1, 0.84 ± 1.19 on visit-2, and 0.84 ± 0.94 on visit-3. The Pearson correlation coefficient between visit-1 and visit-2 was 0.6545, between visit-1 and visit-3 was 0.6635 and between visit-2 and visit-3 was 0.7613 and an ICC of 0.650. There was no significant difference in baseline SARA scores between the HV and SCZ group p = .063. A statistically significant positive association between age and total SARA scores was observed in HV (r = 0.345) and SCZ (r = 0.676). CONCLUSIONS A strong association was observed in both the HV and SCZ groups in the reassessment of signs of ataxia using the SARA scale. Both groups demonstrated minimal signs of ataxia, with no statistically significant difference between the two groups in their visit-1 scores.
Collapse
Affiliation(s)
- Nina Shaafi Kabiri
- Laboratory for Human Neurobiology, Department of Anatomy and Neurobiology, Boston University School of Medicine, 650 Albany Street, Unit X140, Boston, MA 02118, USA
| | - Sana Syed
- Tufts Medical Center, Department of Neurology, USA; Pfizer Inc. Worldwide Research & Development, 610 Main Street, Cambridge, MA, USA
| | - Taha Bali
- Massachusetts General Hospital, Department of Neurology, USA; Pfizer Inc. Worldwide Research & Development, 610 Main Street, Cambridge, MA, USA
| | - Daniel R Karlin
- Pfizer Inc. Worldwide Research & Development, 610 Main Street, Cambridge, MA, USA; Tufts University School of Medicine, Department of Psychiatry, Boston, MA, USA
| | - Brendon Binneman
- Pfizer Inc. Worldwide Research & Development, 610 Main Street, Cambridge, MA, USA
| | - Ye Tan
- Tufts University School of Medicine, Department of Psychiatry, Boston, MA, USA
| | - Alexii Steinman
- Pfizer Inc. Worldwide Research & Development, 610 Main Street, Cambridge, MA, USA
| | - Alanna C Cote
- Laboratory for Human Neurobiology, Department of Anatomy and Neurobiology, Boston University School of Medicine, 650 Albany Street, Unit X140, Boston, MA 02118, USA
| | - Kevin C Thomas
- Laboratory for Human Neurobiology, Department of Anatomy and Neurobiology, Boston University School of Medicine, 650 Albany Street, Unit X140, Boston, MA 02118, USA.
| |
Collapse
|
16
|
Kumari R, Kumar D, Brahmachari SK, Srivastava AK, Faruq M, Mukerji M. Paradigm for disease deconvolution in rare neurodegenerative disorders in Indian population: insights from studies in cerebellar ataxias. J Genet 2018. [DOI: 10.1007/s12041-018-0948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Sheng B, Jiang Y, Wu D, Lai N, Ye Z, Zhang B, Fang X, Xu S. RNAi-mediated SYT14 knockdown inhibits the growth of human glioma cell line U87MG. Brain Res Bull 2018; 140:60-64. [PMID: 29634997 DOI: 10.1016/j.brainresbull.2018.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/04/2017] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
Abstract
SYT14 (Synaptotagmin 14) participates in pathomechanical neurodegeneration and contributes to abnormal neurodevelopment. However, the functional mechanism of SYT14 in human glioma tumorigenesis remains unclear. In the present study, we measured the expression levels of SYT14 mRNA in human glioma cell lines, U373MG, U178, and U87MG and neural stem cells (NSC) cell line by RT-PCR, and used lentivirus-mediated small hairpin RNAs (shRNAs) to knock down SYT14 expression in U87MG cells. Changes in SYT14 expression were determined by real-time PCR. Cell proliferation and colony formation assays were used to analyze the role of SYT14 in U87MG cell proliferation, and cell apoptosis was assessed by flow cytometry. SYT14 mRNA expression was detected in the three glioma cell lines, and was highest in the U87MG cell line. The RNAi-mediated knockdown of SYT14 significantly decreased cell proliferation and colony formation in U87MG cells, and caused a moderate increase in apoptosis. Fewer S phase cells and more G2/M phase cells were observed. These data indicate that SYT14 is highly expressed in glioma cells, and may participate in glioma cell proliferation, apoptosis, and colony formation.
Collapse
Affiliation(s)
- Bin Sheng
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu City, Anhui, 241001, China
| | - Yuxin Jiang
- Department of Physiology, School of Basic Medicine, Wannan Medical College, Wuhu City, Anhui, 241000, China
| | - Degang Wu
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu City, Anhui, 241001, China
| | - Niansheng Lai
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu City, Anhui, 241001, China
| | - Zhennan Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong, 510000, China
| | - Bingbing Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu City, Anhui, 241001, China
| | - Xinggen Fang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu City, Anhui, 241001, China.
| | - Shanshui Xu
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu City, Anhui, 241001, China.
| |
Collapse
|
18
|
Deary V, Hagenaars SP, Harris SE, Hill WD, Davies G, Liewald DCM, McIntosh AM, Gale CR, Deary IJ. Genetic contributions to self-reported tiredness. Mol Psychiatry 2018; 23:609-620. [PMID: 28194004 PMCID: PMC5822465 DOI: 10.1038/mp.2017.5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 12/01/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023]
Abstract
Self-reported tiredness and low energy, often called fatigue, are associated with poorer physical and mental health. Twin studies have indicated that this has a heritability between 6 and 50%. In the UK Biobank sample (N=108 976), we carried out a genome-wide association study (GWAS) of responses to the question, 'Over the last two weeks, how often have you felt tired or had little energy?' Univariate GCTA-GREML found that the proportion of variance explained by all common single-nucleotide polymorphisms for this tiredness question was 8.4% (s.e.=0.6%). GWAS identified one genome-wide significant hit (Affymetrix id 1:64178756_C_T; P=1.36 × 10-11). Linkage disequilibrium score regression and polygenic profile score analyses were used to test for shared genetic aetiology between tiredness and up to 29 physical and mental health traits from GWAS consortia. Significant genetic correlations were identified between tiredness and body mass index (BMI), C-reactive protein, high-density lipoprotein (HDL) cholesterol, forced expiratory volume, grip strength, HbA1c, longevity, obesity, self-rated health, smoking status, triglycerides, type 2 diabetes, waist-hip ratio, attention deficit hyperactivity disorder, bipolar disorder, major depressive disorder, neuroticism, schizophrenia and verbal-numerical reasoning (absolute rg effect sizes between 0.02 and 0.78). Significant associations were identified between tiredness phenotypic scores and polygenic profile scores for BMI, HDL cholesterol, low-density lipoprotein cholesterol, coronary artery disease, C-reactive protein, HbA1c, height, obesity, smoking status, triglycerides, type 2 diabetes, waist-hip ratio, childhood cognitive ability, neuroticism, bipolar disorder, major depressive disorder and schizophrenia (standardised β's had absolute values<0.03). These results suggest that tiredness is a partly heritable, heterogeneous and complex phenomenon that is phenotypically and genetically associated with affective, cognitive, personality and physiological processes.
Collapse
Affiliation(s)
- V Deary
- Department of Psychology, Northumbria University, Newcastle, UK
| | - S P Hagenaars
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - S E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Medical Genetics Section, University of Edinburgh, Centre for Genomic and Experimental Medicine and MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - W D Hill
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - G Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - D C M Liewald
- Department of Psychology, Northumbria University, Newcastle, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - International Consortium for Blood Pressure GWAS
- Department of Psychology, Northumbria University, Newcastle, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
- Medical Genetics Section, University of Edinburgh, Centre for Genomic and Experimental Medicine and MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - CHARGE Consortium Aging and Longevity Group
- Department of Psychology, Northumbria University, Newcastle, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
- Medical Genetics Section, University of Edinburgh, Centre for Genomic and Experimental Medicine and MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - CHARGE Consortium Inflammation Group
- Department of Psychology, Northumbria University, Newcastle, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
- Medical Genetics Section, University of Edinburgh, Centre for Genomic and Experimental Medicine and MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - A M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - C R Gale
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - I J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
Mendoza-Ferreira N, Coutelier M, Janzen E, Hosseinibarkooie S, Löhr H, Schneider S, Milbradt J, Karakaya M, Riessland M, Pichlo C, Torres-Benito L, Singleton A, Zuchner S, Brice A, Durr A, Hammerschmidt M, Stevanin G, Wirth B. Biallelic CHP1 mutation causes human autosomal recessive ataxia by impairing NHE1 function. NEUROLOGY-GENETICS 2018; 4:e209. [PMID: 29379881 PMCID: PMC5775069 DOI: 10.1212/nxg.0000000000000209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022]
Abstract
Objective: To ascertain the genetic and functional basis of complex autosomal recessive cerebellar ataxia (ARCA) presented by 2 siblings of a consanguineous family characterized by motor neuropathy, cerebellar atrophy, spastic paraparesis, intellectual disability, and slow ocular saccades. Methods: Combined whole-genome linkage analysis, whole-exome sequencing, and focused screening for identification of potential causative genes were performed. Assessment of the functional consequences of the mutation on protein function via subcellular fractionation, size-exclusion chromatography, and fluorescence microscopy were done. A zebrafish model, using Morpholinos, was generated to study the pathogenic effect of the mutation in vivo. Results: We identified a biallelic 3-bp deletion (p.K19del) in CHP1 that cosegregates with the disease. Neither focused screening for CHP1 variants in 2 cohorts (ARCA: N = 319 and NeurOmics: N = 657) nor interrogating GeneMatcher yielded additional variants, thus revealing the scarcity of CHP1 mutations. We show that mutant CHP1 fails to integrate into functional protein complexes and is prone to aggregation, thereby leading to diminished levels of soluble CHP1 and reduced membrane targeting of NHE1, a major Na+/H+ exchanger implicated in syndromic ataxia-deafness. Chp1 deficiency in zebrafish, resembling the affected individuals, led to movement defects, cerebellar hypoplasia, and motor axon abnormalities, which were ameliorated by coinjection with wild-type, but not mutant, human CHP1 messenger RNA. Conclusions: Collectively, our results identified CHP1 as a novel ataxia-causative gene in humans, further expanding the spectrum of ARCA-associated loci, and corroborated the crucial role of NHE1 within the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Natalia Mendoza-Ferreira
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Marie Coutelier
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Eva Janzen
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Seyyedmohsen Hosseinibarkooie
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Heiko Löhr
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Svenja Schneider
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Janine Milbradt
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Mert Karakaya
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Markus Riessland
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Christian Pichlo
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Laura Torres-Benito
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Andrew Singleton
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Stephan Zuchner
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Alexis Brice
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Alexandra Durr
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Matthias Hammerschmidt
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Giovanni Stevanin
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Brunhilde Wirth
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| |
Collapse
|
20
|
Abstract
The autosomal-recessive cerebellar ataxias comprise more than half of the known genetic forms of ataxia and represent an extensive group of clinically heterogeneous disorders that can occur at any age but whose onset is typically prior to adulthood. In addition to ataxia, patients often present with polyneuropathy and clinical symptoms outside the nervous system. The most common of these diseases is Friedreich ataxia, caused by mutation of the frataxin gene, but recent advances in genetic analysis have greatly broadened the ever-expanding number of causative genes to over 50. In this review, the clinical neurogenetics of the recessive cerebellar ataxias will be discussed, including updates on recently identified novel ataxia genes, advancements in unraveling disease-specific molecular pathogenesis leading to ataxia, potential treatments under development, technologic improvements in diagnostic testing such as clinical exome sequencing, and what the future holds for clinicians and geneticists.
Collapse
Affiliation(s)
- Brent L Fogel
- Program in Neurogenetics, Departments of Neurology and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
| |
Collapse
|
21
|
Babanejad M, Adeli OA, Nikzat N, Beheshtian M, Azarafra H, Sadeghnia F, Mohseni M, Najmabadi H, Kahrizi K. SLC52A2 mutations cause SCABD2 phenotype: A second report. Int J Pediatr Otorhinolaryngol 2018; 104:195-199. [PMID: 29287867 DOI: 10.1016/j.ijporl.2017.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Autosomal recessive cerebellar ataxias (ARCAs) are a large group of neurodegenerative disorders that manifest mainly in children and young adults. Most ARCAs are heterogeneous with respect to age at onset, severity of disease progression, and frequency of extracerebellar and systemic signs. METHODS The phenotype of a consanguineous Iranian family was characterized using clinical testing and pedigree analysis. Whole-exome sequencing was used to identify the disease-causing gene in this family. RESULTS AND CONCLUSION Using whole exome sequencing (WES), a novel missense mutation in SLC52A2 gene is reported in a consanguineous Iranian family with progressive severe hearing loss, optic atrophy and ataxia. This is the second report of the genotype-phenotype correlation between this syndrome named spinocerebellar ataxia with blindness and deafness type 2 (SCABD2) and SLC52A2 gene.
Collapse
Affiliation(s)
- Mojgan Babanejad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Omid Ali Adeli
- Lorestan University of Medical Sciences, Khorramabad, Lorestan, Iran
| | - Nooshin Nikzat
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hakimeh Azarafra
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Farnaz Sadeghnia
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Marzieh Mohseni
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
22
|
SYNE1 related cerebellar ataxia presents with variable phenotypes in a consanguineous family from Turkey. Neurol Sci 2017; 38:2203-2207. [PMID: 28687974 DOI: 10.1007/s10072-017-3049-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
SYNE1 related autosomal recessive cerebellar ataxia type 1 (ARCA1) is a late-onset cerebellar ataxia with slow progression originally demonstrated in French-Canadian populations of Quebec, Canada. Nevertheless, recent studies on SYNE1 ataxia have conveyed the condition from a geographically limited pure cerebellar recessive ataxia to a complex multisystem phenotype that is relatively common on the global scale. To determine the underlying genetic cause of the ataxia phenotype in a consanguineous family from Turkey presenting with very slow progressive cerebellar symptoms including dysarthria, dysmetria, and gait ataxia, we performed SNP-based linkage analysis in the family along with whole exome sequencing (WES) in two affected siblings. We identified a homozygous variant in SYNE1 (NM_033071.3: c.13086delC; p.His4362GlnfsX2) in all four affected siblings. This variant presented herein has originally been associated with only pure ataxia in a single case. We thus present segregation and phenotypic manifestations of this variant in four affected family members and further extend the pure ataxia phenotype with upper motor neuron involvement and peripheral neuropathy. Our findings in turn established a precise molecular diagnosis in this family, demonstrating the use of WES combined with linkage analysis in families as a powerful tool for establishing a quick and precise genetic diagnosis of complex neurological phenotypes.
Collapse
|
23
|
Didonna A, Opal P. Advances in Sequencing Technologies for Understanding Hereditary Ataxias: A Review. JAMA Neurol 2017; 73:1485-1490. [PMID: 27749953 DOI: 10.1001/jamaneurol.2016.3097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Importance The hereditary progressive ataxias comprise genetic disorders that affect the cerebellum and its connections. Even though these diseases historically have been among the first familial disorders of the nervous system to have been recognized, progress in the field has been challenging because of the large number of ataxic genetic syndromes, many of which overlap in their clinical features. Observations We have taken a historical approach to demonstrate how our knowledge of the genetic basis of ataxic disorders has come about by novel techniques in gene sequencing and bioinformatics. Furthermore, we show that the genes implicated in ataxia, although seemingly unrelated, appear to encode for proteins that interact with each other in connected functional modules. Conclusions and Relevance It has taken approximately 150 years for neurologists to comprehensively unravel the genetic diversity of ataxias. There has been an explosion in our understanding of their molecular basis with the arrival of next-generation sequencing and computer-driven bioinformatics; this in turn has made hereditary ataxias an especially well-developed model group of diseases for gaining insights at a systems level into genes and cellular pathways that result in neurodegeneration.
Collapse
Affiliation(s)
| | - Puneet Opal
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois3Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
24
|
SCA 35 presenting as isolated treatment-resistant dystonic hand tremor. Parkinsonism Relat Disord 2017; 37:118-119. [PMID: 28214262 DOI: 10.1016/j.parkreldis.2017.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/11/2017] [Accepted: 01/29/2017] [Indexed: 11/21/2022]
|
25
|
Lu C, Zheng YC, Dong Y, Li HF. Identification of novel senataxin mutations in Chinese patients with autosomal recessive cerebellar ataxias by targeted next-generation sequencing. BMC Neurol 2016; 16:179. [PMID: 27644330 PMCID: PMC5029030 DOI: 10.1186/s12883-016-0696-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/07/2016] [Indexed: 11/21/2022] Open
Abstract
Background Autosomal recessive cerebellar ataxias (ARCA) are a group of neurodegenerative disorders characterized by early onset of gait impairment, disturbed limb coordination, dysarthria, and eye movement abnormalities, most likely due to the degeneration of cerebellum, brainstem, and spinal cord. Despite of the rarity, ARCA are both clinically and genetically heterogeneous. To date, more than 30 culprit genes have been identified in ARCA. Unraveling the specific causative mutation in cases with ARCA remains challenging so far. Methods Three ARCA pedigrees of Chinese ancestry were recruited. Clinical features were evaluated and peripheral blood was collected after obtaining the written inform. Laboratory examinations, brain MRI, and EMG were performed for all the affected individuals. Genomic DNA was extracted, followed by the screening of GAA repeat expansion in FXN gene to exclude Friedreich’s ataxia. Targeted next-generation sequencing combining Sanger sequencing was performed in each proband of these families. Results Compound heterozygous mutations, c.3190G > T (p.E1064X) and c.4883C > G (p.S1628X) of senataxin (SETX) gene were identified in one family with two affected cases. Both of the patients presented with early onset of unsteady walk, dysarthria, and diplopia. EMG test revealed decreased conduction velocity and evoked potential of both motor and sensory nerve. Moreover, elevated serum alpha-fetoprotein (AFP) and apparent cerebellar atrophy were observed. These features were typical features of ataxia with oculomotor apraxia type 2 (AOA2) and in line with the genetic results. However, no specific mutation was identified in the other two pedigrees. Conclusions We identified novel compound heterozygous mutations of SETX in Chinese AOA2 pedigree, which broaden the mutation spectrum of SETX. To our knowledge, this is the first report concerning Chinese AOA2 cases with SETX mutations. Electronic supplementary material The online version of this article (doi:10.1186/s12883-016-0696-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cong Lu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.,Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yi-Cen Zheng
- The High School Affiliated to Fudan University-WLSA Fudan Academy, Shanghai, China
| | - Yi Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Hong-Fu Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
26
|
Keys to overcoming the challenge of diagnosing autosomal recessive spinocerebellar ataxia. Neurologia 2016; 34:248-258. [PMID: 27460185 DOI: 10.1016/j.nrl.2016.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Autosomal recessive spinocerebellar ataxia refers to a large group of diseases affecting the cerebellum and/or its connections, although they may also involve other regions of the nervous system. These diseases are accompanied by a wide range of systemic manifestations (cardiopathies, endocrinopathies, skeletal deformities, and skin abnormalities). DEVELOPMENT This study reviews current knowledge of the most common forms of autosomal recessive spinocerebellar ataxia in order to provide tips that may facilitate diagnosis. CONCLUSIONS A thorough assessment of clinical phenotype (pure cerebellar or cerebellar-plus syndrome, with or without systemic manifestations), laboratory tests (vitamin E, acanthocytosis, albumin, cholesterol, phytanic acid, lactic acid, creatine kinase, cholestanol, coenzyme Q10, alpha-fetoprotein, copper, ceruloplasmin, chitotriosidase), nerve conduction studies (presence and type of neuropathy), and an magnetic resonance imaging study (presence of cerebellar atrophy, presence and location of signal alterations) may help establish a suspected diagnosis, which should be confirmed by detecting the underlying genetic mutation. A positive genetic test result is necessary to determine prognosis and provide adequate genetic counselling, and will also permit appropriate treatment of some entities (abetalipoproteinaemia, ataxia with vitamin E deficiency, Refsum disease, cerebrotendinous xanthomatosis, Niemann-Pick disease type C, Wilson disease). Without a genetic diagnosis, conducting basic research and therapeutic trials will not be possible.
Collapse
|
27
|
de Tommaso M, Arendt-Nielsen L, Defrin R, Kunz M, Pickering G, Valeriani M. Pain in Neurodegenerative Disease: Current Knowledge and Future Perspectives. Behav Neurol 2016; 2016:7576292. [PMID: 27313396 PMCID: PMC4904074 DOI: 10.1155/2016/7576292] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/18/2016] [Accepted: 05/08/2016] [Indexed: 12/26/2022] Open
Abstract
Neurodegenerative diseases are going to increase as the life expectancy is getting longer. The management of neurodegenerative diseases such as Alzheimer's disease (AD) and other dementias, Parkinson's disease (PD) and PD related disorders, motor neuron diseases (MND), Huntington's disease (HD), spinocerebellar ataxia (SCA), and spinal muscular atrophy (SMA), is mainly addressed to motor and cognitive impairment, with special care to vital functions as breathing and feeding. Many of these patients complain of painful symptoms though their origin is variable, and their presence is frequently not considered in the treatment guidelines, leaving their management to the decision of the clinicians alone. However, studies focusing on pain frequency in such disorders suggest a high prevalence of pain in selected populations from 38 to 75% in AD, 40% to 86% in PD, and 19 to 85% in MND. The methods of pain assessment vary between studies so the type of pain has been rarely reported. However, a prevalent nonneuropathic origin of pain emerged for MND and PD. In AD, no data on pain features are available. No controlled therapeutic trials and guidelines are currently available. Given the relevance of pain in neurodegenerative disorders, the comprehensive understanding of mechanisms and predisposing factors, the application and validation of specific scales, and new specific therapeutic trials are needed.
Collapse
Affiliation(s)
- Marina de Tommaso
- Neurophysiopathology of Pain Section, SMBNOS Department, Bari Aldo Moro University, Bari, Italy
| | | | - Ruth Defrin
- Department of Physical Therapy, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Miriam Kunz
- Department of General Practice, Section Gerontology, University Medical Center Groningen, Groningen, Netherlands
| | - Gisele Pickering
- CHU Clermont-Ferrand, Centre de Pharmacologie Clinique, Clermont-Ferrand, France
- Inserm, CIC 1405, Neurodol 1107, 63003 Clermont-Ferrand, France
| | - Massimiliano Valeriani
- Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark
- Division of Neurology, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
28
|
Kawarai T, Tajima A, Kuroda Y, Saji N, Orlacchio A, Terasawa H, Shimizu H, Kita Y, Izumi Y, Mitsui T, Imoto I, Kaji R. A homozygous mutation of VWA3B causes cerebellar ataxia with intellectual disability. J Neurol Neurosurg Psychiatry 2016; 87:656-62. [PMID: 26157035 DOI: 10.1136/jnnp-2014-309828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 06/15/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hereditary cerebellar ataxia constitutes a heterogeneous group of neurodegenerative disorders, occasionally accompanied by other neurological features. Genetic defects remain to be elucidated in approximately 40% of hereditary cerebellar ataxia cases in Japan. We attempted to identify the gene responsible for autosomal recessive cerebellar ataxia with intellectual disability. METHODS The present study involved three patients in a consanguineous Japanese family. Neurological examination and gene analyses were performed in all family members. We performed genome-wide linkage analysis including single nucleotide polymorphism arrays, copy-number variation analysis and whole exome sequencing. To clarify the functional alteration resulting from the identified mutation, we performed cell viability assay of cultured cells expressing mutant protein. RESULTS One homozygous region shared among the three patients on chromosomes 2p16.1-2q12.3 was identified. Using whole exome sequencing, six homozygous variants in genes in the region were detected. Only one variant, VWA3B c.A1865C, results in a change of a highly conserved amino acid (p.K622T) and was not present in control samples. VWA3B encodes a von Willebrand Factor A Domain-Containing Protein 3B with ubiquitous expression, including the cerebellum. The viability of cultured cells expressing the specific K622T mutation was proved to decrease through the activation of apoptotic pathway. CONCLUSIONS Mutated VWA3B was found to be likely associated with cerebellar degeneration with intellectual disability. Although a rare cause of cerebellar degeneration, these findings indicate a critical role for VWA3B in the apoptosis pathway in neuronal tissues.
Collapse
Affiliation(s)
- Toshitaka Kawarai
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Atsushi Tajima
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yukiko Kuroda
- Department of Clinical Research, Tokushima National Hospital, National Hospital Organization, Tokushima, Japan
| | - Naoki Saji
- Department of Stroke Medicine, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, CERC-IRCCS Santa Lucia, Rome, Italy Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| | - Hideo Terasawa
- Department of Neurology, Hyogo Brain and Heart Centre, Himeji City, Hyogo, Japan
| | - Hirotaka Shimizu
- Department of Neurology, Hyogo Brain and Heart Centre, Himeji City, Hyogo, Japan
| | - Yasushi Kita
- Department of Neurology, Hyogo Brain and Heart Centre, Himeji City, Hyogo, Japan
| | - Yuishin Izumi
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takao Mitsui
- Department of Clinical Research, Tokushima National Hospital, National Hospital Organization, Tokushima, Japan
| | - Issei Imoto
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ryuji Kaji
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
29
|
Wiethoff S, Hersheson J, Bettencourt C, Wood NW, Houlden H. Heterogeneity in clinical features and disease severity in ataxia-associated SYNE1 mutations. J Neurol 2016; 263:1503-10. [PMID: 27178001 PMCID: PMC4971038 DOI: 10.1007/s00415-016-8148-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022]
Abstract
The autosomal recessive spinocerebellar ataxias are an exciting field of study, with a growing number of causal genes and an expanding phenotypic spectrum. SYNE1 was originally discovered in 2007 as the causal gene underlying autosomal recessive spinocerebellar ataxia 1, a disease clinically thought to manifest with mainly pure cerebellar ataxia. Since the original report SYNE1 mutations have also been identified in families with motor neuronopathy and arthrogryposis but few families have been screened as the gene is very large at 146 exons in length. We screened 196 recessive and sporadic ataxia patients for mutations in SYNE1 using next generation sequencing in order to assess its frequency and extend the clinicogenetic spectrum. We identified four novel truncating mutations spread throughout the SYNE1 gene from three families living in London that originated from England, Turkey and Sri Lanka. The phenotype was mainly pure cerebellar ataxia in two families, cognitive decline was present in all three families, axonal neuropathy in one family and marked spasticity in the Turkish family, with a range of disease severities. Searching for genotype–phenotype correlations in the SYNE1 gene, defects located near the 3′ prime end of the gene are more frequently associated with motor neuron or neuromuscular involvement so far. Our data indicate SYNE1 mutations are not an uncommon cause of recessive ataxia with or without additional clinical features in patients from various ethnicities. The use of next generation sequencing allows the rapid analysis of large genes and will likely reveal more SYNE1 associated cases and further expand genotype–phenotype correlations.
Collapse
Affiliation(s)
- Sarah Wiethoff
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.,Centre for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, Tübingen, Germany
| | - Joshua Hersheson
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Conceicao Bettencourt
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Nicholas W Wood
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.,Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK. .,Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
30
|
Perucca G, Leboucq N, Roubertie A, Rivier F, Menjot N, Valentini C, Bonafe A. Role of neuroimaging in the diagnosis of hereditary cerebellar ataxias in childhood. J Neuroradiol 2016; 43:176-85. [PMID: 27126632 DOI: 10.1016/j.neurad.2016.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/31/2015] [Accepted: 03/05/2016] [Indexed: 11/25/2022]
Abstract
Hereditary ataxias are a heterogeneous group of neurodegenerative disorders, characterized by cerebellar ataxia as the main clinical feature, and a large spectrum of neurological-associated symptoms and possible multi-organ affection. Image-based approaches to hereditary ataxias in childhood have already been proposed. The aim of this review is to yield the main reports of neuroimaging patterns and diagnostic algorithms and compare them with the results from our study of 23 young patients addressed for ataxia, with subsequent genetic or metabolic diagnosis.
Collapse
Affiliation(s)
- Giulia Perucca
- Department of Radiology, Azienda Ospedaliera Città della Salute e della Scienza, Torino, Italy.
| | - Nicolas Leboucq
- University Hospital of Montpellier, Department of Neuroradiology, Montpellier, France.
| | - Agathe Roubertie
- University Hospital of Montpellier, Department of Pediatric Neurology, Montpellier, France.
| | - François Rivier
- University Hospital of Montpellier, Department of Pediatric Neurology, Montpellier, France.
| | - Nicolas Menjot
- University Hospital of Montpellier, Department of Neuroradiology, Montpellier, France.
| | - Consuelo Valentini
- Department of Neuroradiology, Azienda Ospedaliera Città della Salute e della Scienza, Torino, Italy.
| | - Alain Bonafe
- University Hospital of Montpellier, Department of Neuroradiology, Montpellier, France.
| |
Collapse
|
31
|
Evers C, Kaufmann L, Seitz A, Paramasivam N, Granzow M, Karch S, Fischer C, Hinderhofer K, Gdynia G, Elsässer M, Pinkert S, Schlesner M, Bartram CR, Moog U. Exome sequencing reveals a novelCWF19L1mutation associated with intellectual disability and cerebellar atrophy. Am J Med Genet A 2016; 170:1502-9. [DOI: 10.1002/ajmg.a.37632] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/07/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Christina Evers
- Institute of Human Genetics; Heidelberg University; Heidelberg Germany
| | - Lilian Kaufmann
- Institute of Human Genetics; Heidelberg University; Heidelberg Germany
| | - Angelika Seitz
- Department of Neuroradiology; University Hospital Heidelberg; Heidelberg Germany
| | - Nagarajan Paramasivam
- Division of Theoretical Bioinformatics; German Cancer Research Center (DKFZ); Heidelberg Germany
- Medical Faculty Heidelberg; Heidelberg University; Germany
| | - Martin Granzow
- Institute of Human Genetics; Heidelberg University; Heidelberg Germany
| | - Stephanie Karch
- Center for Child and Adolescent Medicine, Pediatric Neurology; Heidelberg University Hospital; Heidelberg Germany
| | - Christine Fischer
- Institute of Human Genetics; Heidelberg University; Heidelberg Germany
| | | | - Georg Gdynia
- Institute of Pathology; University of Heidelberg; Heidelberg Germany
- German Cancer Research Center; Clinical Cooperation Unit Molecular Tumor Pathology; Heidelberg Germany
| | - Michael Elsässer
- Department of Obstetrics and Gynecology, Prenatal Medicine; University Hospital Heidelberg; Heidelberg Germany
| | - Stefan Pinkert
- Genomics and Proteomics Core Facility (GPCF); High Throughput Sequencing, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Matthias Schlesner
- Division of Theoretical Bioinformatics; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Claus R. Bartram
- Institute of Human Genetics; Heidelberg University; Heidelberg Germany
| | - Ute Moog
- Institute of Human Genetics; Heidelberg University; Heidelberg Germany
| |
Collapse
|
32
|
Duan R, Shi Y, Yu L, Zhang G, Li J, Lin Y, Guo J, Wang J, Shen L, Jiang H, Wang G, Tang B. UBA5 Mutations Cause a New Form of Autosomal Recessive Cerebellar Ataxia. PLoS One 2016; 11:e0149039. [PMID: 26872069 PMCID: PMC4752235 DOI: 10.1371/journal.pone.0149039] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 01/26/2016] [Indexed: 12/19/2022] Open
Abstract
Autosomal recessive cerebellar ataxia (ARCA) comprises a large and heterogeneous group of neurodegenerative disorders. For many affected patients, the genetic cause remains undetermined. Through whole-exome sequencing, we identified compound heterozygous mutations in ubiquitin-like modifier activating enzyme 5 gene (UBA5) in two Chinese siblings presenting with ARCA. Moreover, copy number variations in UBA5 or ubiquitin-fold modifier 1 gene (UFM1) were documented with the phenotypes of global developmental delays and gait disturbances in the ClinVar database. UBA5 encodes UBA5, the ubiquitin-activating enzyme of UFM1. However, a crucial role for UBA5 in human neurological disease remains to be reported. Our molecular study of UBA5-R246X revealed a dramatically decreased half-life and loss of UFM1 activation due to the absence of the catalytic cysteine Cys250. UBA5-K310E maintained its interaction with UFM1, although with less stability, which may affect the ability of this UBA5 mutant to activate UFM1. Drosophila modeling revealed that UBA5 knockdown induced locomotive defects and a shortened lifespan accompanied by aberrant neuromuscular junctions (NMJs). Strikingly, we found that UFM1 and E2 cofactor knockdown induced markedly similar phenotypes. Wild-type UBA5, but not mutant UBA5, significantly restored neural lesions caused by the absence of UBA5. The finding of a UBA5 mutation in cerebellar ataxia suggests that impairment of the UFM1 pathway may contribute to the neurological phenotypes of ARCA.
Collapse
Affiliation(s)
- Ranhui Duan
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan province, China
- * E-mail: (RD); (BT)
| | - Yuting Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan province, China
| | - Li Yu
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan province, China
| | - Gehan Zhang
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan province, China
| | - Jia Li
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan province, China
| | - Yunting Lin
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan province, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan province, China
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan province, China
- The Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan province, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan province, China
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan province, China
- The Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan province, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan province, China
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan province, China
- The Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan province, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan province, China
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan province, China
- The Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan province, China
| | - Guanghui Wang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu province, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan province, China
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan province, China
- The Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan province, China
- * E-mail: (RD); (BT)
| |
Collapse
|
33
|
Pinto WBVDR, Pedroso JL, Souza PVSD, Albuquerque MVCD, Barsottini OGP. Non-progressive cerebellar ataxia and previous undetermined acute cerebellar injury: a mysterious clinical condition. ARQUIVOS DE NEURO-PSIQUIATRIA 2015; 73:823-7. [PMID: 26291991 DOI: 10.1590/0004-282x20150119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/28/2015] [Indexed: 11/22/2022]
Abstract
Cerebellar ataxias represent a wide group of neurological diseases secondary to dysfunctions of cerebellum or its associated pathways, rarely coursing with acute-onset acquired etiologies and chronic non-progressive presentation. We evaluated patients with acquired non-progressive cerebellar ataxia that presented previous acute or subacute onset. Clinical and neuroimaging characterization of adult patients with acquired non-progressive ataxia were performed. Five patients were identified with the phenotype of acquired non-progressive ataxia. Most patients presented with a juvenile to adult-onset acute to subacute appendicular and truncal cerebellar ataxia with mild to moderate cerebellar or olivopontocerebellar atrophy. Establishing the etiology of the acute triggering events of such ataxias is complex. Non-progressive ataxia in adults must be distinguished from hereditary ataxias.
Collapse
Affiliation(s)
| | - José Luiz Pedroso
- Departamento de Neurologia e Neurocirurgia, Divisão de Neurologia Geral e Unidade de Ataxia, Universidade Federal de São Paulo, Sao Paulo, SP, BR
| | - Paulo Victor Sgobbi de Souza
- Departamento de Neurologia e Neurocirurgia, Divisão de Neurologia Geral e Unidade de Ataxia, Universidade Federal de São Paulo, Sao Paulo, SP, BR
| | | | - Orlando Graziani Povoas Barsottini
- Departamento de Neurologia e Neurocirurgia, Divisão de Neurologia Geral e Unidade de Ataxia, Universidade Federal de São Paulo, Sao Paulo, SP, BR
| |
Collapse
|
34
|
Loss of the neuron-specific F-box protein FBXO41 models an ataxia-like phenotype in mice with neuronal migration defects and degeneration in the cerebellum. J Neurosci 2015; 35:8701-17. [PMID: 26063905 DOI: 10.1523/jneurosci.2133-14.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cerebellum is crucial for sensorimotor coordination. The cerebellar architecture not only requires proper development but also long-term integrity to ensure accurate functioning. Developmental defects such as impaired neuronal migration or neurodegeneration are thus detrimental to the cerebellum and can result in movement disorders including ataxias. In this study, we identify FBXO41 as a novel CNS-specific F-box protein that localizes to the centrosome and the cytoplasm of neurons and demonstrate that cytoplasmic FBXO41 promotes neuronal migration. Interestingly, deletion of the FBXO41 gene results in a severely ataxic gait in mice, which show delayed neuronal migration of granule neurons in the developing cerebellum in addition to deformities and degeneration of the mature cerebellum. We show that FBXO41 is a critical factor, not only for neuronal migration in the cerebellum, but also for its long-term integrity.
Collapse
|
35
|
Nguyen M, Boesten I, Hellebrekers DMEI, Vanoevelen J, Kamps R, de Koning B, de Coo IFM, Gerards M, Smeets HJM. Pathogenic CWF19L1 variants as a novel cause of autosomal recessive cerebellar ataxia and atrophy. Eur J Hum Genet 2015. [PMID: 26197978 DOI: 10.1038/ejhg.2015.158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Autosomal recessive cerebellar ataxia (ARCA) is a group of neurological disorders characterized by degeneration or abnormal development of the cerebellum and spinal cord. ARCA is clinically and genetically highly heterogeneous, with over 20 genes involved. Exome sequencing of a girl with ARCA from non-consanguineous Dutch parents revealed two pathogenic variants c.37G>C; p.D13H and c.946A>T; p.K316* in CWF19L1, a gene with an unknown function, recently reported to cause ARCA in a Turkish family. Sanger sequencing showed that the c.37G>C variant was inherited from the father and the c.946A>T variant from the mother. Pathogenicity was based on the damaging effect on protein function as the c.37G>C variant changed the highly conserved, negatively charged aspartic acid to the positively charged histidine and the c.946A>T variant introduced a premature stop codon. In addition, 27 patients with ARCA were tested for pathogenic variants in CWF19L1, however, no pathogenic variants were identified. Our data confirm CWF19L1 as a novel but rare gene causing ARCA.
Collapse
Affiliation(s)
- Minh Nguyen
- Department of Clinical Genetics, Unit Clinical Genomics, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Genetics and Cell Biology, School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Iris Boesten
- Department of Clinical Genetics, Unit Clinical Genomics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Debby M E I Hellebrekers
- Department of Clinical Genetics, Unit Clinical Genomics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jo Vanoevelen
- Department of Clinical Genetics, Unit Clinical Genomics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Rick Kamps
- Department of Clinical Genetics, Unit Clinical Genomics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Bart de Koning
- Department of Clinical Genetics, Unit Clinical Genomics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | - Mike Gerards
- Department of Clinical Genetics, Unit Clinical Genomics, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Genetics and Cell Biology, School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Maastricht Center of Systems Biology (MaCSBio), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Hubert J M Smeets
- Department of Clinical Genetics, Unit Clinical Genomics, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Genetics and Cell Biology, School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
36
|
Abstract
Among the hereditary cerebellar ataxias (CAs), there are at least 36 different forms of autosomal dominant cerebellar ataxia (ADCAs), 20 autosomal recessive cerebellar ataxias (ARCAs), two X-linked ataxias, and several forms of ataxia associated with mitochondrial defects. Despite the steady increase in the number of newly discovered CA genes, patients, especially those with putative ARCAs, cannot yet be genotyped. Moreover, in daily clinical practice, ataxia may present as an isolated cerebellar syndrome or, more often, it is associated with a broad spectrum of neurological manifestations including pyramidal, extrapyramidal, sensory, and cognitive dysfunction. Furthermore, non-neurological symptoms may also coexist. A close integration between clinical records, neurophysiological, neuroradiological and, in some instances, biochemical findings will help physicians in the diagnostic work-up (including selection of the correct genetic tests) and may lead to timely therapy. Some inherited CAs are in fact potentially treatable, and the efficacy of the therapy is directly related to the severity of the cerebellar atrophy and to the time of onset of the disease. Most cases of CA are sporadic, and the diagnostic work-up remains a challenge. Detailed anamnesis and deep investigation of the family pedigree are usually enough to discriminate between acquired and genetic conditions. In the case of ADCA, molecular testing should be guided by taking into account the main associated symptoms. In sporadic cases, a multi-disciplinary approach is needed and should consider the following points: (1) onset and clinical course; (2) associated features; (3) neurophysiological parameters, with special attention to the occurrence of peripheral neuropathy; (4) neuroimaging results; and (5) laboratory findings. A late-onset sporadic ataxia, in which other possible causes have been excluded by following the proposed steps, might be attributable to metabolic disorders, which in some instances may be treatable. In this review, we will guide the reader through the labyrinth of CAs, and we propose a diagnostic flow chart.
Collapse
|
37
|
Choquet K, La Piana R, Brais B. A novel frameshift mutation in FGF14 causes an autosomal dominant episodic ataxia. Neurogenetics 2015; 16:233-6. [PMID: 25566820 DOI: 10.1007/s10048-014-0436-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/19/2014] [Indexed: 12/30/2022]
Abstract
Episodic ataxias (EAs) are a heterogeneous group of neurological disorders characterized by recurrent attacks of ataxia. Mutations in KCNA1 and CACNA1A account for the majority of EA cases worldwide. We recruited a two-generation family affected with EA of unknown subtype and performed whole-exome sequencing on two affected members. This revealed a novel heterozygous mutation c.211_212insA (p.I71NfsX27) leading to a premature stop codon in FGF14. Mutations in FGF14 are known to cause spinocerebellar ataxia type 27 (SCA27). Sanger sequencing confirmed segregation within the family. Our findings expand the phenotypic spectrum of SCA27 by underlining the possible episodic nature of this ataxia.
Collapse
Affiliation(s)
- Karine Choquet
- Neurogenetics of Motion Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | | | | |
Collapse
|
38
|
Datta D, Kim KS. Induced Pluripotent Stem Cells (iPSCs) to Study and Treat Movement Disorders. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
39
|
Burns R, Majczenko K, Xu J, Peng W, Yapici Z, Dowling JJ, Li JZ, Burmeister M. Homozygous splice mutation in CWF19L1 in a Turkish family with recessive ataxia syndrome. Neurology 2014; 83:2175-82. [PMID: 25361784 PMCID: PMC4276403 DOI: 10.1212/wnl.0000000000001053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 09/02/2014] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To elucidate the genetic cause of a rare recessive ataxia presented by 2 siblings from a consanguineous Turkish family with a nonprogressive, congenital ataxia with mental retardation of unknown etiology. METHODS Whole-exome sequencing was combined with homozygosity mapping, linkage, and expression analysis to identify candidate genes, confirmed by Sanger sequencing. Reverse transcription-PCR and immunoblotting were used to determine the functional consequences of the gene variant. A zebrafish model was developed using morpholino-mediated knockdown. RESULTS We identified a homozygous mutation at the invariant +1 position (c.964+1G>A) in intron 9 of the CWF19L1 (complexed with cdc5 protein 19-like 1) gene. This mutation is absent in >6,500 European and African American individuals and 200 Turkish control DNAs. The mutation causes exon skipping, reduction in messenger RNA levels, and protein loss in cell lines of affected individuals. Morpholino-mediated knockdown in a zebrafish model demonstrates that loss of the evolutionarily highly conserved CWF19L1, whose normal biological function is unknown, alters cerebellar morphology and causes movement abnormalities. CONCLUSIONS Our results suggest that CWF19L1 mutations may be a novel cause of recessive ataxia with developmental delay. Our research may help with diagnosis, especially in Turkey, identify causes of other ataxias, and may lead to novel therapies.
Collapse
Affiliation(s)
- Randi Burns
- From the Program in Cellular and Molecular Biology (R.B., M.B.), Molecular & Behavioral Neuroscience Institute (R.B., K.M., M.B.), Departments of Human Genetics (J.X., W.P., J.Z.L., M.B.), Neurology (J.J.D.), Pediatrics (J.J.D.), and Psychiatry (M.B.), University of Michigan Medical Center, Ann Arbor; and Department of Neurology (Z.Y.), Division of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey. J.J.D. is currently affiliated with the Division of Neurology and Program of Genetics and Genome Biology, Hospital for Sick Children, Departments of Pediatrics and Molecular Genetics, University of Toronto, Canada
| | - Karen Majczenko
- From the Program in Cellular and Molecular Biology (R.B., M.B.), Molecular & Behavioral Neuroscience Institute (R.B., K.M., M.B.), Departments of Human Genetics (J.X., W.P., J.Z.L., M.B.), Neurology (J.J.D.), Pediatrics (J.J.D.), and Psychiatry (M.B.), University of Michigan Medical Center, Ann Arbor; and Department of Neurology (Z.Y.), Division of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey. J.J.D. is currently affiliated with the Division of Neurology and Program of Genetics and Genome Biology, Hospital for Sick Children, Departments of Pediatrics and Molecular Genetics, University of Toronto, Canada
| | - Jishu Xu
- From the Program in Cellular and Molecular Biology (R.B., M.B.), Molecular & Behavioral Neuroscience Institute (R.B., K.M., M.B.), Departments of Human Genetics (J.X., W.P., J.Z.L., M.B.), Neurology (J.J.D.), Pediatrics (J.J.D.), and Psychiatry (M.B.), University of Michigan Medical Center, Ann Arbor; and Department of Neurology (Z.Y.), Division of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey. J.J.D. is currently affiliated with the Division of Neurology and Program of Genetics and Genome Biology, Hospital for Sick Children, Departments of Pediatrics and Molecular Genetics, University of Toronto, Canada
| | - Weiping Peng
- From the Program in Cellular and Molecular Biology (R.B., M.B.), Molecular & Behavioral Neuroscience Institute (R.B., K.M., M.B.), Departments of Human Genetics (J.X., W.P., J.Z.L., M.B.), Neurology (J.J.D.), Pediatrics (J.J.D.), and Psychiatry (M.B.), University of Michigan Medical Center, Ann Arbor; and Department of Neurology (Z.Y.), Division of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey. J.J.D. is currently affiliated with the Division of Neurology and Program of Genetics and Genome Biology, Hospital for Sick Children, Departments of Pediatrics and Molecular Genetics, University of Toronto, Canada
| | - Zuhal Yapici
- From the Program in Cellular and Molecular Biology (R.B., M.B.), Molecular & Behavioral Neuroscience Institute (R.B., K.M., M.B.), Departments of Human Genetics (J.X., W.P., J.Z.L., M.B.), Neurology (J.J.D.), Pediatrics (J.J.D.), and Psychiatry (M.B.), University of Michigan Medical Center, Ann Arbor; and Department of Neurology (Z.Y.), Division of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey. J.J.D. is currently affiliated with the Division of Neurology and Program of Genetics and Genome Biology, Hospital for Sick Children, Departments of Pediatrics and Molecular Genetics, University of Toronto, Canada
| | - James J Dowling
- From the Program in Cellular and Molecular Biology (R.B., M.B.), Molecular & Behavioral Neuroscience Institute (R.B., K.M., M.B.), Departments of Human Genetics (J.X., W.P., J.Z.L., M.B.), Neurology (J.J.D.), Pediatrics (J.J.D.), and Psychiatry (M.B.), University of Michigan Medical Center, Ann Arbor; and Department of Neurology (Z.Y.), Division of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey. J.J.D. is currently affiliated with the Division of Neurology and Program of Genetics and Genome Biology, Hospital for Sick Children, Departments of Pediatrics and Molecular Genetics, University of Toronto, Canada
| | - Jun Z Li
- From the Program in Cellular and Molecular Biology (R.B., M.B.), Molecular & Behavioral Neuroscience Institute (R.B., K.M., M.B.), Departments of Human Genetics (J.X., W.P., J.Z.L., M.B.), Neurology (J.J.D.), Pediatrics (J.J.D.), and Psychiatry (M.B.), University of Michigan Medical Center, Ann Arbor; and Department of Neurology (Z.Y.), Division of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey. J.J.D. is currently affiliated with the Division of Neurology and Program of Genetics and Genome Biology, Hospital for Sick Children, Departments of Pediatrics and Molecular Genetics, University of Toronto, Canada
| | - Margit Burmeister
- From the Program in Cellular and Molecular Biology (R.B., M.B.), Molecular & Behavioral Neuroscience Institute (R.B., K.M., M.B.), Departments of Human Genetics (J.X., W.P., J.Z.L., M.B.), Neurology (J.J.D.), Pediatrics (J.J.D.), and Psychiatry (M.B.), University of Michigan Medical Center, Ann Arbor; and Department of Neurology (Z.Y.), Division of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey. J.J.D. is currently affiliated with the Division of Neurology and Program of Genetics and Genome Biology, Hospital for Sick Children, Departments of Pediatrics and Molecular Genetics, University of Toronto, Canada.
| |
Collapse
|
40
|
Ronnebaum SM, Patterson C, Schisler JC. Emerging evidence of coding mutations in the ubiquitin-proteasome system associated with cerebellar ataxias. Hum Genome Var 2014; 1:14018. [PMID: 27081508 PMCID: PMC4785523 DOI: 10.1038/hgv.2014.18] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/20/2014] [Accepted: 08/28/2014] [Indexed: 12/14/2022] Open
Abstract
Cerebellar ataxia (CA) is a disorder associated with impairments in balance, coordination, and gait caused by degeneration of the cerebellum. The mutations associated with CA affect functionally diverse genes; furthermore, the underlying genetic basis of a given CA is unknown in many patients. Exome sequencing has emerged as a cost-effective technology to discover novel genetic mutations, including autosomal recessive CA (ARCA). Five recent studies that describe how exome sequencing performed on a diverse pool of ARCA patients revealed 14 unique mutations in STUB1, a gene that encodes carboxy terminus of Hsp70-interacting protein (CHIP). CHIP mediates protein quality control through chaperone and ubiquitin ligase activities and is implicated in alleviating proteotoxicity in several neurodegenerative diseases. However, these recent studies linking STUB1 mutations to various forms of ataxia are the first indications that CHIP is directly involved in the progression of a human disease. Similar exome-sequencing studies have revealed novel mutations in ubiquitin-related proteins associated with CA and other neurological disorders. This review provides an overview of CA, describes the benefits and limitations of exome sequencing, outlines newly discovered STUB1 mutations, and theorizes on how CHIP and other ubiquitin-related proteins function to prevent neurological deterioration.
Collapse
Affiliation(s)
- Sarah M Ronnebaum
- McAllister Heart Institute, The University of North Carolina at Chapel Hill , Chapel Hill, NC, USA
| | - Cam Patterson
- Presbyterian Hospital/Weill-Cornell Medical Center , New York, NY, USA
| | - Jonathan C Schisler
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Recent advances in next generation sequencing techniques (NGS) are increasing the number of novel genes associated with cerebellar and vestibular disorders. We have summarized clinical and molecular genetics findings in neuro-otolology during the last 2 years. RECENT FINDINGS Whole-exome and targeted sequencing have defined the genetic basis of dizziness including new genes causing ataxia: GBA2, TGM6, ANO10 and SYT14. Novel mutations in KCNA1 and CACNA1A genes are associated with episodic ataxia type 1 and type 2, respectively. Moreover, new variants in genes such as COCH, MYO7A and POU4F3 are associated with nonsyndromic deafness and vestibular dysfunction. Several susceptibility loci have been linked to familial vestibular migraine, suggesting genetic heterogeneity, but no specific gene has been identified. Finally, loci for complex and heterogeneous diseases such as bilateral vestibular hypofunction or familial Ménière disease have not been identified yet, despite their strong familial aggregation. SUMMARY Cerebellar and vestibular disorders leading to dizziness or episodic vertigo may show overlapping clinical features. A deep phenotyping including a complete familial history is a key step in performing a reliable molecular genetic diagnosis using NGS. Personalized molecular medicine will be essential to understand disease mechanisms as well as to improve their diagnosis and treatment.
Collapse
|
42
|
Sandford E, Burmeister M. Genes and genetic testing in hereditary ataxias. Genes (Basel) 2014; 5:586-603. [PMID: 25055202 PMCID: PMC4198919 DOI: 10.3390/genes5030586] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/25/2014] [Accepted: 07/01/2014] [Indexed: 12/19/2022] Open
Abstract
Ataxia is a neurological cerebellar disorder characterized by loss of coordination during muscle movements affecting walking, vision, and speech. Genetic ataxias are very heterogeneous, with causative variants reported in over 50 genes, which can be inherited in classical dominant, recessive, X-linked, or mitochondrial fashion. A common mechanism of dominant ataxias is repeat expansions, where increasing lengths of repeated DNA sequences result in non-functional proteins that accumulate in the body causing disease. Greater understanding of all ataxia genes has helped identify several different pathways, such as DNA repair, ubiquitination, and ion transport, which can be used to help further identify new genes and potential treatments. Testing for the most common mutations in these genes is now clinically routine to help with prognosis and treatment decisions, but next generation sequencing will revolutionize how genetic testing will be done. Despite the large number of known ataxia causing genes, however, many individuals with ataxia are unable to obtain a genetic diagnosis, suggesting that more genes need to be discovered. Utilization of next generation sequencing technologies, expression studies, and increased knowledge of ataxia pathways will aid in the identification of new ataxia genes.
Collapse
Affiliation(s)
- Erin Sandford
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Margit Burmeister
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
43
|
Noreau A, Beauchemin P, Dionne-Laporte A, Dion PA, Rouleau GA, Dupré N. Exome sequencing revealed PMM2 gene mutations in a French-Canadian family with congenital atrophy of the cerebellum. CEREBELLUM & ATAXIAS 2014; 1:8. [PMID: 26331032 PMCID: PMC4552392 DOI: 10.1186/2053-8871-1-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/16/2014] [Indexed: 11/10/2022]
Abstract
Two affected and one unaffected siblings from a French-Canadian family were evaluated in our neurogenetic clinic. The oldest brother had intentional and postural hand tremor while his youngest sister presented mild ataxia, a similar hand tremor and global developmental delay. Brain MRIs of the two affected family members further revealed a significant cerebellar atrophy. For this study we conducted a whole exome sequencing (WES) investigation using genomic DNA prepared from the affected brother and sister, alongside DNA prepared from their unaffected mother, and identified two mutations previously reported to cause a rare disorder known as Congenital Disorder of Glycosylation, type Ia (CDG1A) (OMIM #212065). This study emphasizes how the diagnosis of patients presenting a mild tremor phenotype associated with cerebellar atrophy may benefit from WES in establishing genetic defects associated with their conditions.
Collapse
Affiliation(s)
- Anne Noreau
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec Canada ; Department of Pathology and Cellular Biology, Université de Montréal, Montreal, Quebec Canada
| | - Philippe Beauchemin
- Faculty of Medicine of Laval University and the Department of Neurological Sciences of the Centre Hopitalier, Universitaire de Québec, 1401, 18th Street, Quebec, QC G1J 1Z4 Canada
| | | | | | - Patrick A Dion
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec Canada ; Department of Pathology and Cellular Biology, Université de Montréal, Montreal, Quebec Canada ; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec Canada
| | - Guy A Rouleau
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec Canada ; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec Canada
| | - Nicolas Dupré
- Faculty of Medicine of Laval University and the Department of Neurological Sciences of the Centre Hopitalier, Universitaire de Québec, 1401, 18th Street, Quebec, QC G1J 1Z4 Canada
| |
Collapse
|
44
|
Anoctamins support calcium-dependent chloride secretion by facilitating calcium signaling in adult mouse intestine. Pflugers Arch 2014; 467:1203-13. [PMID: 24974903 DOI: 10.1007/s00424-014-1559-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 12/13/2022]
Abstract
Intestinal epithelial electrolyte secretion is activated by increase in intracellular cAMP or Ca(2+) and opening of apical Cl(-) channels. In infants and young animals, but not in adults, Ca(2+)-activated chloride channels may cause secretory diarrhea during rotavirus infection. While detailed knowledge exists concerning the contribution of cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR) channels, analysis of the role of Ca(2+)-dependent Cl(-) channels became possible through identification of the anoctamin (TMEM16) family of proteins. We demonstrate expression of several anoctamin paralogues in mouse small and large intestines. Using intestinal-specific mouse knockout models for anoctamin 1 (Ano1) and anoctamin 10 (Ano10) and a conventional knockout model for anoctamin 6 (Ano6), we demonstrate the role of anoctamins for Ca(2+)-dependent Cl(-) secretion induced by the muscarinic agonist carbachol (CCH). Ano1 is preferentially expressed in the ileum and large intestine, where it supports Ca(2+)-activated Cl(-) secretion. In contrast, Ano10 is essential for Ca(2+)-dependent Cl(-) secretion in jejunum, where expression of Ano1 was not detected. Although broadly expressed, Ano6 has no role in intestinal cholinergic Cl(-) secretion. Ano1 is located in a basolateral compartment/membrane rather than in the apical membrane, where it supports CCH-induced Ca(2+) increase, while the essential and possibly only apical Cl(-) channel is CFTR. These results define a new role of Ano1 for intestinal Ca(2+)-dependent Cl(-) secretion and demonstrate for the first time a contribution of Ano10 to intestinal transport.
Collapse
|
45
|
Liu YT, Hersheson J, Plagnol V, Fawcett K, Duberley KEC, Preza E, Hargreaves IP, Chalasani A, Laurá M, Wood NW, Reilly MM, Houlden H. Autosomal-recessive cerebellar ataxia caused by a novel ADCK3 mutation that elongates the protein: clinical, genetic and biochemical characterisation. J Neurol Neurosurg Psychiatry 2014; 85:493-8. [PMID: 24218524 PMCID: PMC3995328 DOI: 10.1136/jnnp-2013-306483] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/07/2013] [Accepted: 10/14/2013] [Indexed: 12/03/2022]
Abstract
BACKGROUND The autosomal-recessive cerebellar ataxias (ARCA) are a clinically and genetically heterogeneous group of neurodegenerative disorders. The large number of ARCA genes leads to delay and difficulties obtaining an exact diagnosis in many patients and families. Ubiquinone (CoQ10) deficiency is one of the potentially treatable causes of ARCAs as some patients respond to CoQ10 supplementation. The AarF domain containing kinase 3 gene (ADCK3) is one of several genes associated with CoQ10 deficiency. ADCK3 encodes a mitochondrial protein which functions as an electron-transfer membrane protein complex in the mitochondrial respiratory chain (MRC). METHODS We report two siblings from a consanguineous Pakistani family who presented with cerebellar ataxia and severe myoclonus from adolescence. Whole exome sequencing and biochemical assessment of fibroblasts were performed in the index patient. RESULTS A novel homozygous frameshift mutation in ADCK3 (p.Ser616Leufs*114), was identified in both siblings. This frameshift mutation results in the loss of the stop codon, extending the coding protein by 81 amino acids. Significant CoQ10 deficiency and reduced MRC enzyme activities in the index patient's fibroblasts suggested that the mutant protein may reduce the efficiency of mitochondrial electron transfer. CoQ10 supplementation was initiated following these genetic and biochemical analyses. She gained substantial improvement in myoclonic movements, ataxic gait and dysarthric speech after treatment. CONCLUSION This study highlights the importance of diagnosing ADCK3 mutations and the potential benefit of treatment for patients. The identification of this new mutation broadens the phenotypic spectrum associated with ADCK3 mutations and provides further understanding of their pathogenic mechanism.
Collapse
Affiliation(s)
- Yo-Tsen Liu
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
- Section of Epilepsy, Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Joshua Hersheson
- Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | | | - Katherine Fawcett
- Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Kate E C Duberley
- Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Elisavet Preza
- Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Iain P Hargreaves
- Neurometabolic Unit, National Hospital of Neurology and Neurosurgery, London, UK
| | - Annapurna Chalasani
- Neurometabolic Unit, National Hospital of Neurology and Neurosurgery, London, UK
| | - Matilde Laurá
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Nick W Wood
- Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
46
|
Smeets CJLM, Verbeek DS. Cerebellar ataxia and functional genomics: Identifying the routes to cerebellar neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2030-2038. [PMID: 24726947 DOI: 10.1016/j.bbadis.2014.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/25/2014] [Accepted: 04/02/2014] [Indexed: 12/20/2022]
Abstract
Cerebellar ataxias are progressive neurodegenerative disorders characterized by atrophy of the cerebellum leading to motor dysfunction, balance problems, and limb and gait ataxia. These include among others, the dominantly inherited spinocerebellar ataxias, recessive cerebellar ataxias such as Friedreich's ataxia, and X-linked cerebellar ataxias. Since all cerebellar ataxias display considerable overlap in their disease phenotypes, common pathological pathways must underlie the selective cerebellar neurodegeneration. Therefore, it is important to identify the molecular mechanisms and routes to neurodegeneration that cause cerebellar ataxia. In this review, we discuss the use of functional genomic approaches including whole-exome sequencing, genome-wide gene expression profiling, miRNA profiling, epigenetic profiling, and genetic modifier screens to reveal the underlying pathogenesis of various cerebellar ataxias. These approaches have resulted in the identification of many disease genes, modifier genes, and biomarkers correlating with specific stages of the disease. This article is part of a Special Issue entitled: From Genome to Function.
Collapse
Affiliation(s)
- C J L M Smeets
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D S Verbeek
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
47
|
Odii BO, Coussons P. Biological functionalities of transglutaminase 2 and the possibility of its compensation by other members of the transglutaminase family. ScientificWorldJournal 2014; 2014:714561. [PMID: 24778599 PMCID: PMC3981525 DOI: 10.1155/2014/714561] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/30/2013] [Indexed: 02/01/2023] Open
Abstract
Transglutaminase 2 (TG2) is the most widely distributed and most abundantly expressed member of the transglutaminase family of enzymes, a group of intracellular and extracellular proteins that catalyze the Ca²⁺-dependent posttranslational modification of proteins. It is a unique member of the transglutaminase family owing to its specialized biochemical, structural and functional elements, ubiquitous tissue distribution and subcellular localization, and substrate specificity. The broad substrate specificity of TG2 and its flexible interaction with numerous other gene products may account for its multiple biological functions. In addition to the classic Ca²⁺-dependent transamidation of proteins, which is a hallmark of transglutaminase enzymes, additional Ca²⁺-independent enzymatic and nonenzymatic activities of TG2 have been identified. Many such activities have been directly or indirectly implicated in diverse cellular physiological events, including cell growth and differentiation, cell adhesion and morphology, extracellular matrix stabilization, wound healing, cellular development, receptor-mediated endocytosis, apoptosis, and disease pathology. Given the wide range of activities of the transglutaminase gene family it has been suggested that, in the absence of active versions of TG2, its function could be compensated for by other members of the transglutaminase family. It is in the light of this assertion that we review, herein, TG2 activities and the possibilities and premises for compensation for its absence.
Collapse
Affiliation(s)
- Benedict Onyekachi Odii
- Biomedical Research Group, Department of Life Sciences, Faculty of Science & Technology, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, UK
| | - Peter Coussons
- Biomedical Research Group, Department of Life Sciences, Faculty of Science & Technology, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, UK
| |
Collapse
|
48
|
Yeo AJ, Becherel OJ, Luff JE, Cullen JK, Wongsurawat T, Jenjaroenpoon P, Kuznetsov VA, McKinnon PJ, Lavin MF. R-loops in proliferating cells but not in the brain: implications for AOA2 and other autosomal recessive ataxias. PLoS One 2014; 9:e90219. [PMID: 24637776 PMCID: PMC3956458 DOI: 10.1371/journal.pone.0090219] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/27/2014] [Indexed: 11/18/2022] Open
Abstract
Disruption of the Setx gene, defective in ataxia oculomotor apraxia type 2 (AOA2) leads to the accumulation of DNA/RNA hybrids (R-loops), failure of meiotic recombination and infertility in mice. We report here the presence of R-loops in the testes from other autosomal recessive ataxia mouse models, which correlate with fertility in these disorders. R-loops were coincident in cells showing high basal levels of DNA double strand breaks and in those cells undergoing apoptosis. Depletion of Setx led to high basal levels of R-loops and these were enhanced further by DNA damage both in vitro and in vivo in tissues with proliferating cells. There was no evidence for accumulation of R-loops in the brains of mice where Setx, Atm, Tdp1 or Aptx genes were disrupted. These data provide further evidence for genome destabilization as a consequence of disrupted transcription in the presence of DNA double strand breaks arising during DNA replication or recombination. They also suggest that R-loop accumulation does not contribute to the neurodegenerative phenotype in these autosomal recessive ataxias.
Collapse
Affiliation(s)
- Abrey J. Yeo
- QIMR Berghofer Medical Research Institute, Radiation Biology and Oncology Laboratory, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Olivier J. Becherel
- QIMR Berghofer Medical Research Institute, Radiation Biology and Oncology Laboratory, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biology, University of Queensland, St. Lucia, Queensland, Australia
| | - John E. Luff
- QIMR Berghofer Medical Research Institute, Radiation Biology and Oncology Laboratory, Brisbane, Queensland, Australia
| | - Jason K. Cullen
- QIMR Berghofer Medical Research Institute, Radiation Biology and Oncology Laboratory, Brisbane, Queensland, Australia
| | - Thidathip Wongsurawat
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Singapore, Singapore
- School of Computer Engineering, Nanyang Technological University, Singapore, Singapore
| | - Piroon Jenjaroenpoon
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Singapore, Singapore
| | - Vladimir A. Kuznetsov
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Singapore, Singapore
- School of Computer Engineering, Nanyang Technological University, Singapore, Singapore
| | - Peter J. McKinnon
- Department of Genetics and Tumour Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Martin F. Lavin
- QIMR Berghofer Medical Research Institute, Radiation Biology and Oncology Laboratory, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
49
|
Sakakibara S, Aiba I, Saito Y, Inukai A, Ishikawa K, Mizusawa H. [Clinical features and MRI findings in spinocerebellar ataxia type 31 (SCA31) comparing with spinocerebellar ataxia type 6 (SCA6)]. Rinsho Shinkeigaku 2014; 54:473-479. [PMID: 24990830 DOI: 10.5692/clinicalneurol.54.473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Since the discovery of spinocerebellar ataxia type 31 (SCA31) gene, we identified 6 patients whose SCA type had been unkown for a long period of time as having SCA31 in our hospital and realized that SCA31 is not a rare type of autosomal dominant spinocerebellar ataxia in this region. We examined and compared the clinical details of these six SCA31 patients and the same number of SCA6 patients, finding that some SCA31 patients had hearing loss in common while there are more wide range and complicated signs of extra cerebellum in SCA6 such as pyramidal signs, extrapyramidal signs, dizzy sensations or psychotic, mental problems. There is a significant difference in the number of extracerebellar symptoms between SCA31 and SCA6. There are differences also in MRI findings. Cerebellar atrophy starts from the upper vermis in SCA31, as well as some SCA types, whereas the 4th ventricule becomes enlarged in SCA6 even in the early stage of disease. We suggest that these differences in clinical and MRI findings can be clues for accurate diagnosis before gene analysis.
Collapse
Affiliation(s)
- Satoko Sakakibara
- Department of Neurology, National Hospital Organization Higashi Nagoya National Hospital
| | | | | | | | | | | |
Collapse
|
50
|
Votsi C, Christodoulou K. Molecular diagnosis of autosomal recessive cerebellar ataxia in the whole exome/genome sequencing era. World J Neurol 2013; 3:115-128. [DOI: 10.5316/wjn.v3.i4.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/30/2013] [Accepted: 10/16/2013] [Indexed: 02/06/2023] Open
Abstract
Autosomal recessive cerebellar ataxias (ARCA) are a clinically and genetically heterogeneous group of rare neurodegenerative disorders characterized by autosomal recessive inheritance and an early age of onset. Progressive ataxia is usually the prominent symptom and is often associated with other neurological or additional features. ARCA classification still remains controversial even though different approaches have been proposed over the years. Furthermore, ARCA molecular diagnosis has been a challenge due to phenotypic overlap and increased genetic heterogeneity observed within this group of disorders. Friedreich’s ataxia and ataxia telangiectasia have been reported as the most frequent and well-studied forms of ARCA. Significant progress in understanding the genetic etiologies of the ARCA has been achieved during the last 15 years. The methodological revolution that has been observed in genetics over the last few years has contributed significantly to the molecular diagnosis of rare diseases including the ARCAs. Development of high throughput technologies has resulted in the identification of new ARCA genes and novel mutations in known ARCA genes. Therefore, an improvement in the molecular diagnosis of ARCA is expected. Moreover, based on the fact that many patients still remain undiagnosed, additional forms of ataxia are expected to be identified. We hereby review the current knowledge on the ARCAs, focused on the genetic findings of the most common forms that were molecularly characterized before the whole exome/genome era, as well as the most recently described forms that have been elucidated with the use of these novel technologies. The significant contribution of whole-exome sequencing or whole-genome sequencing in the molecular diagnosis of ARCAs is discussed.
Collapse
|