1
|
Lu Y, Wang Z, Zhang D, Luo N, Yang H, Chen D, Huang H. Application of Circulating Tumor DNA in the Auxiliary Diagnosis and Prognosis Prediction of Glioma. Cell Mol Neurobiol 2024; 45:6. [PMID: 39692767 DOI: 10.1007/s10571-024-01515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024]
Abstract
Glioma is the most common primary malignant brain tumor. Despite significant advances in the past decade in understanding the molecular pathogenesis of this tumor and exploring therapeutic strategies, the prognosis of patients with glioma remains poor. Accurate diagnosis of glioma is very important for the treatment and prognosis. Although the gold-standard method for the diagnosis and prognosis prediction of patients with glioma is tissue biopsy, it still has many limitations. Liquid biopsy can provide information on the auxiliary diagnosis and prognosis of gliomas. In this review, we summarized the application of cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA) in the auxiliary diagnosis and prognosis of glioma. The common methods used to detect ctDNA in gliomas using samples including blood and cerebrospinal fluid (CSF) and the detection techniques for ctDNA, including droplet digital PCR (ddPCR) and next-generation sequencing (NGS), were discussed. Detection of ctDNA from plasma of patients with brain tumors remains challenging because of the blood-brain barrier (BBB). CSF has been proposed as a medium for ctDNA analysis in brain tumors, and mutation detection using plasma ctDNA was less sensitive than CSF ctDNA sequencing. Moreover, ongoing relevant clinical studies were summarized. Finally, we discussed the challenges, and future directions for the studies on ctDNA in glioma.
Collapse
Affiliation(s)
- Ying Lu
- Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, China
| | - Zhouyu Wang
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Danmeng Zhang
- Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, China
| | - Ningning Luo
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Hui Yang
- Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, China
| | - Dongsheng Chen
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China.
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
- Center of Translational Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
| | - Haixin Huang
- Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, China.
| |
Collapse
|
2
|
Hu Q, Chen L, Li K, Liu R, Sun L, Han T. Circulating tumor DNA: current implementation issues and future challenges for clinical utility. Clin Chem Lab Med 2024; 62:2094-2110. [PMID: 38109307 DOI: 10.1515/cclm-2023-1157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
Over the past decades, liquid biopsy, especially circulating tumor DNA (ctDNA), has received tremendous attention as a noninvasive detection approach for clinical applications, including early diagnosis of cancer and relapse, real-time therapeutic efficacy monitoring, potential target selection and investigation of drug resistance mechanisms. In recent years, the application of next-generation sequencing technology combined with AI technology has significantly improved the accuracy and sensitivity of liquid biopsy, enhancing its potential in solid tumors. However, the increasing integration of such promising tests to improve therapy decision making by oncologists still has complexities and challenges. Here, we propose a conceptual framework of ctDNA technologies and clinical utilities based on bibliometrics and highlight current challenges and future directions, especially in clinical applications such as early detection, minimal residual disease detection, targeted therapy, and immunotherapy. We also discuss the necessities of developing a dynamic field of translational cancer research and rigorous clinical studies that may support therapeutic strategy decision making in the near future.
Collapse
Affiliation(s)
- Qilin Hu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Lujun Chen
- The General Hospital of Northern Theater Command Training Base for Graduate, China Medical University, Shenyang, P.R. China
| | - Kerui Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Ruotong Liu
- Clinical Medicine, Shenyang Medical College, Shenyang, P.R. China
| | - Lei Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Tao Han
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
3
|
Palacio PL, Greenwald J, Nguyen KT, Shantaram D, Butsch BL, Kim Y, Dattu MH, Noria S, Brethauer SA, Needleman BJ, Wysocki V, Hsueh W, Reátegui E, Magaña SM. Novel multiparametric bulk and single EV pipeline for adipose cell-specific biomarker discovery in paired human biospecimens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590172. [PMID: 38659953 PMCID: PMC11042368 DOI: 10.1101/2024.04.18.590172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Obesity is a global health crisis that contributes to morbidity and mortality worldwide. Obesity's comorbid association with a variety of diseases, from metabolic syndrome to neurodegenerative disease, underscores the critical need to better understand the pathobiology of obesity. Adipose tissue, once seen as an inert storage depot, is now recognized as an active endocrine organ, regulating metabolic and systemic homeostasis. Recent studies spotlight the theranostic utility of extracellular vesicles (EVs) as novel biomarkers and drivers of disease, including obesity-related complications. Adipose-derived EVs (ADEVs) have garnered increased interest for their roles in diverse diseases, however robust isolation and characterization protocols for human, cell-specific EV subsets are limited. Herein, we directly address this technical challenge by establishing a multiparametric analysis framework that leverages bulk and single EV characterization, mRNA phenotyping and proteomics of human ADEVs directly from paired visceral adipose tissue, cultured mature adipocyte conditioned media, and plasma from obese subjects undergoing bariatric surgery. Importantly, rigorous EV phenotyping at the tissue and cell-specific level identified top 'adipose liquid biopsy' candidates that were validated in circulating plasma EVs from the same patient. In summary, our study paves the way toward a tissue and cell-specific, multiparametric framework for studying tissue and circulating adipose EVs in obesity-driven disease.
Collapse
|
4
|
Jarmuzek P, Wawrzyniak-Gramacka E, Morawin B, Tylutka A, Zembron-Lacny A. Diagnostic and Prognostic Value of Circulating DNA Fragments in Glioblastoma Multiforme Patients. Int J Mol Sci 2024; 25:4221. [PMID: 38673808 PMCID: PMC11049819 DOI: 10.3390/ijms25084221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Novel blood-circulating molecules, as potential biomarkers for glioblastoma multiforme (GBM) diagnosis and monitoring, are attracting particular attention due to limitations of imaging modalities and invasive tissue biopsy procedures. This study aims to assess the diagnostic and prognostic values of circulating cell-free DNA (cfDNA) in relation to inflammatory status in GBM patients and to determine the concentration and average size of DNA fragments typical of tumour-derived DNA fractions. Preoperative plasma samples from 40 patients (GBM 65.0 ± 11.3 years) and 40 healthy controls (HC 70.4 ± 5.4 years) were compared. The cfDNA concentrations and lengths were measured using the electrophoresis platform, and inflammatory indices (NLR, PLR, LMR, and SII) were calculated from complete blood cell analysis. More fragmented cfDNA and 4-fold higher 50-700 bp cfDNA concentrations were detected in GBM patients than in healthy controls. The average cfDNA size in the GBM group was significantly longer (median 336 bp) than in the HC group (median 271 bp). Optimal threshold values were 1265 pg/μL for 50-700 bp cfDNA (AUC = 0.857) and 290 bp for average cfDNA size (AUC = 0.814). A Kaplan-Meier survival curves analysis also demonstrated a higher mortality risk in the GBM group with a cut-off >303 bp cfDNA. This study is the first to have revealed glioblastoma association with high levels of cfDNA > 1000 pg/μL of 50-700 bp in length, which can be aggravated by immunoinflammatory reactivity.
Collapse
Affiliation(s)
- Pawel Jarmuzek
- Neurosurgery Center University Hospital, Collegium Medicum University of Zielona Gora, 28 Zyty Str., 65-417 Zielona Gora, Poland;
| | - Edyta Wawrzyniak-Gramacka
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 28 Zyty Str., 65-417 Zielona Gora, Poland; (E.W.-G.); (B.M.); (A.T.)
| | - Barbara Morawin
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 28 Zyty Str., 65-417 Zielona Gora, Poland; (E.W.-G.); (B.M.); (A.T.)
| | - Anna Tylutka
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 28 Zyty Str., 65-417 Zielona Gora, Poland; (E.W.-G.); (B.M.); (A.T.)
| | - Agnieszka Zembron-Lacny
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 28 Zyty Str., 65-417 Zielona Gora, Poland; (E.W.-G.); (B.M.); (A.T.)
| |
Collapse
|
5
|
Yuan J, Xu L, Chien CY, Yang Y, Yue Y, Fadera S, Stark AH, Schwetye KE, Nazeri A, Desai R, Athiraman U, Chaudhuri AA, Chen H, Leuthardt EC. First-in-human prospective trial of sonobiopsy in high-grade glioma patients using neuronavigation-guided focused ultrasound. NPJ Precis Oncol 2023; 7:92. [PMID: 37717084 PMCID: PMC10505140 DOI: 10.1038/s41698-023-00448-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023] Open
Abstract
Sonobiopsy is an emerging technology that combines focused ultrasound (FUS) with microbubbles to enrich circulating brain disease-specific biomarkers for noninvasive molecular diagnosis of brain diseases. Here, we report the first-in-human prospective trial of sonobiopsy in high-grade glioma patients to evaluate its feasibility and safety in enriching plasma circulating tumor biomarkers. A nimble FUS device integrated with a clinical neuronavigation system was used to perform sonobiopsy following an established clinical workflow for neuronavigation. Analysis of blood samples collected before and after FUS sonication showed that sonobiopsy enriched plasma circulating tumor DNA (ctDNA), including a maximum increase of 1.6-fold for the mononucleosome cell-free DNA (cfDNA) fragments (120-280 bp), 1.9-fold for the patient-specific tumor variant ctDNA level, and 5.6-fold for the TERT mutation ctDNA level. Histological analysis of surgically resected tumors confirmed the safety of the procedure. Transcriptome analysis of sonicated and nonsonicated tumor tissues found that FUS sonication modulated cell physical structure-related genes. Only 2 out of 17,982 total detected genes related to the immune pathways were upregulated. These feasibility and safety data support the continued investigation of sonobiopsy for noninvasive molecular diagnosis of brain diseases.
Collapse
Affiliation(s)
- Jinyun Yuan
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Lu Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Chih-Yen Chien
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Siaka Fadera
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Andrew H Stark
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Katherine E Schwetye
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Arash Nazeri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Rupen Desai
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Umeshkumar Athiraman
- Department of Anesthesia, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Aadel A Chaudhuri
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, 63108, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Computer Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Division of Neurotechnology, Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| | - Eric C Leuthardt
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Division of Neurotechnology, Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
- Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
| |
Collapse
|
6
|
Jarmuzek P, Kozlowska K, Defort P, Kot M, Zembron-Lacny A. Prognostic Values of Systemic Inflammatory Immunological Markers in Glioblastoma: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:3339. [PMID: 37444448 DOI: 10.3390/cancers15133339] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Neutrophils are an important part of the tumor microenvironment, which stimulates inflammatory processes through phagocytosis, degranulation, release of small DNA fragments (cell-free DNA), and presentation of antigens. Since neutrophils accumulate in peripheral blood in patients with advanced-stage cancer, a high neutrophil-to-lymphocyte ratio can be a biomarker of a poor prognosis in patients with glioblastoma. The present study aimed to explore the prognostic value of the preoperative levels of neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), systemic immune inflammation index (SII), systemic inflammation response index (SIRI), and cell-free DNA (cfDNA) to better predict prognostic implications in the survival rate of glioblastoma patients. METHODS The meta-analysis was carried out according to the recommendations and standards established by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Databases of PubMed, EBSCO, and Medline were systematically searched to select all the relevant studies published up to December 2022. RESULTS Poorer prognoses were recorded in patients with a high NLR or PLR when compared with the patients with a low NLR or PLR (HR 1.51, 95% CI 1.24-1.83, p < 0.0001 and HR 1.34, 95% CI 1.10-1.63, p < 0.01, respectively). Similarly, a worse prognosis was reported for patients with a higher cfDNA (HR 2.35, 95% CI 1.27-4.36, p < 0.01). The SII and SIRI values were not related to glioblastoma survival (p = 0.0533 and p = 0.482, respectively). CONCLUSIONS Thus, NLR, PLR, and cfDNA, unlike SII and SIRI, appeared to be useful and convenient peripheral inflammatory markers to assess the prognosis in glioblastoma.
Collapse
Affiliation(s)
- Pawel Jarmuzek
- Department of Nervous System Diseases, Collegium Medicum University of Zielona Gora, Neurosurgery Center University Hospital in Zielona Gora, 65-417 Zielona Gora, Poland
| | - Klaudia Kozlowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Piotr Defort
- Department of Nervous System Diseases, Collegium Medicum University of Zielona Gora, Neurosurgery Center University Hospital in Zielona Gora, 65-417 Zielona Gora, Poland
| | - Marcin Kot
- Department of Nervous System Diseases, Collegium Medicum University of Zielona Gora, Neurosurgery Center University Hospital in Zielona Gora, 65-417 Zielona Gora, Poland
| | - Agnieszka Zembron-Lacny
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 65-417 Zielona Gora, Poland
| |
Collapse
|
7
|
Xu L, Pacia CP, Gong Y, Hu Z, Chien CY, Yang L, Gach HM, Hao Y, Comron H, Huang J, Leuthardt EC, Chen H. Characterization of the Targeting Accuracy of a Neuronavigation-Guided Transcranial FUS System In Vitro, In Vivo, and In Silico. IEEE Trans Biomed Eng 2023; 70:1528-1538. [PMID: 36374883 PMCID: PMC10176741 DOI: 10.1109/tbme.2022.3221887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Focused ultrasound (FUS)-enabled liquid biopsy (sonobiopsy) is an emerging technique for the noninvasive and spatiotemporally controlled diagnosis of brain cancer by inducing blood-brain barrier (BBB) disruption to release brain tumor-specific biomarkers into the blood circulation. The feasibility, safety, and efficacy of sonobiopsy were demonstrated in both small and large animal models using magnetic resonance-guided FUS devices. However, the high cost and complex operation of magnetic resonance-guided FUS devices limit the future broad application of sonobiopsy in the clinic. In this study, a neuronavigation-guided sonobiopsy device is developed and its targeting accuracy is characterized in vitro, in vivo, and in silico. The sonobiopsy device integrated a commercially available neuronavigation system (BrainSight) with a nimble, lightweight FUS transducer. Its targeting accuracy was characterized in vitro in a water tank using a hydrophone. The performance of the device in BBB disruption was verified in vivo using a pig model, and the targeting accuracy was quantified by measuring the offset between the target and the actual locations of BBB opening. The feasibility of the FUS device in targeting glioblastoma (GBM) tumors was evaluated in silico using numerical simulation by the k-Wave toolbox in glioblastoma patients. It was found that the targeting accuracy of the neuronavigation-guided sonobiopsy device was 1.7 ± 0.8 mm as measured in the water tank. The neuronavigation-guided FUS device successfully induced BBB disruption in pigs with a targeting accuracy of 3.3 ± 1.4 mm. The targeting accuracy of the FUS transducer at the GBM tumor was 5.5 ± 4.9 mm. Age, sex, and incident locations were found to be not correlated with the targeting accuracy in GBM patients. This study demonstrated that the developed neuronavigation-guided FUS device could target the brain with a high spatial targeting accuracy, paving the foundation for its application in the clinic.
Collapse
|
8
|
Wang H, Wang L, Fang C, Li C, Zhang L. Comparison of the diagnostic value of liquid biopsy in leptomeningeal metastases: A systematic review and meta-analysis. Front Oncol 2022; 12:1079796. [PMID: 36601482 PMCID: PMC9806138 DOI: 10.3389/fonc.2022.1079796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Background Brain metastases (BM) include brain parenchymal (BPM) and leptomeningeal metastases (LM), which are associated with a poor prognosis and high mortality rate. Early and accurate diagnosis and timely, effective treatment are crucial for improving the overall survival of LM patients. Cerebrospinal fluid (CSF) biopsy technology has attracted widespread attention for its diagnostic value in diverse cancers, including LM. We summarized studies to compare the potential diagnostic value of CSF liquid biopsy techniques in BM patients with meta-analysis. Methods The study protocol was prospectively registered in PROSPERO, registration number CRD42022373263. We obtained the literature on liquid biopsy for BM from 7 databases (PubMed, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure, and Wanfang Data knowledge service platform). Then, a systematic review of those studies was performed according to PRISMA criteria. Results Nine publications have been obtained, and we found CSF liquid biopsy techniques to be more suitable for diagnosing LM. We analyzed the sensitivity, specificity, and area under the curve (AUC) of CSF liquid biopsy. The overall sensitivity, specificity, and AUC of CSF liquid biopsy in the diagnosis of LM were 0.65 (95% CI: 0.48 - 0.79), 0.70 (95% CI: 0.50 - 0.86), and 0.69, respectively. Then, we compared the diagnostic advantages of CSF liquid biopsy techniques and CSF cytology in LM. The results show that CSF liquid biopsy is superior to CSF cytology in LM diagnosis. Conclusions Our meta-analysis suggested that CSF liquid biopsy is more suitable for LM diagnosis and has higher accuracy than CSF cytology.
Collapse
Affiliation(s)
- Hanbin Wang
- Clinical Medicine College, Affiliated Hospital of Hebei University, Hebei University, Baoding, Hebei, China,Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, Hebei, China
| | - Luxuan Wang
- Department of Neurological Function Examination, Affiliated Hospital of Hebei University, Hebei University, Baoding, Hebei, China
| | - Chuan Fang
- Clinical Medicine College, Affiliated Hospital of Hebei University, Hebei University, Baoding, Hebei, China,Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, Hebei, China,Postdoctoral Research Station of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, Hebei, China,Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Affiliated Hospital of Hebei University, Hebei University, Baoding, Hebei, China,*Correspondence: Lijian Zhang, ; Chunhui Li, ; Chuan Fang,
| | - Chunhui Li
- Clinical Medicine College, Affiliated Hospital of Hebei University, Hebei University, Baoding, Hebei, China,Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, Hebei, China,*Correspondence: Lijian Zhang, ; Chunhui Li, ; Chuan Fang,
| | - Lijian Zhang
- Clinical Medicine College, Affiliated Hospital of Hebei University, Hebei University, Baoding, Hebei, China,Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, Hebei, China,Postdoctoral Research Station of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, Hebei, China,Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Affiliated Hospital of Hebei University, Hebei University, Baoding, Hebei, China,*Correspondence: Lijian Zhang, ; Chunhui Li, ; Chuan Fang,
| |
Collapse
|
9
|
Li M, Chen J, Zhang B, Yu J, Wang N, Li D, Shao Y, Zhu D, Liang C, Ma Y, Ou Q, Hou X, Chen L. Dynamic monitoring of cerebrospinal fluid circulating tumor DNA to identify unique genetic profiles of brain metastatic tumors and better predict intracranial tumor responses in non-small cell lung cancer patients with brain metastases: a prospective cohort study (GASTO 1028). BMC Med 2022; 20:398. [PMID: 36372873 PMCID: PMC9661744 DOI: 10.1186/s12916-022-02595-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/04/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Due to the blood-brain barrier, plasma is not an ideal source to evaluate the genetic characteristics of central nervous system tumors. Thus, cerebrospinal fluid (CSF) is becoming an alternative biopsy type to evaluate the genetic landscape of intracranial tumors. We aimed to explore the genetic profiles of CSF-derived circulating tumor DNA (ctDNA) to predict intracranial tumor responses and monitor mutational evolution during the treatment of non-small cell lung cancer (NSCLC) patients with brain metastases. METHODS We conducted a prospective study of 92 newly diagnosed NSCLC patients with brain metastases. Paired CSF and plasma samples were collected at baseline, 8 weeks after treatment initiation, and disease progression. All samples underwent next-generation sequencing of 425 cancer-related genes. RESULTS At baseline, the positive detection rates of ctDNA in CSF, plasma, and extracranial tumors were 63.7% (58/91), 91.1% (82/90), and 100% (58/58), respectively. A high level of genetic heterogeneity was observed between paired CSF and plasma, while concordance in driver mutations was also observed. A higher number of unique copy number variations was detected in CSF-ctDNA than in plasma. ctDNA positivity of CSF samples at baseline was associated with poor outcomes (HR=2.565, P=0.003). Moreover, patients with ≥ 50% reductions in the concentrations of CSF ctDNA after 8 weeks of treatment had significantly longer intracranial progression-free survivals (PFS) than patients with < 50% reductions in CSF ctDNA concentrations (13.27 months vs 6.13 months, HR=0.308, P=0.017). A ≥ 50% reduction in CSF ctDNA concentrations had better concordance with radiographic intracranial tumor responses than plasma. A ≥ 50% reduction in plasma ctDNA concentrations was also associated with longer extracranial PFS (11.57 months vs 6.20 months, HR=0.406, P=0.033). Based on clonal evolution analyses, the accumulation of subclonal mutations in CSF ctDNA was observed after 8 weeks of treatment. The clonal mutations that remained in more than 80% in CSF after 8 weeks also predicted shorter intracranial PFS (HR=3.785, P=0.039). CONCLUSIONS CSF ctDNA exhibited unique genetic profiles of brain metastases, and dynamic changes in CSF ctDNA could better predict intracranial tumor responses and track clonal evolution during treatment in NSCLC patients with brain metastases. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT03257735.
Collapse
Affiliation(s)
- Meichen Li
- Department of Medical OncologyState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jing Chen
- Department of Medical OncologyState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Baishen Zhang
- Department of Medical OncologyState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Juan Yu
- Department of Medical OncologyState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Na Wang
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Delan Li
- Chemotherapy Department 2, Zhongshan City People's Hospital, Zhongshan, China
| | - Yang Shao
- School of Public Health, Nanjing Medical University, Nanjing, China.,Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Dongqin Zhu
- Nanjing Geneseeq Technology Inc, Nanjing, China
| | | | - Yutong Ma
- Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Qiuxiang Ou
- Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Xue Hou
- Department of Medical OncologyState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Likun Chen
- Department of Medical OncologyState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
10
|
Ershova ES, Shmarina GV, Porokhovnik LN, Zakharova NV, Kostyuk GP, Umriukhin PE, Kutsev SI, Sergeeva VA, Veiko NN, Kostyuk SV. In Vitro Analysis of Biological Activity of Circulating Cell-Free DNA Isolated from Blood Plasma of Schizophrenic Patients and Healthy Controls. Genes (Basel) 2022; 13:genes13030551. [PMID: 35328103 PMCID: PMC8955124 DOI: 10.3390/genes13030551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is associated with low-grade systemic inflammation. Circulating cell-free DNA (c-cfDNA) belongs to the DAMP class. The major research question was: can the c-cfDNA of schizophrenic patients (sz-cfDNA) stimulate the DNA sensor genes, which control the innate immunity? We investigated the in vitro response of ten human skin fibroblast (HSF) lines to five DNA probes containing different amounts of a GC-rich marker (the ribosomal repeat) and a DNA oxidation marker (8-oxodG) including sz-cfDNA and healthy control c-cfDNA (hc-cfDNA) probes. After 1 h, 3 h, and 24 h of incubation, the expression of 6 protein genes responsible for cfDNA transport into the cell (EEA1 and HMGB1) and the recognition of cytosolic DNA (TLR9, AIM2, STING and RIG-I) was analyzed at the transcriptional (RT-qPCR) and protein level (flow cytometry and fluorescence microscopy). Additionally, we analyzed changes in the RNA amount of 32 genes (RT-qPCR), which had been previously associated with different cellular responses to cell-free DNA with different characteristics. Adding sz-cfDNA and hc-cfDNA to the HSF medium in equal amounts (50 ng/mL) blocked endocytosis and stimulated TLR9 and STING gene expression while blocking RIG-I and AIM2 expression. Sz-cfDNA and hc-cfDNA, compared to gDNA, demonstrated much stronger stimulated transcription of genes that control cell proliferation, cytokine synthesis, apoptosis, autophagy, and mitochondrial biogenesis. No significant difference was observed in the response of the cells to sz-cfDNA and hc-cfDNA. Sz-cfDNA and hc-cfDNA showed similarly high biological activity towards HSFs, stimulating the gene activity of TLR9 and STING DNA sensor proteins and blocking the activity of the AIM2 protein gene. Since the sz-cfDNA content in the patients’ blood is several times higher than the hc-cfDNA content, sz-cfDNA may upregulate pro-inflammatory cytokines in schizophrenia.
Collapse
Affiliation(s)
- Elizaveta S. Ershova
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| | - Galina V. Shmarina
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| | - Lev N. Porokhovnik
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
- Correspondence:
| | - Natalia V. Zakharova
- N.A. Alekseev Clinical Psychiatric Hospital No. 1, 117152 Moscow, Russia; (N.V.Z.); (G.P.K.)
| | - George P. Kostyuk
- N.A. Alekseev Clinical Psychiatric Hospital No. 1, 117152 Moscow, Russia; (N.V.Z.); (G.P.K.)
| | - Pavel E. Umriukhin
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
- Department of Physiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey I. Kutsev
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| | - Vasilina A. Sergeeva
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| | - Natalia N. Veiko
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| | - Svetlana V. Kostyuk
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| |
Collapse
|
11
|
Lee B, Mohamad I, Pokhrel R, Murad R, Yuan M, Stapleton S, Bettegowda C, Jallo G, Eberhart CG, Garrett T, Perera RJ. Medulloblastoma cerebrospinal fluid reveals metabolites and lipids indicative of hypoxia and cancer-specific RNAs. Acta Neuropathol Commun 2022; 10:25. [PMID: 35209946 PMCID: PMC8867780 DOI: 10.1186/s40478-022-01326-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/04/2022] [Indexed: 02/07/2023] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children. There remains an unmet need for diagnostics to sensitively detect the disease, particularly recurrences. Cerebrospinal fluid (CSF) provides a window into the central nervous system, and liquid biopsy of CSF could provide a relatively non-invasive means for disease diagnosis. There has yet to be an integrated analysis of the transcriptomic, metabolomic, and lipidomic changes occurring in the CSF of children with MB. CSF samples from patients with (n = 40) or without (n = 11; no cancer) MB were subjected to RNA-sequencing and high-resolution mass spectrometry to identify RNA, metabolite, and lipid profiles. Differentially expressed transcripts, metabolites, and lipids were identified and their biological significance assessed by pathway analysis. The DIABLO multivariate analysis package (R package mixOmics) was used to integrate the molecular changes characterizing the CSF of MB patients. Differentially expressed transcripts, metabolites, and lipids in CSF were discriminatory for the presence of MB but not the exact molecular subtype. One hundred and ten genes and ten circular RNAs were differentially expressed in MB CSF compared with normal, representing TGF-β signaling, TNF-α signaling via NF-kB, and adipogenesis pathways. Tricarboxylic acid cycle and other metabolites (malate, fumarate, succinate, α-ketoglutarate, hydroxypyruvate, N-acetyl-aspartate) and total triacylglycerols were significantly upregulated in MB CSF compared with normal CSF. Although separating MBs into subgroups using transcriptomic, metabolomic, and lipid signatures in CSF was challenging, we were able to identify a group of omics signatures that could separate cancer from normal CSF. Metabolic and lipidomic profiles both contained indicators of tumor hypoxia. Our approach provides several candidate signatures that deserve further validation, including the novel circular RNA circ_463, and insights into the impact of MB on the CSF microenvironment.
Collapse
Affiliation(s)
- Bongyong Lee
- grid.21107.350000 0001 2171 9311Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St, Baltimore, MD 21231 USA ,grid.413611.00000 0004 0467 2330Johns Hopkins All Children’s Hospital, 600 5th St. South, St. Petersburg, FL 33701 USA
| | - Iqbal Mohamad
- grid.15276.370000 0004 1936 8091Department Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, 1395 Center Drive, Gainesville, FL 32610 USA ,grid.240145.60000 0001 2291 4776Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Rudramani Pokhrel
- grid.21107.350000 0001 2171 9311Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St, Baltimore, MD 21231 USA ,grid.413611.00000 0004 0467 2330Johns Hopkins All Children’s Hospital, 600 5th St. South, St. Petersburg, FL 33701 USA
| | - Rabi Murad
- grid.479509.60000 0001 0163 8573Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037 USA
| | - Menglang Yuan
- grid.21107.350000 0001 2171 9311Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St, Baltimore, MD 21231 USA ,grid.413611.00000 0004 0467 2330Johns Hopkins All Children’s Hospital, 600 5th St. South, St. Petersburg, FL 33701 USA
| | - Stacie Stapleton
- grid.413611.00000 0004 0467 2330Johns Hopkins All Children’s Hospital, 600 5th St. South, St. Petersburg, FL 33701 USA
| | - Chetan Bettegowda
- grid.21107.350000 0001 2171 9311Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St, Baltimore, MD 21231 USA ,grid.21107.350000 0001 2171 9311Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - George Jallo
- grid.413611.00000 0004 0467 2330Johns Hopkins All Children’s Hospital, 600 5th St. South, St. Petersburg, FL 33701 USA
| | - Charles G. Eberhart
- grid.21107.350000 0001 2171 9311Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St, Baltimore, MD 21231 USA ,grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205 USA
| | - Timothy Garrett
- Department Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, 1395 Center Drive, Gainesville, FL, 32610, USA.
| | - Ranjan J. Perera
- grid.21107.350000 0001 2171 9311Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St, Baltimore, MD 21231 USA ,grid.413611.00000 0004 0467 2330Johns Hopkins All Children’s Hospital, 600 5th St. South, St. Petersburg, FL 33701 USA
| |
Collapse
|
12
|
Agulnik JS, Papadakis AI, Pepe C, Sakr L, Small D, Wang H, Kasymjanova G, Spatz A, Cohen V. Cell-Free Tumor DNA (ctDNA) Utility in Detection of Original Sensitizing and Resistant EGFR Mutations in Non-Small Cell Lung Cancer (NSCLC). Curr Oncol 2022; 29:1107-1116. [PMID: 35200593 PMCID: PMC8871000 DOI: 10.3390/curroncol29020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Recent studies have demonstrated the utility of cell-free tumor DNA (ctDNA) from plasma as an alternative source of genomic material for detection of sensitizing and resistance mutations in NSCLC. We hypothesized that the plasma level of ctDNA is an effective biomarker to provide a non-invasive and thus a less risky method to determine new resistance mutations and to monitor response to treatment and tumor progression in lung cancer patients. Methods: This prospective cohort study was approved and conducted at the Peter Brojde Lung Cancer Centre, Montreal. Blood was collected in STRECK tubes at four time points. DNA was extracted from plasma, and ctDNA was analyzed for the presence of mutations in the EGFR gene using the COBAS® EGFR v2 qPCR (Roche) test. Results: Overall, 75 pts were enrolled in the study. In total, 23 pts were TKI-naïve, and 52 were already receiving first-line TKI treatment. ctDNA detected the original mutations (OM) in 35/75 (48%) patients. Significantly higher detection rates were observed in TKI-naïve patients compared to the TKI-treated group, 70% versus 37%, respectively (p = 0.012). The detection of the original mutation at the study baseline was a negative predictor of progression-free survival (PFS) and overall survival (OS). The resistance mutation (T790M) was detected in 32/74 (43%) patients. In 27/32 (84%), the T790M was detected during treatment with TKI: in 25/27 patients, T790M was detected at the time of radiologic progression, in one patient, T790M was detected before radiologic progression, and in one patient, T790M was detected four weeks after starting systemic chemotherapy post progression on TKI. At the time of progression, the detection of T790M significantly correlates with the re-appearance of OM (p = 0.001). Conclusion: Plasma ctDNA is a noninvasive patient-friendly test that can be used to monitor response to treatment, early progression, and detection of acquired resistant mutations. Monitoring of clearance and re-emergence of driver mutations during TKI treatment effectively identifies progression of the disease. As larger NGS panels are available for ctDNA testing, these findings may also have implications for other biomarkers. The results from ongoing and prospective studies will further determine the utility of plasma testing to diagnose, monitor for disease progression, and guide treatment decisions in NSCLC.
Collapse
Affiliation(s)
- Jason S. Agulnik
- Peter Brojde Lung Cancer Centre, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; (J.S.A.); (C.P.); (L.S.); (D.S.); (V.C.)
| | - Andreas I. Papadakis
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada;
| | - Carmela Pepe
- Peter Brojde Lung Cancer Centre, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; (J.S.A.); (C.P.); (L.S.); (D.S.); (V.C.)
| | - Lama Sakr
- Peter Brojde Lung Cancer Centre, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; (J.S.A.); (C.P.); (L.S.); (D.S.); (V.C.)
| | - David Small
- Peter Brojde Lung Cancer Centre, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; (J.S.A.); (C.P.); (L.S.); (D.S.); (V.C.)
| | - Hangjun Wang
- Department of Pathology, Jewish General Hospital, Montreal, QC H3T 1E2, Canada;
| | - Goulnar Kasymjanova
- Peter Brojde Lung Cancer Centre, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; (J.S.A.); (C.P.); (L.S.); (D.S.); (V.C.)
- Correspondence:
| | - Alan Spatz
- OPTILAB-Montreal MUHC & Department of Laboratory Medicine, McGill University Health Center, Montreal, QC H3T 1E2, Canada;
| | - Victor Cohen
- Peter Brojde Lung Cancer Centre, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; (J.S.A.); (C.P.); (L.S.); (D.S.); (V.C.)
| |
Collapse
|
13
|
Kalita-de Croft P, Joshi V, Saunus JM, Lakhani SR. Emerging Biomarkers for Diagnosis, Prevention and Treatment of Brain Metastases-From Biology to Clinical Utility. Diseases 2022; 10:11. [PMID: 35225863 PMCID: PMC8884016 DOI: 10.3390/diseases10010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Primary malignancies of the lung, skin (melanoma), and breast have higher propensity for metastatic spread to the brain. Advances in molecular tumour profiling have aided the development of targeted therapies, stereotactic radiotherapy, and immunotherapy, which have led to some improvement in patient outcomes; however, the overall prognosis remains poor. Continued research to identify new prognostic and predictive biomarkers is necessary to further impact patient outcomes, as this will enable better risk stratification at the point of primary cancer diagnosis, earlier detection of metastatic deposits (for example, through surveillance), and more effective systemic treatments. Brain metastases exhibit considerable inter- and intratumoural heterogeneity-apart from distinct histology, treatment history and other clinical factors, the metastatic brain tumour microenvironment is incredibly variable both in terms of subclonal diversity and cellular composition. This review discusses emerging biomarkers; specifically, the biological context and potential clinical utility of tumour tissue biomarkers, circulating tumour cells, extracellular vesicles, and circulating tumour DNA.
Collapse
Affiliation(s)
- Priyakshi Kalita-de Croft
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
| | - Vaibhavi Joshi
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
| | - Jodi M. Saunus
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
| | - Sunil R. Lakhani
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
- Pathology Queensland, The Royal Brisbane and Women’s Hospital Herston, Herston, QLD 4029, Australia
| |
Collapse
|
14
|
Pacia CP, Yuan J, Yue Y, Xu L, Nazeri A, Desai R, Gach HM, Wang X, Talcott MR, Chaudhuri AA, Dunn GP, Leuthardt EC, Chen H. Sonobiopsy for minimally invasive, spatiotemporally-controlled, and sensitive detection of glioblastoma-derived circulating tumor DNA. Am J Cancer Res 2022; 12:362-378. [PMID: 34987650 PMCID: PMC8690937 DOI: 10.7150/thno.65597] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Though surgical biopsies provide direct access to tissue for genomic characterization of brain cancer, they are invasive and pose significant clinical risks. Brain cancer management via blood-based liquid biopsies is a minimally invasive alternative; however, the blood-brain barrier (BBB) restricts the release of brain tumor-derived molecular biomarkers necessary for sensitive diagnosis. Methods: A mouse glioblastoma multiforme (GBM) model was used to demonstrate the capability of focused ultrasound (FUS)-enabled liquid biopsy (sonobiopsy) to improve the diagnostic sensitivity of brain tumor-specific genetic mutations compared with conventional blood-based liquid biopsy. Furthermore, a pig GBM model was developed to characterize the translational implications of sonobiopsy in humans. Magnetic resonance imaging (MRI)-guided FUS sonication was performed in mice and pigs to locally enhance the BBB permeability of the GBM tumor. Contrast-enhanced T1-weighted MR images were acquired to evaluate the BBB permeability change. Blood was collected immediately after FUS sonication. Droplet digital PCR was used to quantify the levels of brain tumor-specific genetic mutations in the circulating tumor DNA (ctDNA). Histological staining was performed to evaluate the potential for off-target tissue damage by sonobiopsy. Results: Sonobiopsy improved the detection sensitivity of EGFRvIII from 7.14% to 64.71% and TERT C228T from 14.29% to 45.83% in the mouse GBM model. It also improved the diagnostic sensitivity of EGFRvIII from 28.57% to 100% and TERT C228T from 42.86% to 71.43% in the porcine GBM model. Conclusion: Sonobiopsy disrupts the BBB at the spatially-targeted brain location, releases tumor-derived DNA into the blood circulation, and enables timely collection of ctDNA. Converging evidence from both mouse and pig GBM models strongly supports the clinical translation of sonobiopsy for the minimally invasive, spatiotemporally-controlled, and sensitive molecular characterization of brain cancer.
Collapse
|
15
|
Palande V, Siegal T, Detroja R, Gorohovski A, Glass R, Flueh C, Kanner AA, Laviv Y, Har-Nof S, Levy-Barda A, Viviana Karpuj M, Kurtz M, Perez S, Raviv Shay D, Frenkel-Morgenstern M. Detection of gene mutations and gene-gene fusions in circulating cell-free DNA of glioblastoma patients: an avenue for clinically relevant diagnostic analysis. Mol Oncol 2021; 16:2098-2114. [PMID: 34875133 PMCID: PMC9120899 DOI: 10.1002/1878-0261.13157] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 09/04/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma (GBM) is the most common type of glioma and is uniformly fatal. Currently, tumour heterogeneity and mutation acquisition are major impedances for tailoring personalized therapy. We collected blood and tumour tissue samples from 25 GBM patients and 25 blood samples from healthy controls. Cell‐free DNA (cfDNA) was extracted from the plasma of GBM patients and from healthy controls. Tumour DNA was extracted from fresh tumour samples. Extracted DNA was sequenced using a whole‐genome sequencing procedure. We also collected 180 tumour DNA datasets from GBM patients publicly available at the TCGA/PANCANCER project. These data were analysed for mutations and gene–gene fusions that could be potential druggable targets. We found that plasma cfDNA concentrations in GBM patients were significantly elevated (22.6 ± 5 ng·mL−1), as compared to healthy controls (1.4 ± 0.4 ng·mL−1) of the same average age. We identified unique mutations in the cfDNA and tumour DNA of each GBM patient, including some of the most frequently mutated genes in GBM according to the COSMIC database (TP53, 18.75%; EGFR, 37.5%; NF1, 12.5%; LRP1B, 25%; IRS4, 25%). Using our gene–gene fusion database, ChiTaRS 5.0, we identified gene–gene fusions in cfDNA and tumour DNA, such as KDR–PDGFRA and NCDN–PDGFRA, which correspond to previously reported alterations of PDGFRA in GBM (44% of all samples). Interestingly, the PDGFRA protein fusions can be targeted by tyrosine kinase inhibitors such as imatinib, sunitinib, and sorafenib. Moreover, we identified BCR–ABL1 (in 8% of patients), COL1A1–PDGFB (8%), NIN–PDGFRB (8%), and FGFR1–BCR (4%) in cfDNA of patients, which can be targeted by analogues of imatinib. ROS1 fusions (CEP85L–ROS1 and GOPC–ROS1), identified in 8% of patient cfDNA, might be targeted by crizotinib, entrectinib, or larotrectinib. Thus, our study suggests that integrated analysis of cfDNA plasma concentration, gene mutations, and gene–gene fusions can serve as a diagnostic modality for distinguishing GBM patients who may benefit from targeted therapy. These results open new avenues for precision medicine in GBM, using noninvasive liquid biopsy diagnostics to assess personalized patient profiles. Moreover, repeated detection of druggable targets over the course of the disease may provide real‐time information on the evolving molecular landscape of the tumour.
Collapse
Affiliation(s)
- Vikrant Palande
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Tali Siegal
- Neuro-Oncology Center, Rabin Medical Center, Petach Tikva, Israel and Hebrew University, 4941492, Jerusalem, Israel
| | - Rajesh Detroja
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | | | - Rainer Glass
- Department of Neurosurgery, Ludwig-Maximilians-University, 81377, Munich, Germany
| | - Charlotte Flueh
- Department of Neurosurgery, University Hospital of Schleswig-Holstein, Campus Kiel, 24105, Kiel, Germany
| | - Andrew A Kanner
- Department of Neurosurgery, Rabin Medical Center, Petach Tikva, 4941492, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yoseph Laviv
- Department of Neurosurgery, Rabin Medical Center, Petach Tikva, 4941492, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sagi Har-Nof
- Department of Neurosurgery, Rabin Medical Center, Petach Tikva, 4941492, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adva Levy-Barda
- Department of Pathology, Rabin Medical Center, Petach Tikva, 4941492, Israel
| | | | - Marina Kurtz
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Shira Perez
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Dorith Raviv Shay
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Milana Frenkel-Morgenstern
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel.,The Dangoor Centre For Personalized Medicine, Bar-Ilan University, Ramat Gan, 5290002, Israel
| |
Collapse
|
16
|
Takami H, Velásquez C, Asha MJ, Oswari S, Almeida JP, Gentili F. Creative and Innovative Methods and Techniques for the Challenges in the Management of Adult Craniopharyngioma. World Neurosurg 2021; 142:601-610. [PMID: 32987616 DOI: 10.1016/j.wneu.2020.05.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/05/2020] [Indexed: 10/23/2022]
Abstract
Craniopharyngioma remains a major challenge in daily clinical practice. The pathobiology of the tumor is still elusive, and there are no consensus or treatment guidelines on the optimal management strategy for this relatively rare tumor. However, recent technical and scientific advances, including genomic and radiomic profiling, innovation in surgical approaches, more precise radiotherapy protocols, targeted therapy, and restoration of lost functions all have the potential to significantly improve the outcome of patients with craniopharyngioma in the near future. Although many of these innovative tools in the new armamentarium of the clinician are still in their infancy, they could reduce craniopharyngioma-related morbidity and mortality and improve the patients' quality of life. In this article, we discuss these creative and innovative approaches that may offer solutions to the obstacles faced in treating craniopharyngioma and future possibilities in improving the care of these patients.
Collapse
Affiliation(s)
- Hirokazu Takami
- Department of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Carlos Velásquez
- Department of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Mohammed J Asha
- Department of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Selfy Oswari
- Department of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Joao Paulo Almeida
- Department of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Fred Gentili
- Department of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Bounajem MT, Karsy M, Jensen RL. Liquid biopsies for the diagnosis and surveillance of primary pediatric central nervous system tumors: a review for practicing neurosurgeons. Neurosurg Focus 2021; 48:E8. [PMID: 31896088 DOI: 10.3171/2019.9.focus19712] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/24/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Primary brain tumors are the most common cause of cancer-related deaths in children and pose difficult questions for the treating physician regarding issues such as the risk/benefit of performing a biopsy, the accuracy of monitoring methods, and the availability of prognostic indicators. It has been recently shown that tumor-specific DNA and proteins can be successfully isolated in liquid biopsies, and it may be possible to exploit this potential as a particularly useful tool for the clinician in addressing these issues. METHODS A review of the current literature was conducted by searching PubMed and Scopus. MeSH terms for the search included "liquid biopsy," "brain," "tumor," and "pediatrics" in all fields. Articles were reviewed to identify the type of brain tumor involved, the method of tumor DNA/protein analysis, and the potential clinical utility. All articles involving primary studies of pediatric brain tumors were included, but reviews were excluded. RESULTS The successful isolation of circulating tumor DNA (ctDNA), extracellular vesicles, and tumor-specific proteins from liquid biopsies has been consistently demonstrated. This most commonly occurs through CSF analysis, but it has also been successfully demonstrated using plasma and urine samples. Tumor-related gene mutations and alterations in protein expression are identifiable and, in some cases, have been correlated to specific neoplasms. The quantity of ctDNA isolated also appears to have a direct relationship with tumor progression and response to treatment. CONCLUSIONS The use of liquid biopsies for the diagnosis and monitoring of primary pediatric brain tumors is a foreseeable possibility, as the requisite developmental steps have largely been demonstrated. Increasingly advanced molecular methods are being developed to improve the identification of tumor subtypes and tumor grades, and they may offer a method for monitoring treatment response. These minimally invasive markers will likely be used in the clinical treatment of pediatric brain tumors in the future.
Collapse
Affiliation(s)
- Michael T Bounajem
- 1Long School of Medicine, University of Texas Health, San Antonio, Texas; and
| | - Michael Karsy
- 2Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah
| | - Randy L Jensen
- 2Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah
| |
Collapse
|
18
|
Del Real A, Perez-Campo FM, Perez-Nuñez MI, Sañudo C, Santurtun A, Garcia-Ibarbia C, Garcia-Unzueta MT, Fraga MF, Fernandez AF, Valero MC, Laguna E, Riancho JA. Methylation of the Sclerostin (SOST) Gene in Serum Free DNA: A New Bone Biomarker? Genet Test Mol Biomarkers 2020; 25:42-47. [PMID: 33372860 DOI: 10.1089/gtmb.2020.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Cell-free DNA (cfDNA) methylation is an important molecular biomarker, which provides information about the regulation of gene expression in the tissue of origin. There is an inverse correlation between SOST gene methylation and expression levels. Methods: We analyzed SOST promoter methylation in cfDNA from serum, and compared it with DNA from blood and bone cells from patients undergoing hip replacement surgery. We also measured cfDNA methylation in 28 osteoporotic patients at baseline and after 6 months of antiosteoporotic therapy (alendronate, teriparatide, or denosumab). Results: SOST gene promoter methylation levels in serum cfDNA were very similar to those of bone-derived DNA (79% ± 12% and 82% ± 7%, respectively), but lower than methylation levels in blood cell DNA (87% ± 10%). Furthermore, there was a positive correlation between an individual's SOST DNA methylation values in serum and bone. No differences in either serum sclerostin levels or SOST methylation were found after 6-months of therapy with antiosteoporotic drugs. Conclusions: Our results suggest that serum cfDNA does not originate from blood cells, but rather from bone. However, since we did not confirm changes in this marker after therapy with bone-active drugs, further studies examining the correlation between bone changes of SOST expression and SOST methylation in cfDNA are needed to confirm its potential role as a bone biomarker.
Collapse
Affiliation(s)
- Alvaro Del Real
- Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - Flor M Perez-Campo
- Department of Molecular Biology, University of Cantabria-IDIVAL, Santander, Spain
| | | | - Carolina Sañudo
- Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - Ana Santurtun
- Unit of Legal Medicine, Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Carmen Garcia-Ibarbia
- Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - M Teresa Garcia-Unzueta
- Service of Clinical Biochemistry, Hospital U.M. Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Mario F Fraga
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Asturias, Spain
| | - Agustin F Fernandez
- Institute of Oncology of Asturias (IUOPA), ISPA-HUCA. Fundación para la Investigación Biosanitaria de Asturias (FINBA), Asturias, Spain
| | - Maria Carmen Valero
- Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - Esther Laguna
- Department of Molecular Biology, University of Cantabria-IDIVAL, Santander, Spain
| | - José A Riancho
- Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| |
Collapse
|
19
|
Aili Y, Maimaitiming N, Mahemuti Y, Qin H, Wang Y, Wang Z. Liquid biopsy in central nervous system tumors: the potential roles of circulating miRNA and exosomes. Am J Cancer Res 2020; 10:4134-4150. [PMID: 33414991 PMCID: PMC7783770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023] Open
Abstract
The Central nervous system (CNS) tumor still remains the most lethal cancer, and It is hard to diagnose at an earlier stage on most occasions. It is found that recurrent disease is finally observed in patients who occurred chemo-resistance after completely primary treatment. It is a challenge that monitoring treatment efficacy and tumor recurrence of CNS tumors are full of risks and difficulties by brain biopsies. However, the brain biopsies are considered as an invasive technique with low specificity and low sensitivity. In contrast, the liquid biopsy is based on blood and cerebrospinal fluid (CSF) test, which is going to acceptable among the patients through it's minimally invasive and serial bodily fluids. The advantages of liquid biopsy are to follow the development of tumors, provide new insights in real time, and accurate medical care. The major analytical constituents of liquid biopsy contain the Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating cell-free microRNAs (cfmiRNAs), and circulating exosomes. Liquid biopsy has been widely utilized in CNS tumors in recent years, and the CTCs and ctDNA have become the hot topics for researching. In this review, we are going to explain the clinical potential of liquid biopsy biomarkers in CNS tumor by testing circulating miRNAs and exosomes to evaluate diagnose, prognosis, and response to treatment.
Collapse
Affiliation(s)
- Yirizhati Aili
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang, PR China
| | - Nuersimanguli Maimaitiming
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang, PR China
| | - Yusufu Mahemuti
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang, PR China
| | - Hu Qin
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang, PR China
| | - Yongxin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang, PR China
| | - Zengliang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang, PR China
- Bazhou People’s HospitalXinjiang, PR China
| |
Collapse
|
20
|
Takayasu T, Shah M, Dono A, Yan Y, Borkar R, Putluri N, Zhu JJ, Hama S, Yamasaki F, Tahara H, Sugiyama K, Kurisu K, Esquenazi Y, Ballester LY. Cerebrospinal fluid ctDNA and metabolites are informative biomarkers for the evaluation of CNS germ cell tumors. Sci Rep 2020; 10:14326. [PMID: 32868820 PMCID: PMC7459305 DOI: 10.1038/s41598-020-71161-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Serum and cerebrospinal fluid (CSF) levels of α-fetoprotein and β-subunit of human chorionic gonadotropin are used as biomarkers for the management of central nervous system (CNS) germ cell tumors (GCTs). However, additional discriminating biomarkers are required. Especially, biomarkers to differentiate non-germinomatous germ cell tumors (NGGCTs) from germinomas are critical, as these have a distinct prognosis. We investigated CSF samples from 12 patients with CNS-GCT patients (8 germinomas and 4 NGGCTs). We analyzed circulating tumor DNA (ctDNA) in CSF to detect mutated genes. We also used liquid chromatography-mass spectrometry to characterize metabolites in CSF. We detected KIT and/or NRAS mutation, known as frequently mutated genes in GCTs, in 3/12 (25%) patients. We also found significant differences in the abundance of 15 metabolites between control and GCT, with unsupervised hierarchical clustering analysis. Metabolites related to the TCA cycle were increased in GCTs. Urea, ornithine, and short-chain acylcarnitines were decreased in GCTs. Moreover, we also detected several metabolites (e.g., betaine, guanidine acetic acid, and 2-aminoheptanoic acid) that displayed significant differences in abundance in patients with germinomas and NGGCTs. Our results suggest that ctDNA and metabolites in CSF can serve as novel biomarkers for CNS-GCTs and can be useful to differentiate germinomas from NGGCTs.
Collapse
Affiliation(s)
- Takeshi Takayasu
- Department of Pathology and Laboratory Medicine, Molecular Genetic Pathology and Neuropathology, The University of Texas Health Science Center, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA.,Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ward, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Mauli Shah
- Department of Pathology and Laboratory Medicine, Molecular Genetic Pathology and Neuropathology, The University of Texas Health Science Center, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA
| | - Antonio Dono
- Vivian L. Smith Department of Neurosurgery, UTHealth McGovern Medical School, the University of Texas Health Science Center, Houston, TX, USA
| | - Yuanqing Yan
- Vivian L. Smith Department of Neurosurgery, UTHealth McGovern Medical School, the University of Texas Health Science Center, Houston, TX, USA
| | - Roshan Borkar
- Metabolomics Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Nagireddy Putluri
- Metabolomics Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Jay-Jiguang Zhu
- Vivian L. Smith Department of Neurosurgery, UTHealth McGovern Medical School, the University of Texas Health Science Center, Houston, TX, USA.,Memorial Hermann Hospital-TMC, Houston, TX, USA
| | - Seiji Hama
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ward, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Fumiyuki Yamasaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ward, Hiroshima City, Hiroshima, 734-8551, Japan.
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhiko Sugiyama
- Department of Clinical Oncology and Neuro-Oncology Program, Hiroshima University Hospital, Hiroshima City, Hiroshima, Japan
| | - Kaoru Kurisu
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ward, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, UTHealth McGovern Medical School, the University of Texas Health Science Center, Houston, TX, USA.,Memorial Hermann Hospital-TMC, Houston, TX, USA.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, USA
| | - Leomar Y Ballester
- Department of Pathology and Laboratory Medicine, Molecular Genetic Pathology and Neuropathology, The University of Texas Health Science Center, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA. .,Vivian L. Smith Department of Neurosurgery, UTHealth McGovern Medical School, the University of Texas Health Science Center, Houston, TX, USA. .,Memorial Hermann Hospital-TMC, Houston, TX, USA.
| |
Collapse
|
21
|
Pacia CP, Zhu L, Yang Y, Yue Y, Nazeri A, Michael Gach H, Talcott MR, Leuthardt EC, Chen H. Feasibility and safety of focused ultrasound-enabled liquid biopsy in the brain of a porcine model. Sci Rep 2020; 10:7449. [PMID: 32366915 PMCID: PMC7198482 DOI: 10.1038/s41598-020-64440-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Although blood-based liquid biopsy is a promising noninvasive technique to acquire a comprehensive molecular tumor profile by detecting cancer-specific biomarkers (e.g. DNA, RNA, and proteins), there has been limited progress for brain tumor application partially because the low permeability of the blood-brain barrier (BBB) hinders the release of tumor biomarkers. We previously demonstrated focused ultrasound-enabled liquid biopsy (FUS-LBx) that uses FUS to increase BBB permeability in murine glioblastoma models and thus enhance the release of tumor-specific biomarkers into the bloodstream. The objective of this study was to evaluate the feasibility and safety of FUS-LBx in the normal brain tissue of a porcine model. Increased BBB permeability was confirmed by the significant increase (p = 0.0053) in Ktrans (the transfer coefficient from blood to brain extravascular extracellular space) when comparing the FUS-sonicated brain area with the contralateral non-sonicated area. Meanwhile, there was a significant increase in the blood concentrations of glial fibrillary acidic protein (GFAP, p = 0.0074) and myelin basic protein (MBP, p = 0.0039) after FUS sonication as compared with before FUS. There was no detectable tissue damage by T2*-weighted MRI and histological analysis. Findings from this study suggest that FUS-LBx is a promising technique for noninvasive and localized diagnosis of the molecular profiles of brain diseases with the potential to translate to the clinic.
Collapse
Affiliation(s)
- Christopher Pham Pacia
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Lifei Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Arash Nazeri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - H Michael Gach
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Michael R Talcott
- Division of Comparative Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Eric C Leuthardt
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
- Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, 63108, USA.
| |
Collapse
|
22
|
Xiao F, Lv S, Zong Z, Wu L, Tang X, Kuang W, Zhang P, Li X, Fu J, Xiao M, Wu M, Wu L, Zhu X, Huang K, Guo H. Cerebrospinal fluid biomarkers for brain tumor detection: clinical roles and current progress. Am J Transl Res 2020; 12:1379-1396. [PMID: 32355549 PMCID: PMC7191171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Brain tumors include those that originate within the brain (primary tumors) as well as those that arise from other cancers (metastatic tumors). The fragile nature of the brain poses a major challenge to access focal malignancies, which certainly limits both diagnostics and therapeutic approaches. This limitation has been alleviated with the advent of liquid biopsy technologies. Liquid biopsy represents a highly convenient, fast and non-invasive method, which allows multiple sampling and dynamic pathological detection. Biomarkers derived from liquid biopsies can promptly reflect changes on the gene expression profiling of tumors. Biomarkers derived from tumor cells contain abundant genetic information, which may provide a strong basis for the diagnosis and the individualized treatment of brain tumor patients. A series of body fluids can be assessed for liquid biopsy, including peripheral blood, cerebrospinal fluid (CSF), urine or saliva. Interestingly, the sensitivity and specificity of biomarkers from the CSF of patients with brain tumors is typically higher than those detected in the peripheral blood and other sources. Hence, here we describe and properly discuss the clinical roles of distinct classes of CSF biomarkers, isolated from patients with brain tumors, such as circulating tumor DNA (ctDNA), microRNA (miRNA), proteins, and extracellular vesicles (EVs).
Collapse
Affiliation(s)
- Feng Xiao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Shigang Lv
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Zhitao Zong
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Department of Neurosurgery, Jiujiang Hospital of Traditional Chinese MedicineJiujiang 332005, Jiangxi, China
| | - Lei Wu
- Department of Emergency, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Xueping Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Wei Kuang
- Department of Emergency, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Pei Zhang
- Department of Neurosurgery, The Third Hospital of NanchangNangchang 330009, Jiangxi, China
| | - Xin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Jun Fu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Menghua Xiao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Miaojing Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| |
Collapse
|
23
|
Simonovic S, Hinze C, Schmidt-Ott KM, Busch J, Jung M, Jung K, Rabien A. Limited utility of qPCR-based detection of tumor-specific circulating mRNAs in whole blood from clear cell renal cell carcinoma patients. BMC Urol 2020; 20:7. [PMID: 32013938 PMCID: PMC6998103 DOI: 10.1186/s12894-019-0542-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 10/21/2019] [Indexed: 02/08/2023] Open
Abstract
Background RNA sequencing data is providing abundant information about the levels of dysregulation of genes in various tumors. These data, as well as data based on older microarray technologies have enabled the identification of many genes which are upregulated in clear cell renal cell carcinoma (ccRCC) compared to matched normal tissue. Here we use RNA sequencing data in order to construct a panel of highly overexpressed genes in ccRCC so as to evaluate their RNA levels in whole blood and determine any diagnostic potential of these levels for renal cell carcinoma patients. Methods A bioinformatics analysis with Python was performed using TCGA, GEO and other databases to identify genes which are upregulated in ccRCC while being absent in the blood of healthy individuals. Quantitative Real Time PCR (RT-qPCR) was subsequently used to measure the levels of candidate genes in whole blood (PAX gene) of 16 ccRCC patients versus 11 healthy individuals. PCR results were processed in qBase and GraphPadPrism and statistics was done with Mann-Whitney U test. Results While most analyzed genes were either undetectable or did not show any dysregulated expression, two genes, CDK18 and CCND1, were paradoxically downregulated in the blood of ccRCC patients compared to healthy controls. Furthermore, LOX showed a tendency towards upregulation in metastatic ccRCC samples compared to non-metastatic. Conclusions This analysis illustrates the difficulty of detecting tumor regulated genes in blood and the possible influence of interference from expression in blood cells even for genes conditionally absent in normal blood. Testing in plasma samples indicated that tumor specific mRNAs were not detectable. While CDK18, CCND1 and LOX mRNAs might carry biomarker potential, this would require validation in an independent, larger patient cohort.
Collapse
Affiliation(s)
- Sinisa Simonovic
- Department of Urology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany. .,Berlin Institute for Urologic Research, Berlin, Germany. .,Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany.
| | - Christian Hinze
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Kai M Schmidt-Ott
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany.,Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jonas Busch
- Department of Urology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Monika Jung
- Department of Urology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Klaus Jung
- Department of Urology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute for Urologic Research, Berlin, Germany
| | - Anja Rabien
- Department of Urology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute for Urologic Research, Berlin, Germany
| |
Collapse
|
24
|
Yan W, Xu T, Zhu H, Yu J. Clinical Applications of Cerebrospinal Fluid Circulating Tumor DNA as a Liquid Biopsy for Central Nervous System Tumors. Onco Targets Ther 2020; 13:719-731. [PMID: 32158224 PMCID: PMC6986252 DOI: 10.2147/ott.s229562] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/11/2020] [Indexed: 12/19/2022] Open
Abstract
Central nervous system (CNS) malignancies are associated with poor prognosis, as well as exceptional morbidity and mortality, likely as a result of low rates of early diagnosis and limited knowledge of the tumor growth and resistance mechanisms, dissemination, and evolution in the CNS. Monitoring patients with CNS malignancies for treatment response and tumor recurrence can be challenging because of the difficulty and risks of brain biopsies and the low specificity and sensitivity of the less invasive methodologies that are currently available. Therefore, there is an urgent need to detect and validate reliable and minimally invasive biomarkers for CNS tumors that can be used separately or in combination with current clinical practices. The circulating tumor DNA (ctDNA) of cerebrospinal fluid (CSF) samples can outline the genetic landscape of entire CNS tumors effectively and is a promising, suitable biomarker, though its role in managing CNS malignancies has not been studied extensively. This review summarizes recent studies that explore the diagnostic, prognostic, and predictive roles of CSF-ctDNA as a liquid biopsy with primary and metastatic CNS malignancies.
Collapse
Affiliation(s)
- Weiwei Yan
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, People's Republic of China
| | - Tingting Xu
- Department of Respiratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, People's Republic of China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, People's Republic of China
| |
Collapse
|
25
|
Lim HH, Jeong IH, An GD, Woo KS, Kim KH, Kim JM, Yun SH, Park JI, Cha JK, Kim MH, Han JY. Evaluation of neutrophil extracellular traps as the circulating marker for patients with acute coronary syndrome and acute ischemic stroke. J Clin Lab Anal 2020; 34:e23190. [PMID: 31907963 PMCID: PMC7246366 DOI: 10.1002/jcla.23190] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/17/2022] Open
Abstract
Introduction Neutrophil extracellular traps (NETs) are known to be induced by various factors. In this study, we tried to identify circulating levels of NETs in patients with acute coronary syndrome (ACS) and acute ischemic stroke (AIS) and to confirm its suitability as a new circulating marker in their detection. Methods We prospectively enrolled 95 patients with a diagnosis of ACS (N = 37) or AIS (N = 58) in Dong‐A University Hospital, Busan, Korea. The control group was selected from healthy adults (N = 25) who visited the hospital for health screening. Circulating levels of NETs were evaluated by measuring plasma concentrations of double‐stranded DNA (dsDNA) and DNA‐histone complex. Results The concentrations of dsDNA were statistically higher in patients with ACS or AIS than those in the control group (both P < .001). In the univariable and multivariable analyses, statistically significant risk factors were troponin I (TnI) level and dsDNA concentration in the ACS group (P = .046 and P = .015, respectively) and only dsDNA concentration in the AIS group (P = .002). In the receiver operating characteristic curve analyses, the area under the curve values for TnI level and dsDNA concentration in the ACS group were 0.878 and 0.968, respectively, and the value for dsDNA concentration in the AIS group was 0.859. Conclusions In this study, it was confirmed that the circulating level of NETs was increased in patients with ACS and AIS at initial presentation. Findings in this study show that NETs could be used as a new circulating marker for the initial diagnosis of ACS or AIS.
Collapse
Affiliation(s)
- Hyeon-Ho Lim
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea
| | - In-Hwa Jeong
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Gyu-Dae An
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Kwang-Sook Woo
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Kyeong-Hee Kim
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Jeong-Man Kim
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Seong-Hoon Yun
- Department of Biochemistry, Dong-A University College of Medicine, Busan, Korea
| | - Joo-In Park
- Department of Biochemistry, Dong-A University College of Medicine, Busan, Korea
| | - Jae-Kwan Cha
- Department of Neurology, Dong-A University College of Medicine, Busan, Korea
| | - Moo-Hyun Kim
- Department of Cardiology, Dong-A University College of Medicine, Busan, Korea
| | - Jin-Yeong Han
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea
| |
Collapse
|
26
|
Sindeeva OA, Verkhovskii RA, Sarimollaoglu M, Afanaseva GA, Fedonnikov AS, Osintsev EY, Kurochkina EN, Gorin DA, Deyev SM, Zharov VP, Galanzha EI. New Frontiers in Diagnosis and Therapy of Circulating Tumor Markers in Cerebrospinal Fluid In Vitro and In Vivo. Cells 2019; 8:E1195. [PMID: 31581745 PMCID: PMC6830088 DOI: 10.3390/cells8101195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/21/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
One of the greatest challenges in neuro-oncology is diagnosis and therapy (theranostics) of leptomeningeal metastasis (LM), brain metastasis (BM) and brain tumors (BT), which are associated with poor prognosis in patients. Retrospective analyses suggest that cerebrospinal fluid (CSF) is one of the promising diagnostic targets because CSF passes through central nervous system, harvests tumor-related markers from brain tissue and, then, delivers them into peripheral parts of the human body where CSF can be sampled using minimally invasive and routine clinical procedure. However, limited sensitivity of the established clinical diagnostic cytology in vitro and MRI in vivo together with minimal therapeutic options do not provide patient care at early, potentially treatable, stages of LM, BM and BT. Novel technologies are in demand. This review outlines the advantages, limitations and clinical utility of emerging liquid biopsy in vitro and photoacoustic flow cytometry (PAFC) in vivo for assessment of CSF markers including circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), microRNA (miRNA), proteins, exosomes and emboli. The integration of in vitro and in vivo methods, PAFC-guided theranostics of single CTCs and targeted drug delivery are discussed as future perspectives.
Collapse
Affiliation(s)
- Olga A. Sindeeva
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
| | - Roman A. Verkhovskii
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
| | - Mustafa Sarimollaoglu
- Arkansas Nanomedicine Center & Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Galina A. Afanaseva
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Saratov State Medical University, 112 Bolshaya Kazachia St., 410012 Saratov, Russia
| | - Alexander S. Fedonnikov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Saratov State Medical University, 112 Bolshaya Kazachia St., 410012 Saratov, Russia
| | - Evgeny Yu. Osintsev
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Saratov State Medical University, 112 Bolshaya Kazachia St., 410012 Saratov, Russia
| | - Elena N. Kurochkina
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Saratov State Medical University, 112 Bolshaya Kazachia St., 410012 Saratov, Russia
| | - Dmitry A. Gorin
- Laboratory of Biophotonics, Skolkovo Institute of Science and Technology, 3 Nobelya Str., 121205 Moscow, Russia;
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia;
| | - Vladimir P. Zharov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Arkansas Nanomedicine Center & Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Ekaterina I. Galanzha
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Laboratory of Lymphatic Research, Diagnosis and Therapy (LDT), University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
27
|
Boire A, Brandsma D, Brastianos PK, Le Rhun E, Ahluwalia M, Junck L, Glantz M, Groves MD, Lee EQ, Lin N, Raizer J, Rudà R, Weller M, Van den Bent MJ, Vogelbaum MA, Chang S, Wen PY, Soffietti R. Liquid biopsy in central nervous system metastases: a RANO review and proposals for clinical applications. Neuro Oncol 2019; 21:571-584. [PMID: 30668804 PMCID: PMC6502489 DOI: 10.1093/neuonc/noz012] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Liquid biopsies collect and analyze tumor components in body fluids, and there is an increasing interest in the investigation of liquid biopsies as a surrogate for tumor tissue in the management of both primary and secondary brain tumors. Herein we critically review available literature on spinal fluid and plasma circulating tumor cells (CTCs) and cell-free tumor (ctDNA) for diagnosis and monitoring of leptomeningeal and parenchymal brain metastases. We discuss technical issues and propose several potential applications of liquid biopsies in different clinical settings (ie, for initial diagnosis, for assessment during treatment, and for guidance of treatment decisions). Last, ongoing clinical studies on CNS metastases that include liquid biopsies are summarized, and recommendations for future clinical studies are provided.
Collapse
Affiliation(s)
- Adrienne Boire
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dieta Brandsma
- Department of Neuro-Oncology, Netherlands Cancer Institute‒Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands
| | - Priscilla K Brastianos
- Departments of Medicine and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Emilie Le Rhun
- Department of Neuro-Oncology/Neurosurgery, University Hospital, Lille, France
| | - Manmeet Ahluwalia
- Department of Medicine, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Larry Junck
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael Glantz
- Department of Neurosurgery, Penn State Health, Hershey, Pennsylvania, USA
| | - Morris D Groves
- Department of Neuro-Oncology, Austin Brain Tumor Center and University of Texas, Austin, Texas, USA
| | - Eudocia Q Lee
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Nancy Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey Raizer
- Department of Neurology and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Michael Weller
- Department of Neurology, University Hospital, Zurich, Switzerland
| | | | - Michael A Vogelbaum
- Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Susan Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| |
Collapse
|
28
|
Abbou SD, Shulman DS, DuBois SG, Crompton BD. Assessment of circulating tumor DNA in pediatric solid tumors: The promise of liquid biopsies. Pediatr Blood Cancer 2019; 66:e27595. [PMID: 30614191 PMCID: PMC6550461 DOI: 10.1002/pbc.27595] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 12/29/2022]
Abstract
Circulating tumor DNA can be detected in the blood and body fluids of patients using ultrasensitive technologies, which have the potential to improve cancer diagnosis, risk stratification, noninvasive tumor profiling, and tracking of treatment response and disease recurrence. As we begin to apply "liquid biopsy" strategies in children with cancer, it is important to tailor our efforts to the unique genomic features of these tumors and address the technical and logistical challenges of integrating biomarker testing. This article reviews the literature demonstrating the feasibility of applying liquid biopsy to pediatric solid malignancies and suggests new directions for future studies.
Collapse
Affiliation(s)
- Samuel D. Abbou
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA,Department of Oncology for Children and Adolescents, Gustave Roussy, Villejuif, France
| | - David S. Shulman
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA
| | - Steven G. DuBois
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA
| | - Brian D. Crompton
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA,Broad Institute, Cambridge, MA, USA
| |
Collapse
|
29
|
Klekner Á, Szivos L, Virga J, Árkosy P, Bognár L, Birkó Z, Nagy B. Significance of liquid biopsy in glioblastoma - A review. J Biotechnol 2019; 298:82-87. [PMID: 30986516 DOI: 10.1016/j.jbiotec.2019.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/07/2023]
Abstract
Glioblastoma (GBM) is the most common and most aggressive primary malignant brain tumor with a 16-24 -months overall survival time (OS). Effective management is hindered by intratumoral heterogeneity, a characteristic trait of GBM which results in subpopulations of cells with altered therapeutic responsiveness, different invasiveness and growth potential. Correct initial molecular profiling of the tumor, as well as following its molecular biological changes are further impeded by the intracranial location of the tumors, hence the risks of surgical interventions. Radiological examination, the sole non-invasive method of obtaining information about the tumors, also has limitations. This review article aims to summarize the currently available information about the promising applicability of liquid biopsy, extracellular vesicles (EVs), and circulating cell-free nucleic acids (cf-NAs) in GBM patients. Liquid biopsy is a quick and inexpensive way of obtaining exceptionally relevant information about tumors, and can be performed multiple times during the clinical course of the disease. Furthermore, integrating analyses of EVs and related cf-NAs in clinical practice might also help to establish diagnosis in a non-invasive manner, and complex oncotherapy could be indicated in the future without high-risk neurosurgical interventions.
Collapse
Affiliation(s)
- Álmos Klekner
- University of Debrecen, Faculty of Medicine, Department of Neurosurgery, Hungary.
| | - László Szivos
- University of Debrecen, Faculty of Medicine, Department of Neurosurgery, Hungary
| | - József Virga
- University of Debrecen, Faculty of Medicine, Department of Oncology, Hungary
| | - Péter Árkosy
- University of Debrecen, Faculty of Medicine, Department of Oncology, Hungary
| | - László Bognár
- University of Debrecen, Faculty of Medicine, Department of Neurosurgery, Hungary
| | - Zsuzsanna Birkó
- University of Debrecen, Faculty of Medicine, Department of Human Genetics, Hungary
| | - Bálint Nagy
- University of Debrecen, Faculty of Medicine, Department of Human Genetics, Hungary
| |
Collapse
|
30
|
Khan IN, Ullah N, Hussein D, Saini KS. Current and emerging biomarkers in tumors of the central nervous system: Possible diagnostic, prognostic and therapeutic applications. Semin Cancer Biol 2018; 52:85-102. [PMID: 28774835 DOI: 10.1016/j.semcancer.2017.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Ishaq N Khan
- PK-Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Najeeb Ullah
- Department of Anatomy, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan.
| | - Deema Hussein
- Neurooncology Translational Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Kulvinder S Saini
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Biotechnology, Eternal University, Baru Sahib, Himachal Pradesh 173101, India.
| |
Collapse
|
31
|
Glebova KV, Veiko NN, Nikonov AA, Porokhovnik LN, Kostuyk SV. Cell-free DNA as a biomarker in stroke: Current status, problems and perspectives. Crit Rev Clin Lab Sci 2018; 55:55-70. [PMID: 29303618 DOI: 10.1080/10408363.2017.1420032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is currently no proposed stroke biomarker with consistent application in clinical practice. A number of studies have examined cell-free DNA (cfDNA), which circulates in biological fluids during stroke, as a potential biomarker of this disease. The data available suggest that dynamically-determined levels of blood cfDNA may provide new prognostic information for assessment of stroke severity and outcome. However, such an approach has its own difficulties and limitations. This review covers the potential role of cfDNA as a biomarker in stroke, and includes evidence from both animal models and clinical studies, protocols used to analyze cfDNA, and hypotheses on the origin of cfDNA.
Collapse
Affiliation(s)
- Kristina V Glebova
- a Laboratory of Molecular Biology , Federal State Budgetary Institution "Research Centre for Medical Genetics" , Moscow , Russia
| | - Natalya N Veiko
- a Laboratory of Molecular Biology , Federal State Budgetary Institution "Research Centre for Medical Genetics" , Moscow , Russia
| | - Aleksey A Nikonov
- b Department of Neurology, Neurosurgery and Medical Genetics , Pirogov Russian National Research Medical University , Moscow , Russia
| | - Lev N Porokhovnik
- a Laboratory of Molecular Biology , Federal State Budgetary Institution "Research Centre for Medical Genetics" , Moscow , Russia
| | - Svetlana V Kostuyk
- a Laboratory of Molecular Biology , Federal State Budgetary Institution "Research Centre for Medical Genetics" , Moscow , Russia
| |
Collapse
|
32
|
García-Casas A, García-Olmo DC, García-Olmo D. Further the liquid biopsy: Gathering pieces of the puzzle of genometastasis theory. World J Clin Oncol 2017; 8:378-388. [PMID: 29067274 PMCID: PMC5638713 DOI: 10.5306/wjco.v8.i5.378] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/03/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
Metastasis is the major cause of mortality in cancer disease and still constitutes one of the most controversial mechanism, not yet fully understood. What is almost beyond doubt is that circulatory system is crucial for cancer propagation. Regarding this system, much attention has been recently paid to liquid biopsy. This technique is aimed to detect circulating tumor cells (CTCs) and circulating nucleic acids so it can be used as a tool for diagnostic, prognostic and follow-up of patients. Whereas CTCs tend to be scarce in serum and plasma from cancer patient, abundant circulating nucleic acids can be detected in the same location. This fact, together with the genetic origin of cancer, stands out the relevance of circulating nucleic acids and shed light into the role of nucleic acids as drivers of metastasis, a recently discovered phenomenon called Genometastasis. This innovative theory supports the transfer of oncogenes from cancer cells to normal and susceptible cells located in distant target organs through circulatory system. What is more, many biological processes haven been described to deliver and secrete circulating nucleic acids into the circulation which can allow such horizontal transfer of oncogenes. In this review, we focus not only on these mechanisms but also we demonstrate its putative role in cancer propagation and give insights about possible therapeutic strategies based on this theory. Our objective is to demonstrate how findings about cell-to-cell communications and previous results can agree with this unprecedented theory.
Collapse
Affiliation(s)
| | - Dolores C García-Olmo
- Centre de Recerca Experimental Biomèdica Aplicada(CREBA), IRBLLEIDA, 25138 Lleida, Spain
| | - Damián García-Olmo
- Department of Surgery, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria, Fundación Jiménez Díaz, 28050 Madrid, Spain
| |
Collapse
|
33
|
Connolly ID, Li Y, Pan W, Johnson E, You L, Vogel H, Ratliff J, Hayden Gephart M. A pilot study on the use of cerebrospinal fluid cell-free DNA in intramedullary spinal ependymoma. J Neurooncol 2017; 135:29-36. [PMID: 28900844 DOI: 10.1007/s11060-017-2557-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/25/2017] [Indexed: 01/02/2023]
Abstract
Cerebrospinal fluid (CSF) represents a promising source of cell-free DNA (cfDNA) for tumors of the central nervous system. A CSF-based liquid biopsy may obviate the need for riskier tissue biopsies and serve as a means for monitoring tumor recurrence or response to therapy. Spinal ependymomas most commonly occur in adults, and aggressive resection must be delicately balanced with the risk of injury to adjacent normal tissue. In patients with subtotal resection, recurrence commonly occurs. A CSF-based liquid biopsy matched to the patient's spinal ependymoma mutation profile has potential to be more sensitive then surveillance MRI, but the utility has not been well characterized for tumors of the spinal cord. In this study, we collected matched blood, tumor, and CSF samples from three adult patients with WHO grade II intramedullary spinal ependymoma. We performed whole exome sequencing on matched tumor and normal DNA to design Droplet Digital™ PCR (ddPCR) probes for tumor and wild-type mutations. We then interrogated CSF samples for tumor-derived cfDNA by performing ddPCR on extracted cfDNA. Tumor cfDNA was not reliably detected in the CSF of our cohort. Anatomic sequestration and low grade of intramedullary spinal cord tumors likely limits the role of CSF liquid biopsy.
Collapse
Affiliation(s)
- Ian David Connolly
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive MC 5327, Stanford, CA, 94305, USA
| | - Yingmei Li
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive MC 5327, Stanford, CA, 94305, USA
| | - Wenying Pan
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, USA
| | - Eli Johnson
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive MC 5327, Stanford, CA, 94305, USA
| | - Linya You
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive MC 5327, Stanford, CA, 94305, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - John Ratliff
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive MC 5327, Stanford, CA, 94305, USA
| | - Melanie Hayden Gephart
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive MC 5327, Stanford, CA, 94305, USA.
| |
Collapse
|
34
|
Ershova ES, Jestkova EM, Chestkov IV, Porokhovnik LN, Izevskaya VL, Kutsev SI, Veiko NN, Shmarina G, Dolgikh O, Kostyuk SV. Quantification of cell-free DNA in blood plasma and DNA damage degree in lymphocytes to evaluate dysregulation of apoptosis in schizophrenia patients. J Psychiatr Res 2017; 87:15-22. [PMID: 27987480 DOI: 10.1016/j.jpsychires.2016.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 11/30/2022]
Abstract
Oxidative DNA damage has been proposed as one of the causes of schizophrenia (SZ), and post mortem data indicate a dysregulation of apoptosis in SZ patients. To evaluate apoptosis in vivo we quantified the concentration of plasma cell-free DNA (cfDNA index, determined using fluorescence), the levels of 8-oxodG in cfDNA (immunoassay) and lymphocytes (FL1-8-oxodG index, flow cytometry) of male patients with acute psychotic disorders: paranoid SZ (total N = 58), schizophreniform (N = 11) and alcohol-induced (N = 14) psychotic disorder, and 30 healthy males. CfDNA in SZ (N = 58) does not change compared with controls. In SZ patients. Elevated levels of 8-oxodG were found in cfDNA (N = 58) and lymphocytes (n = 45). The main sources of cfDNA are dying cells with oxidized DNA. Thus, the cfDNA/FL1-8-oxodG ratio shows the level of apoptosis in damaged cells. Two subgroups were identified among the SZ patients (n = 45). For SZ-1 (31%) and SZ-2 (69%) median values of cfDNA/FL1-8-oxodG index are related as 1:6 (p < 0.0000001). For the patients with other psychotic disorders and healthy controls, cfDNA/FL1-8-oxodG values were within the range of the values in SZ-2. Thus, apoptosis is impaired in approximately one-third of SZ patients. This leads to an increase in the number of cells with damaged DNA in the patient's body tissues and may be a contributing cause of acute psychotic disorder.
Collapse
Affiliation(s)
- E S Ershova
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia; V. A. Negovsky Research Institute of General Reanimatology, Moscow, 107031, Russia
| | - E M Jestkova
- Psychiatric Hospital № 14 of Moscow City Health Department, Moscow, 115447, Russia
| | - I V Chestkov
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia
| | - L N Porokhovnik
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia.
| | - V L Izevskaya
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia
| | - S I Kutsev
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia
| | - N N Veiko
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia; V. A. Negovsky Research Institute of General Reanimatology, Moscow, 107031, Russia
| | - G Shmarina
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia
| | - O Dolgikh
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia
| | - S V Kostyuk
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia; V. A. Negovsky Research Institute of General Reanimatology, Moscow, 107031, Russia
| |
Collapse
|
35
|
Schoser B. Diagnostic muscle biopsy: is it still needed on the way to a liquid muscle pathology? Curr Opin Neurol 2016; 29:602-5. [DOI: 10.1097/wco.0000000000000366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|