1
|
Rhea EM, Leclerc M, Yassine HN, Capuano AW, Tong H, Petyuk VA, Macauley SL, Fioramonti X, Carmichael O, Calon F, Arvanitakis Z. State of the Science on Brain Insulin Resistance and Cognitive Decline Due to Alzheimer's Disease. Aging Dis 2024; 15:1688-1725. [PMID: 37611907 PMCID: PMC11272209 DOI: 10.14336/ad.2023.0814] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is common and increasing in prevalence worldwide, with devastating public health consequences. While peripheral insulin resistance is a key feature of most forms of T2DM and has been investigated for over a century, research on brain insulin resistance (BIR) has more recently been developed, including in the context of T2DM and non-diabetes states. Recent data support the presence of BIR in the aging brain, even in non-diabetes states, and found that BIR may be a feature in Alzheimer's disease (AD) and contributes to cognitive impairment. Further, therapies used to treat T2DM are now being investigated in the context of AD treatment and prevention, including insulin. In this review, we offer a definition of BIR, and present evidence for BIR in AD; we discuss the expression, function, and activation of the insulin receptor (INSR) in the brain; how BIR could develop; tools to study BIR; how BIR correlates with current AD hallmarks; and regional/cellular involvement of BIR. We close with a discussion on resilience to both BIR and AD, how current tools can be improved to better understand BIR, and future avenues for research. Overall, this review and position paper highlights BIR as a plausible therapeutic target for the prevention of cognitive decline and dementia due to AD.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Manon Leclerc
- Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada.
- Neuroscience Axis, CHU de Québec Research Center - Laval University, Quebec, Quebec, Canada.
| | - Hussein N Yassine
- Departments of Neurology and Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Ana W Capuano
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Han Tong
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Shannon L Macauley
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA.
| | - Xavier Fioramonti
- International Associated Laboratory OptiNutriBrain, Bordeaux, France and Quebec, Canada.
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France.
| | - Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| | - Frederic Calon
- Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada.
- Neuroscience Axis, CHU de Québec Research Center - Laval University, Quebec, Quebec, Canada.
- International Associated Laboratory OptiNutriBrain, Bordeaux, France and Quebec, Canada.
| | - Zoe Arvanitakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
2
|
Farkhani S, Payab M, Sharifi F, Sharifi Y, Mohammadi S, Shadman Z, Fahimfar N, Heshmat R, Hadizadeh A, Shafiee G, Nabipour I, Tavakoli F, Larijani B, Ebrahimpur M, Ostovar A. Association between pre-diabetes or diabetes and cognitive impairment in a community-dwelling older population: Bushehr Elderly Health (BEH) program. J Diabetes Metab Disord 2024; 23:639-646. [PMID: 38932839 PMCID: PMC11196454 DOI: 10.1007/s40200-023-01325-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/27/2023] [Indexed: 06/28/2024]
Abstract
Background Persistent uncontrolled hyperglycemia is recognized as one of the risk factors for cognitive disorders. Accordingly, both type 1 and type 2 diabetes may predispose individuals to cognitive impairment, particularly in cases where glycemic control is insufficient. The objective of this comprehensive study is to separately assess cognitive dysfunctions in diabetic and non-diabetic older adults. Methods This cross-sectional study is part of phase 2 of the Bushehr elderly health program (BEHP). Cognitive function was evaluated using the Mini-cog and categorical verbal fluency tests (CFTs). Patients were classified as non-diabetics, pre-diabetics, or diabetics based on the diagnostic criteria for diabetes mellitus (DM). To compare the means of the two groups, we utilized the t-test or the Mann-Whitney test. Additionally Multivariable logistic regression models were used to determine the association between pre-diabetes or DM and cognitive impairment. Results Out of 1533 participants, 693 (45.2%) were identified as having cognitive impairment. The average hemoglobin A1C was higher in participants with cognitive impairment compared to those without cognitive impairment. (5.8 ± 1.6% vs. 5.5 ± 1.4%, P = 0.004). Furthermore, the mean blood glucose levels were found to be more elevated in cases of cognitive impairment (108.0 ± 47.4 mg/dL vs. 102.1 ± 0.35 mg/dL, P = 0.002). After adjusting for age, gender, body mass index (BMI), waist circumference, amount of physical activity, and smoking, the multivariable logistic regression model, declared an association between diabetes and cognitive impairment (OR = 1.48, P = 0.003). In addition, older patients, females, widows, and individuals with elevated LDL-Cs and those with high blood pressure were found to be more vulnerable to cognitive impairment. Conclusion The Bushehr Elderly Health Program (BEHP) study revealed that individuals affected with cognitive impairment may exhibit higher levels of HbA1c. This suggests a positive correlation between elevated HbA1c and cognitive impairment.
Collapse
Affiliation(s)
- Sara Farkhani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Sharifi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Sharifi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sammy Mohammadi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zhaleh Shadman
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Fahimfar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Hadizadeh
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Gita Shafiee
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farnaz Tavakoli
- Nephrology and Kidney Transplant Ward, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahbube Ebrahimpur
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Ostovar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Cui W, Lv C, Geng P, Fu M, Zhou W, Xiong M, Li T. Novel targets and therapies of metformin in dementia: old drug, new insights. Front Pharmacol 2024; 15:1415740. [PMID: 38881878 PMCID: PMC11176471 DOI: 10.3389/fphar.2024.1415740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Dementia is a devastating disorder characterized by progressive and persistent cognitive decline, imposing a heavy public health burden on the individual and society. Despite numerous efforts by researchers in the field of dementia, pharmacological treatments are limited to relieving symptoms and fail to prevent disease progression. Therefore, studies exploring novel therapeutics or repurposing classical drugs indicated for other diseases are urgently needed. Metformin, a first-line antihyperglycemic drug used to treat type 2 diabetes, has been shown to be beneficial in neurodegenerative diseases including dementia. This review discusses and evaluates the neuroprotective role of metformin in dementia, from the perspective of basic and clinical studies. Mechanistically, metformin has been shown to improve insulin resistance, reduce neuronal apoptosis, and decrease oxidative stress and neuroinflammation in the brain. Collectively, the current data presented here support the future potential of metformin as a potential therapeutic strategy for dementia. This study also inspires a new field for future translational studies and clinical research to discover novel therapeutic targets for dementia.
Collapse
Affiliation(s)
- Wenxing Cui
- College of Life Sciences, Northwest University, Xi'an, China
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Chen Lv
- Hangzhou Simo Co., Ltd., Hangzhou, China
| | - Panling Geng
- College of Life Sciences, Northwest University, Xi'an, China
| | - Mingdi Fu
- College of Life Sciences, Northwest University, Xi'an, China
| | - Wenjing Zhou
- College of Life Sciences, Northwest University, Xi'an, China
| | - Mingxiang Xiong
- College of Life Sciences, Northwest University, Xi'an, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Gupta A, Goyal A, Rajan R, Vishnu VY, Kalaivani M, Tandon N, Srivastava MVP, Gupta Y. Validity of Montreal Cognitive Assessment to Detect Cognitive Impairment in Individuals with Type 2 Diabetes. Diabetes Ther 2024; 15:1155-1168. [PMID: 38520603 PMCID: PMC11043253 DOI: 10.1007/s13300-024-01549-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/06/2024] [Indexed: 03/25/2024] Open
Abstract
INTRODUCTION Guidelines recommend screening older people (> 60-65 years) with type 2 diabetes (T2D) for cognitive impairment, as it has implications in the management of diabetes. The Montreal Cognitive Assessment (MoCA) is a sensitive test for the detection of mild cognitive impairment (MCI) in the general population, but its validity in T2D has not been established. METHODS We administered MoCA to patients with T2D (age ≥ 60 years) and controls (no T2D), along with a culturally validated neuropsychological battery and functional activity questionnaire. MCI was defined as performance in one or more cognitive domains ≥ 1.0 SD below the control group (on two tests representing a cognitive domain), with preserved functional activities. The discriminant validity of MoCA for the diagnosis of MCI at different cut-offs was ascertained. RESULTS We enrolled 267 patients with T2D and 120 controls; 39% of the participants with T2D met the diagnostic criteria for MCI on detailed neuropsychological testing. At the recommended cut-off on MoCA (< 26), the sensitivity (94.2%) was high, but the specificity was quite low (29.5%). The cut-off score of < 23 showed an optimal trade-off between sensitivity (69.2%), specificity (71.8%), and diagnostic accuracy (70.8%). The cut-off of < 21 exhibited the highest diagnostic accuracy (74.9%) with an excellent specificity (91.4%), a good positive and negative predictive value (78.5% and 73.7%, respectively). CONCLUSIONS The recommended screening cut-off point on MoCA of < 26 has a suboptimal specificity and may increase the referral burden in memory clinics. A lower cut-off of < 21 on MoCA maximizes the diagnostic accuracy. Interactive Visual Abstract available for this article.
Collapse
Affiliation(s)
- Anu Gupta
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Alpesh Goyal
- Department of Endocrinology & Metabolism, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Roopa Rajan
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Venugopalan Y Vishnu
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Mani Kalaivani
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Nikhil Tandon
- Department of Endocrinology & Metabolism, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Yashdeep Gupta
- Department of Endocrinology & Metabolism, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
5
|
Gonzalez-Cano SI, Flores G, Guevara J, Morales-Medina JC, Treviño S, Diaz A. Polyoxidovanadates a new therapeutic alternative for neurodegenerative and aging diseases. Neural Regen Res 2024; 19:571-577. [PMID: 37721286 PMCID: PMC10581577 DOI: 10.4103/1673-5374.380877] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/18/2023] [Accepted: 06/22/2023] [Indexed: 09/19/2023] Open
Abstract
Aging is a natural phenomenon characterized by a progressive decline in physiological integrity, leading to a deterioration of cognitive function and increasing the risk of suffering from chronic-degenerative diseases, including cardiovascular diseases, osteoporosis, cancer, diabetes, and neurodegeneration. Aging is considered the major risk factor for Parkinson's and Alzheimer's disease develops. Likewise, diabetes and insulin resistance constitute additional risk factors for developing neurodegenerative disorders. Currently, no treatment can effectively reverse these neurodegenerative pathologies. However, some antidiabetic drugs have opened the possibility of being used against neurodegenerative processes. In the previous framework, Vanadium species have demonstrated a notable antidiabetic effect. Our research group evaluated polyoxidovanadates such as decavanadate and metforminium-decavanadate with preventive and corrective activity on neurodegeneration in brain-specific areas from rats with metabolic syndrome. The results suggest that these polyoxidovanadates induce neuronal and cognitive restoration mechanisms. This review aims to describe the therapeutic potential of polyoxidovanadates as insulin-enhancer agents in the brain, constituting a therapeutic alternative for aging and neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Gonzalo Flores
- Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Jorge Guevara
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Samuel Treviño
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Alfonso Diaz
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| |
Collapse
|
6
|
Leclerc M, Bourassa P, Tremblay C, Caron V, Sugère C, Emond V, Bennett DA, Calon F. Cerebrovascular insulin receptors are defective in Alzheimer's disease. Brain 2023; 146:75-90. [PMID: 36280236 PMCID: PMC9897197 DOI: 10.1093/brain/awac309] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/24/2022] [Accepted: 08/12/2022] [Indexed: 01/11/2023] Open
Abstract
Central response to insulin is suspected to be defective in Alzheimer's disease. As most insulin is secreted in the bloodstream by the pancreas, its capacity to regulate brain functions must, at least partly, be mediated through the cerebral vasculature. However, how insulin interacts with the blood-brain barrier and whether alterations of this interaction could contribute to Alzheimer's disease pathophysiology both remain poorly defined. Here, we show that human and murine cerebral insulin receptors (INSRs), particularly the long isoform INSRα-B, are concentrated in microvessels rather than in the parenchyma. Vascular concentrations of INSRα-B were lower in the parietal cortex of subjects diagnosed with Alzheimer's disease, positively correlating with cognitive scores, leading to a shift towards a higher INSRα-A/B ratio, consistent with cerebrovascular insulin resistance in the Alzheimer's disease brain. Vascular INSRα was inversely correlated with amyloid-β plaques and β-site APP cleaving enzyme 1, but positively correlated with insulin-degrading enzyme, neprilysin and P-glycoprotein. Using brain cerebral intracarotid perfusion, we found that the transport rate of insulin across the blood-brain barrier remained very low (<0.03 µl/g·s) and was not inhibited by an insulin receptor antagonist. However, intracarotid perfusion of insulin induced the phosphorylation of INSRβ that was restricted to microvessels. Such an activation of vascular insulin receptor was blunted in 3xTg-AD mice, suggesting that Alzheimer's disease neuropathology induces insulin resistance at the level of the blood-brain barrier. Overall, the present data in post-mortem Alzheimer's disease brains and an animal model of Alzheimer's disease indicate that defects in the insulin receptor localized at the blood-brain barrier strongly contribute to brain insulin resistance in Alzheimer's disease, in association with β-amyloid pathology.
Collapse
Affiliation(s)
- Manon Leclerc
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada
| | - Philippe Bourassa
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
| | - Vicky Caron
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
| | - Camille Sugère
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
| | - Vincent Emond
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada
| |
Collapse
|
7
|
Wang Y, Hu H, Liu X, Guo X. Hypoglycemic medicines in the treatment of Alzheimer's disease: Pathophysiological links between AD and glucose metabolism. Front Pharmacol 2023; 14:1138499. [PMID: 36909158 PMCID: PMC9995522 DOI: 10.3389/fphar.2023.1138499] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Alzheimer's Disease (AD) is a global chronic disease in adults with beta-amyloid (Aβ) deposits and hyperphosphorylated tau protein as the pathologic characteristics. Although the exact etiology of AD is still not fully elucidated, aberrant metabolism including insulin signaling and mitochondria dysfunction plays an important role in the development of AD. Binding to insulin receptor substrates, insulin can transport through the blood-brain barrier (BBB), thus mediating insulin signaling pathways to regulate physiological functions. Impaired insulin signaling pathways, including PI3K/Akt/GSK3β and MAPK pathways, could cause damage to the brain in the pathogenesis of AD. Mitochondrial dysfunction and overexpression of TXNIP could also be causative links between AD and DM. Some antidiabetic medicines may have benefits in the treatment of AD. Metformin can be beneficial for cognition improvement in AD patients, although results from clinical trials were inconsistent. Exendin-4 may affect AD in animal models but there is a lack of clinical trials. Liraglutide and dulaglutide could also benefit AD patients in adequate clinical studies but not semaglutide. Dipeptidyl peptidase IV inhibitors (DPP4is) such as saxagliptin, vildagliptin, linagliptin, and sitagliptin could boost cognitive function in animal models. And SGLT2 inhibitors such as empagliflozin and dapagliflozin were also considerably protective against new-onset dementia in T2DM patients. Insulin therapy is a promising therapy but some studies indicated that it may increase the risk of AD. Herbal medicines are helpful for cognitive function and neuroprotection in the brain. For example, polyphenols, alkaloids, glycosides, and flavonoids have protective benefits in cognition function and glucose metabolism. Focusing on glucose metabolism, we summarized the pharmacological mechanism of hypoglycemic drugs and herbal medicines. New treatment approaches including antidiabetic synthesized drugs and herbal medicines would be provided to patients with AD. More clinical trials are needed to produce definite evidence for the effectiveness of hypoglycemic medications.
Collapse
Affiliation(s)
- Yixuan Wang
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Hao Hu
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Liu
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xiangyu Guo
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Liang J, Bao AL, Ma HY, Dong W, Li WH, Wu X, Li HY, Hou HY, Chen YQ, Fu JL, Shao C. Prevention of polycystic ovary syndrome and postmenopausal osteoporosis by inhibiting apoptosis with Shenling Baizhu powder compound. PeerJ 2022; 10:e13939. [PMID: 36325179 PMCID: PMC9620975 DOI: 10.7717/peerj.13939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/02/2022] [Indexed: 01/20/2023] Open
Abstract
Objective Shenling Baizhu powder (SBP) has been shown to reverse the abnormal expression of the aromatic hydrocarbon receptor (AHR) mediated by air pollution. Our study aimed to understand the main ingredient of SBP and investigate its action mechanism in preventing polycystic ovary syndrome (POCS) and postmenopausal osteoporosis (PMO). Methods The active ingredients of SBP with the highest binding affinity to AHR were screened using a Chinese medicine database, and their binding mechanism was simulated using molecular dynamics simulation (MDS). Rutin was utilized to treat ovarian granulosa cell lines and osteoblast cell lines. The cell lines were treated with a gradient of rutin concentration (0.01 mmol/L, 0.05 mmol/L and 0.1 mmol/L) to find the optimal drug dose. PCR was used to detect AHR and apoptosis-related proteins, and WB to detect the expression of AHR, caspase-3 and cleaved-caspase-3. Finally, the CCK-8 cell proliferation assay detected the proliferation of cells. Results We obtained Rutin through the Chinese medicine database, and dynamics simulation determined its binding sites. Ovarian granulosa cell lines and osteoblast cell lines were treated with Rutin. RT-PCR and western blotting revealed that the expression of apoptosis-associated protein Bcl-2 was elevated, and the expression of AHR, Bax, caspase-3 and PARP were decreased. CCK-8 results showed accelerated proliferation in both cell types. Conclusion Rutin, the main ingredient of SBP compound, works by binding to AHR, which can improve POCS and PMO by inhibiting cell apoptosis and by promoting cell proliferation.
Collapse
Affiliation(s)
- Jing Liang
- Department of Gynecology, Guang’anmen South Area Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ai-li Bao
- Department of Gynecology, Guang’anmen South Area Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong-yu Ma
- Hebei General Hospital, Department of Traditional Chinese Medicine, Hebei, Chinese
| | - Wei Dong
- Department of Gynecology, Guang’anmen South Area Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei-hua Li
- Department of Gynecology, Guang’anmen South Area Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xi Wu
- Department of Gynecology, Guang’anmen South Area Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Han-yu Li
- Department of Gynecology, Guang’anmen South Area Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hai-yan Hou
- Department of Obstetrics and Gynecology, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, China
| | - Ya-qiong Chen
- Department of Obstetrics and Gynecology, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, China
| | - Jia-lin Fu
- Department of Gynecology, Guang’anmen South Area Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chao Shao
- Department of Gynecology, Guang’anmen South Area Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Long C, Han X, Yang Y, Li T, Zhou Q, Chen Q. Efficacy of intranasal insulin in improving cognition in mild cognitive impairment or dementia: a systematic review and meta-analysis. Front Aging Neurosci 2022; 14:963933. [PMID: 36172480 PMCID: PMC9512636 DOI: 10.3389/fnagi.2022.963933] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Background Insulin regulates many aspects of brain function related to mild cognitive impairment (MCI) or dementia, which can be delivered to the brain center via intranasal (IN) devices. Some small, single-site studies indicated that intranasal insulin can enhance memory in patients with MCI or dementia. The pathophysiology of Alzheimer's disease (AD) and diabetes mellitus (DM) overlap, making insulin an attractive therapy for people suffering from MCI or dementia. Objective The goal of the study is to evaluate the effectiveness of IN insulin on cognition in patients with MCI or dementia. Methods We searched the electronic database for randomized controlled trials (RCTs) that verified the effects of insulin on patients with MCI or dementia.16 studies (899 patients) were identified. Results The pooled standard mean difference (SMD) showed no significant difference between IN insulin and placebo groups; however, statistical results suggested a difference between study groups in the effects of ADCS-ADL; AD patients with APOE4 (-) also showed improved performance in verbal memory; other cognitions did not improve significantly. Conclusion In view of IN insulin's promising potential, more researches should be conducted at a larger dose after proper selection of insulin types and patients. Systematic review registration http://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022353546.
Collapse
Affiliation(s)
- Cong Long
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuke Han
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunjiao Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tongyi Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Qiu Chen
| |
Collapse
|
10
|
Moran C, Than S, Callisaya M, Beare R, Srikanth V. New Horizons-Cognitive Dysfunction Associated With Type 2 Diabetes. J Clin Endocrinol Metab 2022; 107:929-942. [PMID: 34788847 DOI: 10.1210/clinem/dgab797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 11/19/2022]
Abstract
The prevalence of type 2 diabetes (T2D) and cognitive dysfunction increases with age. As society ages, clinicians will be increasingly tasked with managing older people who have both T2D and cognitive dysfunction. T2D is associated with an increased risk of cognitive dysfunction and hence there is increasing interest in whether T2D is a causal factor in the pathogenesis of cognitive decline and dementia. Recent advances in the use of sensitive measures of in vivo brain dysfunction in life-course studies can help understand potential mechanistic pathways and also help guide recommendations for clinical practice. In this article we will describe new horizons in the understanding of cognitive dysfunction associated with T2D. Coming from a clinical perspective, we discuss potential mechanisms and pathways linking the 2 conditions and the contribution of multimodal neuroimaging and study designs to advancing understanding in the field. We also highlight the important issues on the horizon that will need addressing in clinical identification, management, and risk reduction for people with coexistent T2D and cognitive dysfunction.
Collapse
Affiliation(s)
- Chris Moran
- Academic Unit, Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, 3199 Victoria, Australia
- Department of Geriatric Medicine, Peninsula Health, Melbourne, 3199 Victoria, Australia
- Department of Geriatric Medicine, Alfred Health, Melbourne, 3004 Victoria, Australia
| | - Stephanie Than
- Academic Unit, Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, 3199 Victoria, Australia
- Department of Geriatric Medicine, Peninsula Health, Melbourne, 3199 Victoria, Australia
| | - Michele Callisaya
- Academic Unit, Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, 3199 Victoria, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, 7000 Tasmania, Australia
| | - Richard Beare
- Academic Unit, Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, 3199 Victoria, Australia
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, 3052 Victoria, Australia
| | - Velandai Srikanth
- Academic Unit, Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, 3199 Victoria, Australia
- Department of Geriatric Medicine, Peninsula Health, Melbourne, 3199 Victoria, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, 7000 Tasmania, Australia
| |
Collapse
|
11
|
Zhang B, Gao Y, Zhang X, Jiang J, Ren J, Wang S, Hu H, Zhao Y, Chen L, Zhao K, Dai F. Ultra-stable dextran conjugated prodrug micelles for oxidative stress and glycometabolic abnormality combination treatment of Alzheimer's disease. Int J Biol Macromol 2022; 203:430-444. [PMID: 35093435 DOI: 10.1016/j.ijbiomac.2022.01.154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 12/20/2022]
Abstract
Sophisticated nanomedicines are continually being developed, but big obstacles remain before they finish the drug release mission. The first challenge is rupture possibility of structure when infinite dilution, competitive reaction of electrolytes and protein in blood circulation. In addition, low responsive drug release efficiency in the lesion site remains the major challenge for clinical application of nanomedicine combination treatment. In this study, we discussed the opportunities for Alzheimer's disease (AD) combination therapy based on the thermodynamically ultra-stable dextran conjugated prodrug micelles. Dextran-nateglinide conjugated prodrug micelles (NA) and dextran-vitamin E succinate conjugated prodrug micelles (VES) presented ultra-low critical micelle concentration of ~10-5 mM and high physiological stability when challenged by NaCl, sodium dodecyl sulphate (SDS), dodecyl dimethyl benzyl ammonium chloride (DDBAC) and no rupture of structure happened. The NA/insulin polymer-drug conjugate micelles (NA/INS PDC) and VES/insulin polymer-drug conjugate micelles (VES/INS PDC) efficiently cleaved by reactive oxygen species (ROS), leading to over 80% release of the encapsulated and conjugated drugs. The combination of nateglinide and insulin, vitamin E succinate and insulin improved the glucose metabolism, reduced oxidative stress, improved the mitochondrial function and recovered the cognitive capacity of mice. This work demonstrated a paradigm for specific and high efficacy AD combination therapy.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yachai Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xiaolei Zhang
- Heibei Research Centre of Analysis and Testing, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Jicheng Jiang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jian Ren
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Shaoteng Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Haodong Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Kongyin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Fengying Dai
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
12
|
Li Q, Jia M, Yan Z, Li Q, Sun F, He C, Li Y, Zhou X, Zhang H, Liu X, Bu X, Gao P, He H, Zhao Z, Zhu Z. Activation of Glucagon-Like Peptide-1 Receptor Ameliorates Cognitive Decline in Type 2 Diabetes Mellitus Through a Metabolism-Independent Pathway. J Am Heart Assoc 2021; 10:e020734. [PMID: 34250817 PMCID: PMC8483500 DOI: 10.1161/jaha.120.020734] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Patients with hypertension and diabetes mellitus are susceptible to dementia, but regular therapy fails to reduce the risk of dementia. Glucagon‐like peptide‐1 receptor agonists have neuroprotective effects in experimental studies. We aimed to assess the effect of liraglutide, a glucagon‐like peptide‐1 receptor agonist, on cognitive function and whether its effect was associated with metabolic changes in patients with type 2 diabetes mellitus. Methods and Results Fifty patients with type 2 diabetes mellitus were recruited in this prospective study. All patients underwent cognitive assessment and brain activation monitoring by functional near‐infrared spectroscopy. At 12 weeks, patients in the glucagon‐like peptide‐1 group acquired better scores in all cognitive tests and showed remarkable improvement in memory and attention (P=0.040) test compared with the control group after multivariable adjustment. Compared with the control group, liraglutide significantly increased activation of the dorsolateral prefrontal cortex and orbitofrontal cortex brain regions (P=0.0038). After liraglutide treatment, cognitive scores were significantly correlated with changes in these activating brain regions (P<0.05), but no correlation was observed between the changes in cognitive function and changes of body mass index, blood pressure, and glycemic levels. Conclusions We concluded that liraglutide improves cognitive decline in patients with type 2 diabetes mellitus. This beneficial effect is independent of its hypoglycemic effect and weight loss. The optimal intervention should be targeted to cognitive decline in the early stages of dementia. Registration URL: https://www.ClinicalTrials.gov; Unique identifier: NCT03707171.
Collapse
Affiliation(s)
- Qiang Li
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Army Medical University Chongqing China
| | - Mengxiao Jia
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Army Medical University Chongqing China
| | - Zhencheng Yan
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Army Medical University Chongqing China
| | - Qiang Li
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Army Medical University Chongqing China
| | - Fang Sun
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Army Medical University Chongqing China
| | - Chengkang He
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Army Medical University Chongqing China
| | - Yingsha Li
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Army Medical University Chongqing China
| | - Xunmei Zhou
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Army Medical University Chongqing China
| | - Hexuan Zhang
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Army Medical University Chongqing China
| | - Xiaoli Liu
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Army Medical University Chongqing China
| | - Xiaona Bu
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Army Medical University Chongqing China
| | - Peng Gao
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Army Medical University Chongqing China
| | - Hongbo He
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Army Medical University Chongqing China
| | - Zhigang Zhao
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Army Medical University Chongqing China
| | - Zhiming Zhu
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Army Medical University Chongqing China
| |
Collapse
|
13
|
A Study to Decipher the Potential Effects of Butylphthalide against Central Nervous System Diseases Based on Network Pharmacology and Molecular Docking Integration Strategy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6694698. [PMID: 34035826 PMCID: PMC8116153 DOI: 10.1155/2021/6694698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/05/2021] [Accepted: 04/27/2021] [Indexed: 11/24/2022]
Abstract
Background Butylphthalide (NBP), approved by the China National Medical Products Administration (NMPA) for the treatment of ischemic stroke (IS), showed pleiotropic potentials against central nervous system (CNS) diseases, including neuroprotection and cognitive deficits improvement. However, the effects and corresponding modes of action were not fully explored. This study was designed to investigate the potential of NBP against IS-associated CNS diseases based on network pharmacology (NP) and molecular docking (MD). Methods IS was inputted as the index disease to retrieve the “associated diseases” in DisGeNET. Three-database-based IS genes were obtained and integrated (DisGeNET, Malacards, and OMIM). Then, IS-associated genes were identified by combining these genes. Meanwhile, PubMed references and online databases were applied to identify NBP target genes. The IS-related disease-disease association (DDA) network and NBP-disease regulation network were constructed and analyzed in Cytoscape. In silico MD and references were used to validate the binding affinity of NBP with critical targets and the potential of NBP against certain IS-related CNS disease regulation. Results 175 NBP target genes were obtained, while 312 IS-related disease genes were identified. 36 NBP target genes were predicted to be associated with IS-related CNS diseases, including Alzheimer's disease (AD), epilepsy, major depressive disorder (MDD), amyotrophic lateral sclerosis (ALS), and dementia. Six target genes (i.e., GRIN1, PTGIS, PTGES, ADRA1A, CDK5, and SULT1E1) indicating disease specificity index (DSI) >0.5 showed certain to good degree binding affinity with NBP, ranging from −9.2 to −6.7 kcal/mol. And the binding modes may be mainly related to hydrogen bonds and hydrophobic “bonds.” Further literature validations inferred that these critical NBP targets had a tight association with AD, epilepsy, ALS, and depression. Conclusions Our study proposed a drug-target-disease integrated method to predict the drug repurposing potentials to associated diseases by application of NP and MD, which could be an attractive alternative to facilitate the development of CNS disease therapies. NBP may be promising and showed potentials to be repurposed for treatments for AD, epilepsy, ALS, and depression, and further investigations are warranted to be carefully designed and conducted.
Collapse
|
14
|
Diaz A, Muñoz-Arenas G, Venegas B, Vázquez-Roque R, Flores G, Guevara J, Gonzalez-Vergara E, Treviño S. Metforminium Decavanadate (MetfDeca) Treatment Ameliorates Hippocampal Neurodegeneration and Recognition Memory in a Metabolic Syndrome Model. Neurochem Res 2021; 46:1151-1165. [PMID: 33559829 DOI: 10.1007/s11064-021-03250-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/02/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
The consumption of foods rich in carbohydrates, saturated fat, and sodium, accompanied by a sedentary routine, are factors that contribute to the progress of metabolic syndrome (MS). In this way, they cause the accumulation of body fat, hypertension, dyslipidemia, and hyperglycemia. Additionally, MS has been shown to cause oxidative stress, inflammation, and death of neurons in the hippocampus. Consequently, spatial and recognition memory is affected. It has recently been proposed that metformin decavanadate (MetfDeca) exerts insulin mimetic effects that enhance metabolism in MS animals; however, what effects it can cause on the hippocampal neurons of rats with MS are unknown. The objective of the work was to evaluate the effect of MetfDeca on hippocampal neurodegeneration and recognition memory in rats with MS. Administration of MetfDeca for 60 days in MS rats improved object recognition memory (NORt). In addition, MetfDeca reduced markers of oxidative stress and hippocampal neuroinflammation. Accompanied by an increase in the density and length of the dendritic spines of the hippocampus of rats with MS. We conclude that MetfDeca represents an important therapeutic agent to treat MS and induce neuronal and cognitive restoration mechanisms.
Collapse
Affiliation(s)
- Alfonso Diaz
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Pue, Mexico
| | - Guadalupe Muñoz-Arenas
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Pue, Mexico
| | - Berenice Venegas
- Faculty of Biological Sciences, Benemerita Autonomous University of Puebla, Puebla, Pue, Mexico
| | - Rubén Vázquez-Roque
- Laboratory of Neuropsychiatry, Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Pue, Mexico
| | - Gonzalo Flores
- Laboratory of Neuropsychiatry, Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Pue, Mexico
| | - Jorge Guevara
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Samuel Treviño
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Pue, Mexico.
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Research has consistently shown that type 2 diabetes (T2D) is associated with increased risk of all-cause dementia. Because one of the most common clinical presentations of early stage dementia is memory impairment, we examined the relationship of T2D with memory function, using the recently published scientific literature. RECENT FINDINGS We conducted a structured review to identify studies of "T2D and memory" published since 2015. After review of the 129 articles retrieved, we identified 14 studies meeting the inclusion and exclusion criteria. Among the eight studies with a single assessment of memory function in time (mostly cross-sectional), six found an association of T2D with lower memory function, but mostly in select subgroups of persons. Separately, six studies included repeated measures of memory (longitudinal design). Four out of six longitudinal studies found that T2D was related with a faster decline in memory, while two did not. Among the four studies showing a relation with memory decline, two had sample sizes of 9000-10,000 persons. Further, three longitudinal studies controlled for hypertension and stroke as covariates, and results suggested that common vascular risk factors and diseases do not account for the relation. While mechanistic studies clearly support a role for cerebrovascular disease in the relation of T2D with cognition, emerging data suggest that insulin resistance in the brain itself may also play a role. Most, but not all, recently published studies suggest that T2D is associated with a lower level and faster decline in memory function. This association does not appear to be fully accounted for by common vascular processes. More research will clarify the mechanisms linking T2D to memory and dementia.
Collapse
|
16
|
Tang BL. Could metformin be therapeutically useful in Huntington's disease? Rev Neurosci 2020; 31:297-317. [PMID: 31751298 DOI: 10.1515/revneuro-2019-0072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggest that dimethylbiguanide (metformin), a first-line drug for type 2 diabetes mellitus, could be neuroprotective in a range of brain pathologies, which include neurodegenerative diseases and brain injury. However, there are also contraindications that associate metformin treatment with cognitive impairment as well as adverse outcomes in Alzheimer's disease and Parkinson's disease animal models. Recently, a beneficial effect of metformin in animal models of Huntington's disease (HD) has been strengthened by multiple reports. In this brief review, the findings associated with the effects of metformin in attenuating neurodegenerative diseases are discussed, focusing on HD-associated pathology and the potential underlying mechanisms highlighted by these studies. The mechanism of action of metformin is complex, and its therapeutic efficacy is therefore expected to be dependent on the disease context. The key metabolic pathways that are effectively affected by metformin, such as AMP-activated protein kinase activation, may be altered in the later decades of the human lifespan. In this regard, metformin may nonetheless be therapeutically useful for neurological diseases with early pathological onsets, such as HD.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore 117596, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Medical Drive, Singapore 119077, Singapore
| |
Collapse
|
17
|
Stoeckel LE. Brain insulin resistance as a contributing factor to dementia and psychiatric disease. Exp Neurol 2020; 326:113205. [PMID: 32000094 DOI: 10.1016/j.expneurol.2020.113205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Luke E Stoeckel
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 6707 Democracy Boulevard, Room 6063, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Shinjyo N, Parkinson J, Bell J, Katsuno T, Bligh A. Berberine for prevention of dementia associated with diabetes and its comorbidities: A systematic review. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:125-151. [PMID: 32005442 DOI: 10.1016/j.joim.2020.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND A growing number of epidemiological studies indicate that metabolic syndrome (MetS) and its associated features play a key role in the development of certain degenerative brain disorders, including Alzheimer's disease and vascular dementia. Produced by several different medicinal plants, berberine is a bioactive alkaloid with a wide range of pharmacological effects, including antidiabetic effects. However, it is not clear whether berberine could prevent the development of dementia in association with diabetes. OBJECTIVE To give an overview of the therapeutic potential of berberine as a treatment for dementia associated with diabetes. SEARCH STRATEGY Database searches A and B were conducted using PubMed and ScienceDirect. In search A, studies on berberine's antidementia activities were identified using "berberine" and "dementia" as search terms. In search B, recent studies on berberine's effects on diabetes were surveyed using "berberine" and "diabetes" as search terms. INCLUSION CRITERIA Clinical and preclinical studies that investigated berberine's effects associated with MetS and cognitive dysfunction were included. DATA EXTRACTION AND ANALYSIS Data from studies were extracted by one author, and checked by a second; quality assessments were performed independently by two authors. RESULTS In search A, 61 articles were identified, and 22 original research articles were selected. In search B, 458 articles were identified, of which 101 were deemed relevant and selected. Three duplicates were removed, and a total of 120 articles were reviewed for this study. The results demonstrate that berberine exerts beneficial effects directly in the brain: enhancing cholinergic neurotransmission, improving cerebral blood flow, protecting neurons from inflammation, limiting hyperphosphorylation of tau and facilitating β-amyloid peptide clearance. In addition, evidence is growing that berberine is effective against diabetes and associated disorders, such as atherosclerosis, cardiomyopathy, hypertension, hepatic steatosis, diabetic nephropathy, gut dysbiosis, retinopathy and neuropathy, suggesting indirect benefits for the prevention of dementia. CONCLUSION Berberine could impede the development of dementia via multiple mechanisms: preventing brain damages and enhancing cognition directly in the brain, and indirectly through alleviating risk factors such as metabolic dysfunction, and cardiovascular, kidney and liver diseases. This study provided evidence to support the value of berberine in the prevention of dementia associated with MetS.
Collapse
Affiliation(s)
- Noriko Shinjyo
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan.
| | - James Parkinson
- Department of Life Sciences, Faculty of Science and Technology at the University of Westminster, London W1W 6UW, United Kingdom
| | - Jimmy Bell
- Department of Life Sciences, Faculty of Science and Technology at the University of Westminster, London W1W 6UW, United Kingdom.
| | - Tatsuro Katsuno
- Kashiwanoha Clinic of East Asian Medicine, Chiba University Hospital, Kashiwa, Chiba 277-0882, Japan
| | - Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Tseung Kwan O, NT 999077, Hong Kong, China.
| |
Collapse
|