1
|
Lu Y, Fu W, Xing W, Wu H, Zhang C, Xu D. Transcriptional regulation mechanism of PARP1 and its application in disease treatment. Epigenetics Chromatin 2024; 17:26. [PMID: 39118189 PMCID: PMC11308664 DOI: 10.1186/s13072-024-00550-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a multifunctional nuclear enzyme that catalyzes poly-ADP ribosylation in eukaryotic cells. In addition to maintaining genomic integrity, this nuclear enzyme is also involved in transcriptional regulation. PARP1 can trigger and maintain changes in the chromatin structure and directly recruit transcription factors. PARP1 also prevents DNA methylation. However, most previous reviews on PARP1 have focused on its involvement in maintaining genome integrity, with less focus on its transcriptional regulatory function. This article comprehensively reviews the transcriptional regulatory function of PARP1 and its application in disease treatment, providing new ideas for targeting PARP1 for the treatment of diseases other than cancer.
Collapse
Affiliation(s)
- Yu Lu
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Beijing, 100850, P.R. China
- Hebei University, Baoding, Hebei, P.R. China
| | - Wenliang Fu
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Beijing, 100850, P.R. China
| | - Weiwei Xing
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Beijing, 100850, P.R. China
| | - Haowei Wu
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Beijing, 100850, P.R. China
| | - Chao Zhang
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Beijing, 100850, P.R. China.
| | - Donggang Xu
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Beijing, 100850, P.R. China.
| |
Collapse
|
2
|
Zhao J, Sun H, Wang C, Shang D. Breast cancer therapy: from the perspective of glucose metabolism and glycosylation. Mol Biol Rep 2024; 51:546. [PMID: 38642246 DOI: 10.1007/s11033-024-09466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/22/2024] [Indexed: 04/22/2024]
Abstract
Breast cancer is a leading cause of mortality and the most prevalent form of malignant tumor among women worldwide. Breast cancer cells exhibit an elevated glycolysis and altered glucose metabolism. Moreover, these cells display abnormal glycosylation patterns, influencing invasion, proliferation, metastasis, and drug resistance. Consequently, targeting glycolysis and mitigating abnormal glycosylation represent key therapeutic strategies for breast cancer. This review underscores the importance of protein glycosylation and glucose metabolism alterations in breast cancer. The current research efforts in developing effective interventions targeting glycolysis and glycosylation are further discussed.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Haiting Sun
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Che Wang
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China.
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Science, Liaoning Normal University, Dalian, 116081, China.
| | - Dejing Shang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Science, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
3
|
Guo L, Lin X, Lin X, Wang Y, Lin J, Zhang Y, Chen X, Chen M, Zhang G, Zhang Y. Risk of interstitial lung disease with the use of programmed cell death 1 (PD-1) inhibitor compared with programmed cell death ligand 1 (PD-L1) inhibitor in patients with breast cancer: A systematic review and meta-analysis. CANCER PATHOGENESIS AND THERAPY 2024; 2:91-102. [PMID: 38601483 PMCID: PMC11002750 DOI: 10.1016/j.cpt.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 04/12/2024]
Abstract
Background Programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) inhibitors have become integral elements within the current landscape of breast cancer treatment modalities; however, they are associated with interstitial lung disease (ILD), which is rare but potentially fatal. Notably, only a few studies have compared the difference in ILD incidence between PD-1 and PD-L1 inhibitors. Therefore, this study aimed to assess the discrepancies regarding ILD risk between the two immune checkpoint inhibitors. We also reported three cases of ILD after PD-1 inhibitor treatment. Methods We comprehensively searched PubMed, EMBASE, and the Cochrane Library to identify clinical trials that investigated PD-1/PD-L1 inhibitor treatment for patients with breast cancer. Pooled overall estimates of incidence and risk ratio (RR) were calculated with a 95% confidence interval (CI), and a mirror group analysis was performed using eligible studies. Results This meta-analysis included 29 studies with 4639 patients who received PD-1/PD-L1 inhibitor treatment. A higher ILD incidence was observed among 2508 patients treated with PD-1 inhibitors than among 2131 patients treated with PD-L1 inhibitors (0.05 vs. 0.02). The mirror group analysis further revealed a higher ILD event risk in patients treated with PD-1 inhibitors than in those treated with PD-L1 inhibitors (RR = 2.34, 95% CI, 1.13-4.82, P = 0.02). Conclusion Our findings suggest a greater risk of ILD with PD-1 inhibitors than with PD-L1 inhibitors. These findings are instrumental for clinicians in treatment deliberations, and the adoption of more structured diagnostic approaches and management protocols is necessary to mitigate the risk of ILD.
Collapse
Affiliation(s)
- Lijuan Guo
- Department of Breast Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510000, China
| | - Xiaoyi Lin
- Department of Breast Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
- Medical College, Shantou University, Shantou, Guangdong 515000, China
| | - Xin Lin
- Department of Breast Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Yulei Wang
- Department of Breast Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Jiali Lin
- Department of Breast Cancer, Guangdong Provincial People's Hospital's Nanhai Hospital, Foshan, Guangdong 528000, China
| | - Yi Zhang
- Department of Breast Cancer, Guangdong Provincial People's Hospital's Nanhai Hospital, Foshan, Guangdong 528000, China
| | - Xiangqing Chen
- Department of Breast Cancer, Guangdong Provincial People's Hospital's Nanhai Hospital, Foshan, Guangdong 528000, China
| | - Miao Chen
- Department of Emergency Medicine, Guangdong Provincial People's Hospital's Nanhai Hospital, Foshan, Guangdong 528000, China
| | - Guochun Zhang
- Department of Breast Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510000, China
| | - Yifang Zhang
- Department of Breast Cancer, Guangdong Provincial People's Hospital's Nanhai Hospital, Foshan, Guangdong 528000, China
| |
Collapse
|
4
|
Akinsipe T, Mohamedelhassan R, Akinpelu A, Pondugula SR, Mistriotis P, Avila LA, Suryawanshi A. Cellular interactions in tumor microenvironment during breast cancer progression: new frontiers and implications for novel therapeutics. Front Immunol 2024; 15:1302587. [PMID: 38533507 PMCID: PMC10963559 DOI: 10.3389/fimmu.2024.1302587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
The breast cancer tumor microenvironment (TME) is dynamic, with various immune and non-immune cells interacting to regulate tumor progression and anti-tumor immunity. It is now evident that the cells within the TME significantly contribute to breast cancer progression and resistance to various conventional and newly developed anti-tumor therapies. Both immune and non-immune cells in the TME play critical roles in tumor onset, uncontrolled proliferation, metastasis, immune evasion, and resistance to anti-tumor therapies. Consequently, molecular and cellular components of breast TME have emerged as promising therapeutic targets for developing novel treatments. The breast TME primarily comprises cancer cells, stromal cells, vasculature, and infiltrating immune cells. Currently, numerous clinical trials targeting specific TME components of breast cancer are underway. However, the complexity of the TME and its impact on the evasion of anti-tumor immunity necessitate further research to develop novel and improved breast cancer therapies. The multifaceted nature of breast TME cells arises from their phenotypic and functional plasticity, which endows them with both pro and anti-tumor roles during tumor progression. In this review, we discuss current understanding and recent advances in the pro and anti-tumoral functions of TME cells and their implications for developing safe and effective therapies to control breast cancer progress.
Collapse
Affiliation(s)
- Tosin Akinsipe
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Rania Mohamedelhassan
- Department of Chemical Engineering, College of Engineering, Auburn University, Auburn, AL, United States
| | - Ayuba Akinpelu
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Satyanarayana R. Pondugula
- Department of Chemical Engineering, College of Engineering, Auburn University, Auburn, AL, United States
| | - Panagiotis Mistriotis
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - L. Adriana Avila
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
5
|
Yousefi A, Sotoodehnejadnematalahi F, Nafissi N, Zeinali S, Azizi M. MicroRNA-561-3p indirectly regulates the PD-L1 expression by targeting ZEB1, HIF1A, and MYC genes in breast cancer. Sci Rep 2024; 14:5845. [PMID: 38462658 PMCID: PMC10925600 DOI: 10.1038/s41598-024-56511-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Globally, breast cancer is the second most common cause of cancer-related deaths among women. In breast cancer, microRNAs (miRNAs) are essential for both the initiation and development of tumors. It has been suggested that the tumor suppressor microRNA-561-3p (miR-561-3p) is crucial in arresting the growth of cancer cells. Further research is necessary to fully understand the role and molecular mechanism of miR-561 in human BC. The aim of this study was to investigate the inhibitory effect of miR-561-3p on ZEB1, HIF1A, and MYC expression as oncogenes that have the most impact on PD-L1 overexpression and cellular processes such as proliferation, apoptosis, and cell cycle in breast cancer (BC) cell lines. The expression of ZEB1, HIF1A, and MYC genes and miR-561-3p were measured in BC clinical samples and cell lines via qRT-PCR. The luciferase assay, MTT, Annexin-PI staining, and cell cycle experiments were used to assess the effect of miR-561-3p on candidate gene expression, proliferation, apoptosis, and cell cycle progression. Flow cytometry was used to investigate the effects of miR-561 on PD-L1 suppression in the BC cell line. The luciferase assay showed that miRNA-561-3p targets the 3'-UTRs of ZEB1, HIF1A and MYC genes significantly. In BC tissues, the qRT-PCR results demonstrated that miR-561-3p expression was downregulated and the expression of ZEB1, HIF1A and MYC genes was up-regulated. It was shown that overexpression of miR-561-3p decreased PD-L1 expression and BC cell proliferation, and induced apoptosis and cell cycle arrest through downregulation of candidate oncogenes. Furthermore, inhibition of candidate genes by miR-561-3p reduced PD-L1 at both mRNA and protein levels. Our research investigated the impact of miR-561-3p on the expression of ZEB1, HIF1A and MYC in breast cancer cells for the first time. Our findings may help clarify the role of miR-561-3p in PD-L1 regulation and point to this miR as a potential biomarker and novel therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Atena Yousefi
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Nahid Nafissi
- Breast Surgery Department, Iran University of Medical Sciences, Tehran, Iran
| | - Sirous Zeinali
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran
| | - Masoumeh Azizi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran.
| |
Collapse
|
6
|
Li Y, Liang X, Li H, Chen X. Reconstruction of unreported subgroup survival data with PD-L1-low expression in advanced/metastatic triple-negative breast cancer using innovative KMSubtraction workflow. J Immunother Cancer 2024; 12:e007931. [PMID: 38212119 PMCID: PMC10806559 DOI: 10.1136/jitc-2023-007931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Among patients with advanced/metastatic triple-negative breast cancer (TNBC) with high/positive programmed death-ligand 1 (PD-L1) expression, a superior survival outcome has been demonstrated with immune checkpoint inhibitors (ICIs). However, it remains unclear whether ICIs are beneficial for patients with low PD-L1 levels. Here, we derived survival data for subgroups with low PD-L1-expressing and conducted a pooled analysis. METHODS After a systematic search of Embase, PubMed, MEDLINE, and CENTRAL from inception until May 18, 2023, randomized controlled trials (RCTs) reporting progression-free survival (PFS), overall survival (OS), or duration of response (DOR) for metastatic TNBC treated with ICI-based regimens were included. Kaplan-Meier curves were extracted for the intention-to-treat population and high PD-L1 subgroups. KMSubtraction was used when survival curves were not provided for subgroups with low PD-L1 expression. A pooled analysis of survival data was then conducted. RESULTS A total of 3022 patients were included in four RCTs: Impassion130, Impassion131, KEYNOTE-119, and KEYNOTE-355. Unreported low PD-L1-expressing subgroups were identified, including PD-L1 immune cell (IC)<1%, combined positive score (CPS)<1, and 1≤CPS<10. Compared with chemotherapy, ICI-chemotherapy combinations did not significantly differ in OS, PFS, or DOR in the Impassion PD-L1<1%, KEYNOTE-355 PD-L1 CPS<1, and KEYNOTE-355 1≤CPS<10 subgroups. In the KEYNOTE-119 CPS<1 subgroup, the risk of tumor progression was increased with pembrolizumab (HR, 2.23; 95% CI, 1.62 to 3.08; p<0.001), as well as in the 1≤CPS<10 subgroup (HR, 1.64; 95% CI, 1.22 to 2.20; p<0.001). A pooled analysis using a scoring system found no significant difference in OS and PFS among the subgroups with an IC of <1% between immunochemotherapy and chemotherapy. OS (HR, 1.07; 95% CI, 0.91 to 1.26), PFS (HR, 0.96; 95% CI, 0.84 to 1.10), and DOR were also not significantly different in pooled analysis of first-line trials for those with low PD-L1 expression. CONCLUSION ICI-based regimens are not associated with a survival benefit versus chemotherapy in subgroups of advanced/metastatic TNBC that express low PD-L1 levels.
Collapse
Affiliation(s)
- Yan Li
- Department of Clinical Pharmacy, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xueyan Liang
- Phase 1 Clinical Trial Laboratory, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Huijuan Li
- Phase 1 Clinical Trial Laboratory, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaoyu Chen
- Department of Clinical Pharmacy, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Phase 1 Clinical Trial Laboratory, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
7
|
Das P, N M, Singh N, Datta P. Supramolecular Nanostructures for the Delivery of Peptides in Cancer Therapy. J Pharmacol Exp Ther 2024; 388:67-80. [PMID: 37827700 DOI: 10.1124/jpet.123.001698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Supramolecular nanostructured based delivery systems are emerging as a meaningful approach in the treatment of cancer, offering controlled drug release and improved therapeutic efficacy. The self-assembled structures can be small molecules, polymers, peptides, or proteins, which can be used and functionalized to achieve tailored release and target specific cells, tissues, or organs. These structures can improve the solubility and stability of drugs having low aqueous solubility by encapsulating and protecting them from degradation. Alongside, peptides as natural biomolecules have gained increasing attention as potential candidates in cancer treatment because of their biocompatibility, low cytotoxicity, and high specificity toward tumor cells. The amino acid sequences in peptide molecules are tunable, efficiently controlling the morphology of peptide-based self-assembled nanosystems and offering flexibility to form supramolecular nanostructures (SNs). It is evident from the current literature that the supramolecular nanostructures based delivery of peptide for cancer treatment hold great promise for future cancer therapy, offering potential strategies for personalized medicine with improved patient outcomes. SIGNIFICANCE STATEMENT: This review focuses on fundamentals and various drug delivery mechanisms based on SNs. Different SN approaches and recent literature reviews on peptide delivery are also presented to the readers.
Collapse
Affiliation(s)
- Priyanka Das
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Manasa N
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Nidhi Singh
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Pallab Datta
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| |
Collapse
|
8
|
Capuozzo M, Celotto V, Santorsola M, Fabozzi A, Landi L, Ferrara F, Borzacchiello A, Granata V, Sabbatino F, Savarese G, Cascella M, Perri F, Ottaiano A. Emerging treatment approaches for triple-negative breast cancer. Med Oncol 2023; 41:5. [PMID: 38038783 DOI: 10.1007/s12032-023-02257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Approximately, 15% of global breast cancer cases are diagnosed as triple-negative breast cancer (TNBC), identified as the most aggressive subtype due to the simultaneous absence of estrogen receptor, progesterone receptor, and HER2. This characteristic renders TNBC highly aggressive and challenging to treat, as it excludes the use of effective drugs such as hormone therapy and anti-HER2 agents. In this review, we explore standard therapies and recent emerging approaches for TNBC, including PARP inhibitors, immune checkpoint inhibitors, PI3K/AKT pathway inhibitors, and cytotoxin-conjugated antibodies. The mechanism of action of these drugs and their utilization in clinical practice is explained in a pragmatic and prospective manner, contextualized within the current landscape of standard therapies for this pathology. These advancements present a promising frontier for tailored interventions with the potential to significantly improve outcomes for TNBC patients. Interestingly, while TNBC poses a complex challenge, it also serves as a paradigm and an opportunity for translational research and innovative therapies in the field of oncology.
Collapse
Affiliation(s)
- Maurizio Capuozzo
- Pharmaceutical Department, ASL Napoli 3, Ercolano, 80056, Naples, Italy
| | - Venere Celotto
- Pharmaceutical Department, ASL Napoli 3, Ercolano, 80056, Naples, Italy
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Antonio Fabozzi
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Loris Landi
- Sanitary District, Ds. 58 ASL Napoli 3, Pompei, 80045, Naples, Italy
| | - Francesco Ferrara
- Pharmaceutical Department, ASL Napoli 3, Via Dell'amicizia 22, Nola, 80035, Naples, Italy
| | - Assunta Borzacchiello
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081, Salerno, Italy
| | - Giovanni Savarese
- AMES, Centro Polidiagnostico Strumentale Srl, Via Padre Carmine Fico 24, Casalnuovo Di, 80013, Naples, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy.
| |
Collapse
|
9
|
Zerella MA, Zaffaroni M, Ronci G, Dicuonzo S, Rojas DP, Morra A, Gerardi MA, Fodor C, Rondi E, Vigorito S, Penco S, Sargenti M, Baratella P, Vicini E, Morigi C, Kahler-Ribeiro-Fontana S, Galimberti VE, Gandini S, De Camilli E, Renne G, Cattani F, Veronesi P, Orecchia R, Jereczek-Fossa BA, Leonardi MC. A narrative review for radiation oncologists to implement preoperative partial breast irradiation. LA RADIOLOGIA MEDICA 2023; 128:1553-1570. [PMID: 37650981 DOI: 10.1007/s11547-023-01706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
The strategy to anticipate radiotherapy (RT) before surgery, for breast cancer (BC) treatment, has recently generated a renewed interest. Historically, preoperative RT has remained confined either to highly selected patients, in the context of personalized therapy, or to clinical research protocols. Nevertheless, in the recent years, thanks to technological advances and increased tumor biology understanding, RT has undergone great changes that have also impacted the preoperative settings, embracing the modern approach to breast cancer. In particular, the reappraisal of preoperative RT can be viewed within the broader view of personalized and tailored medicine. In fact, preoperative accelerated partial breast irradiation (APBI) allows a more precise target delineation, with less variability in contouring among radiation oncologists, and a smaller treatment volume, possibly leading to lower toxicity and to dose escalation programs. The aim of the present review, which represents a benchmark study for the AIRC IG-23118, is to report available data on different technical aspects of preoperative RT including dosimetric studies, patient's selection and set-up, constraints, target delineation and clinical results. These data, along with the ones that will become available from ongoing studies, may inform the design of the future trials and representing a step toward a tailored APBI approach with the potential to challenge the current treatment paradigm in early-stage BC.Trial registration: The study is registered at clinicaltrials.gov (NCT04679454).
Collapse
Affiliation(s)
- Maria Alessia Zerella
- Department of Radiation Oncology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Mattia Zaffaroni
- Department of Radiation Oncology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Giuseppe Ronci
- Unit of Medical Physics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Samantha Dicuonzo
- Department of Radiation Oncology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Damaris Patricia Rojas
- Department of Radiation Oncology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Anna Morra
- Department of Radiation Oncology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | | | - Cristiana Fodor
- Department of Radiation Oncology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Elena Rondi
- Unit of Medical Physics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sabrina Vigorito
- Unit of Medical Physics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Silvia Penco
- Division of Breast Radiology, IRCSS, IEO European Institute of Oncology, Milan, Italy
| | - Manuela Sargenti
- Division of Breast Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Paola Baratella
- Division of Breast Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Elisa Vicini
- Division of Breast Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Consuelo Morigi
- Division of Breast Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | | | - Sara Gandini
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Elisa De Camilli
- Department of Pathology and Laboratory Medicine, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Renne
- Department of Pathology and Laboratory Medicine, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Federica Cattani
- Unit of Medical Physics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Paolo Veronesi
- Division of Breast Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Roberto Orecchia
- Scientific Directorate, European Institute of Oncology IRCCS, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Radiation Oncology, European Institute of Oncology IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Maria Cristina Leonardi
- Department of Radiation Oncology, European Institute of Oncology IRCCS, 20141, Milan, Italy.
| |
Collapse
|
10
|
Xiao D, Zeng T, Zhu W, Yu ZZ, Huang W, Yi H, Lu SS, Feng J, Feng XP, Wu D, Wen Q, Zhou JH, Yuan L, Zhuang W, Xiao ZQ. ANXA1 Promotes Tumor Immune Evasion by Binding PARP1 and Upregulating Stat3-Induced Expression of PD-L1 in Multiple Cancers. Cancer Immunol Res 2023; 11:1367-1383. [PMID: 37566399 DOI: 10.1158/2326-6066.cir-22-0896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/10/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
The deregulation of Annexin A1 (ANXA1), a regulator of inflammation and immunity, leads to cancer growth and metastasis. However, whether ANXA1 is involved in cancer immunosuppression is still unclear. Here, we report that ANXA1 knockdown (i) dramatically downregulates programmed cell death-ligand 1 (PD-L1) expression in breast cancer, lung cancer, and melanoma cells; (ii) promotes T cell-mediated killing of cancer cells in vitro; and (iii) inhibits cancer immune escape in immune-competent mice via downregulating PD-L1 expression and increasing the number and killing activity of CD8+ T cells. Mechanistically, ANXA1 functioned as a sponge molecule for interaction of PARP1 and Stat3. Specifically, binding of ANXA1 to PARP1 decreased PARP1's binding to Stat3, which reduced poly(ADP-ribosyl)ation and dephosphorylation of Stat3 and thus, increased Stat3's transcriptional activity, leading to transcriptionally upregulated expression of PD-L1 in multiple cancer cells. In clinical samples, expression of ANXA1 and PD-L1 was significantly higher in breast cancer, non-small cell lung cancer, and skin cutaneous melanoma compared with corresponding normal tissues and positively correlated in cancer tissues. Moreover, using both ANXA1 and PD-L1 proteins for predicting efficacy of anti-PD-1 immunotherapy and patient prognosis was superior to using individual proteins. Our data suggest that ANXA1 promotes cancer immune escape via binding PARP1 and upregulating Stat3-induced expression of PD-L1, that ANXA1 is a potential new target for cancer immunotherapy, and combination of ANXA1 and PD-L1 expression is a potential marker for predicting efficacy of anti-PD-1 immunotherapy in multiple cancers.
Collapse
Affiliation(s)
- Ding Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Zeng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng-Zheng Yu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Shan-Shan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Feng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ping Feng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Di Wu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Wen
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Jian-Hua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Li Yuan
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhuang
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Qiang Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Wang Y, Lu L, Ling C, Zhang P, Han R. Potential of Dietary HDAC2i in Breast Cancer Patients Receiving PD-1/PD-L1 Inhibitors. Nutrients 2023; 15:3984. [PMID: 37764768 PMCID: PMC10537481 DOI: 10.3390/nu15183984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer (BC) is a lethal malignancy with high morbidity and mortality but lacks effective treatments thus far. Despite the introduction of immune checkpoint inhibitors (ICIs) (including PD-1/PD-L1 inhibitors), durable and optimal clinical benefits still remain elusive for a considerable number of BC patients. To break through such a dilemma, novel ICI-based combination therapy has been explored for enhancing the therapeutic effect. Recent evidence has just pointed out that the HDAC2 inhibitor (HDAC2i), which has been proven to exhibit an anti-cancer effect, can act as a sensitizer for ICIs therapy. Simultaneously, dietary intervention, as a crucial supportive therapy, has been reported to provide ingredients containing HDAC2 inhibitory activity. Thus, the novel integration of dietary intervention with ICIs therapy may offer promising possibilities for improving treatment outcomes. In this study, we first conducted the differential expression and prognostic analyses of HDAC2 and BC patients using the GENT2 and Kaplan-Meier plotter platform. Then, we summarized the potential diet candidates for such an integrated therapeutic strategy. This article not only provides a whole new therapeutic strategy for an HDAC2i-containing diet combined with PD-1/PD-L1 inhibitors for BC treatment, but also aims to ignite enthusiasm for exploring this field.
Collapse
Affiliation(s)
- Yuqian Wang
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06520, USA
- School of Medicine, Center for Biomedical Data Science, Yale University, 60 College Street, New Haven, CT 06520, USA
- Yale Cancer Center, Yale University, 60 College Street, New Haven, CT 06520, USA
| | - Changquan Ling
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Ping Zhang
- Center for Integrative Conservation, Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Xishuangbanna 666303, China
| | - Rui Han
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06520, USA
- School of Medicine, Center for Biomedical Data Science, Yale University, 60 College Street, New Haven, CT 06520, USA
- Yale Cancer Center, Yale University, 60 College Street, New Haven, CT 06520, USA
- Department of Oncology, The First Hospital Affiliated to Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
12
|
Little A, Tangney M, Tunney MM, Buckley NE. Fusobacterium nucleatum: a novel immune modulator in breast cancer? Expert Rev Mol Med 2023; 25:e15. [PMID: 37009688 PMCID: PMC10407221 DOI: 10.1017/erm.2023.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 04/04/2023]
Abstract
Breast cancer was the most commonly diagnosed cancer worldwide in 2020. Greater understanding of the factors which promote tumour progression, metastatic development and therapeutic resistance is needed. In recent years, a distinct microbiome has been detected in the breast, a site previously thought to be sterile. Here, we review the clinical and molecular relevance of the oral anaerobic bacterium Fusobacterium nucleatum in breast cancer. F. nucleatum is enriched in breast tumour tissue compared with matched healthy tissue and has been shown to promote mammary tumour growth and metastatic progression in mouse models. Current literature suggests that F. nucleatum modulates immune escape and inflammation within the tissue microenvironment, two well-defined hallmarks of cancer. Furthermore, the microbiome, and F. nucleatum specifically, has been shown to affect patient response to therapy including immune checkpoint inhibitors. These findings highlight areas of future research needed to better understand the influence of F. nucleatum in the development and treatment of breast cancer.
Collapse
Affiliation(s)
- Alexa Little
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Mark Tangney
- Cancer Research, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Michael M. Tunney
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Niamh E. Buckley
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
13
|
Mercogliano MF, Bruni S, Mauro FL, Schillaci R. Emerging Targeted Therapies for HER2-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15071987. [PMID: 37046648 PMCID: PMC10093019 DOI: 10.3390/cancers15071987] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Breast cancer is the most common cancer in women and the leading cause of death. HER2 overexpression is found in approximately 20% of breast cancers and is associated with a poor prognosis and a shorter overall survival. Tratuzumab, a monoclonal antibody directed against the HER2 receptor, is the standard of care treatment. However, a third of the patients do not respond to therapy. Given the high rate of resistance, other HER2-targeted strategies have been developed, including monoclonal antibodies such as pertuzumab and margetuximab, trastuzumab-based antibody drug conjugates such as trastuzumab-emtansine (T-DM1) and trastuzumab-deruxtecan (T-DXd), and tyrosine kinase inhibitors like lapatinib and tucatinib, among others. Moreover, T-DXd has proven to be of use in the HER2-low subtype, which suggests that other HER2-targeted therapies could be successful in this recently defined new breast cancer subclassification. When patients progress to multiple strategies, there are several HER2-targeted therapies available; however, treatment options are limited, and the potential combination with other drugs, immune checkpoint inhibitors, CAR-T cells, CAR-NK, CAR-M, and vaccines is an interesting and appealing field that is still in development. In this review, we will discuss the highlights and pitfalls of the different HER2-targeted therapies and potential combinations to overcome metastatic disease and resistance to therapy.
Collapse
|
14
|
Ballot E, Galland L, Mananet H, Boidot R, Arnould L, Desmoulins I, Mayeur D, Kaderbhai C, Ilie S, Hennequin A, Bergeron A, Derangère V, Ghiringhelli F, Truntzer C, Ladoire S. Molecular intrinsic subtypes, genomic, and immune landscapes of BRCA-proficient but HRD-high ER-positive/HER2-negative early breast cancers. Breast Cancer Res 2022; 24:80. [DOI: 10.1186/s13058-022-01572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/18/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Purpose
The vast majority of research studies that have described the links between DNA damage repair or homologous recombination deficiency (HRD) score, and tumor biology, have concerned either triple negative breast cancers or cancers with mutation of BRCA 1/2. We hypothesized that ER + /HER2- early breast tumors without BRCA 1/2 mutation could have high HRD score and aimed to describe their genomic, transcriptomic, and immune landscapes.
Patients and methods
In this study, we reported BRCA 1/2 mutational status, HRD score, and mutational signature 3 (S3) expression, in all early breast cancer (eBC) subtypes from the TCGA database, with a particular focus in ER + /HER2-. In this subtype, bioinformatics analyses of tumor transcriptomic, immune profile, and mutational landscape were performed, according to HRD status. Overall survival (OS), progression free-interval (PFI), and variables associated with outcome were also evaluated.
Results
Among the 928 tumor samples analyzed, 46 harbored BRCA 1/2 mutations, and 606 were ER + /HER2- (of which 24 were BRCA 1/2 mutated). We found a subset of BRCA-proficient ER + /HER2— eBC, with high HRD score. These tumors displayed significantly different immune, mutational, and tumor molecular signatures landscapes, compared to BRCA-mutated and BRCA-proficient HRD-low tumors. Outcome did not significantly differ between these 3 groups, but biological factors associated with survival are not the same across the 3 entities.
Conclusion
This study highlights possible novel biological differences among ER + /HER2- breast cancer related to HRD status. Our results could have important implications for translational research and/or the design of future clinical trials, but require prospective clinical evaluation.
Collapse
|
15
|
Su T, Wang S, Huang S, Cai H, McKinley ET, Beeghly-Fadiel A, Zheng W, Shu XO, Cai Q. Multiplex immunohistochemistry and high-throughput image analysis for evaluation of spatial tumor immune cell markers in human breast cancer. Cancer Biomark 2022; 35:193-206. [PMID: 36093688 DOI: 10.3233/cbm-220071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The clinicopathological significance of spatial tumor-infiltrating lymphocytes (TILs) subpopulations is not well studied due to lack of high-throughput scalable methodology for studies with large human sample sizes. OBJECTIVE Establishing a cyclic fluorescent multiplex immunohistochemistry (mIHC/IF) method coupled with computer-assisted high-throughput quantitative analysis to evaluate associations of six TIL markers (CD3, CD8, CD20, CD56, FOXP3, and PD-L1) with clinicopathological factors of breast cancer. METHODS Our 5-plex mIHC/IF staining was shown to be reliable and highly sensitive for labeling three biomarkers per tissue section. Through repetitive cycles of 5-plex mIHC/IF staining, more than 12 biomarkers could be detected per single tissue section. Using open-source software CellProfiler, the measurement pipelines were successfully developed for high-throughput multiplex evaluation of intratumoral and stromal TILs. RESULTS In analyses of 188 breast cancer samples from the Nashville Breast Health Study, high-grade tumors showed significantly increased intratumoral CD3+CD8+ CTL density (P= 0.0008, false discovery rate (FDR) adjusted P= 0.0168) and intratumoral PD-L1 expression (P= 0.0061, FDR adjusted P= 0.0602) compared with low-grade tumors. CONCLUSIONS The high- and low-grade breast cancers exhibit differential immune responses which may have clinical significances. The multiplexed imaging quantification strategies established in this study are reliable, cost-efficient and applicable in regular laboratory settings for high-throughput tissue biomarker studies, especially retrospective and population-based studies using archived paraffin tissues.
Collapse
Affiliation(s)
- Timothy Su
- Department of Medicine, Division of Epidemiology, Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA.,Department of Medicine, Division of Epidemiology, Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Shuyang Wang
- Department of Medicine, Division of Epidemiology, Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA.,Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China.,Department of Medicine, Division of Epidemiology, Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Shuya Huang
- Department of Medicine, Division of Epidemiology, Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA.,Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hui Cai
- Department of Medicine, Division of Epidemiology, Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Eliot T McKinley
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Cell and Development Biology, Vanderbilt University, Nashville, TN, USA
| | - Alicia Beeghly-Fadiel
- Department of Medicine, Division of Epidemiology, Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Wei Zheng
- Department of Medicine, Division of Epidemiology, Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Xiao-Ou Shu
- Department of Medicine, Division of Epidemiology, Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Qiuyin Cai
- Department of Medicine, Division of Epidemiology, Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
16
|
Kumar S, Chatterjee M, Ghosh P, Ganguly KK, Basu M, Ghosh MK. Targeting PD-1/PD-L1 in cancer immunotherapy: an effective strategy for treatment of triple-negative breast cancer (TNBC) patients. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
17
|
Moragon S, Hernando C, Martinez-Martinez MT, Tapia M, Ortega-Morillo B, Lluch A, Bermejo B, Cejalvo JM. Immunological Landscape of HER-2 Positive Breast Cancer. Cancers (Basel) 2022; 14:3167. [PMID: 35804943 PMCID: PMC9265068 DOI: 10.3390/cancers14133167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Understanding the biological aspects of immune response in HER2+ breast cancer is crucial to implementing new treatment strategies in these patients. It is well known that anti-HER2 therapy has improved survival in this population, yet a substantial percentage may relapse, creating a need within the scientific community to uncover resistance mechanisms and determine how to overcome them. This systematic review indicates the immunological mechanisms through which trastuzumab and other agents target cancer cells, also outlining the main trials studying immune checkpoint blockade. Finally, we report on anti-HER2 vaccines and include a figure exemplifying their mechanisms of action.
Collapse
Affiliation(s)
- Santiago Moragon
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (S.M.); (C.H.); (M.T.M.-M.); (M.T.); (B.O.-M.); (A.L.); (B.B.)
| | - Cristina Hernando
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (S.M.); (C.H.); (M.T.M.-M.); (M.T.); (B.O.-M.); (A.L.); (B.B.)
| | - Maria Teresa Martinez-Martinez
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (S.M.); (C.H.); (M.T.M.-M.); (M.T.); (B.O.-M.); (A.L.); (B.B.)
| | - Marta Tapia
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (S.M.); (C.H.); (M.T.M.-M.); (M.T.); (B.O.-M.); (A.L.); (B.B.)
| | - Belen Ortega-Morillo
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (S.M.); (C.H.); (M.T.M.-M.); (M.T.); (B.O.-M.); (A.L.); (B.B.)
| | - Ana Lluch
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (S.M.); (C.H.); (M.T.M.-M.); (M.T.); (B.O.-M.); (A.L.); (B.B.)
- Instituto de Salud Carlos III, CIBERONC (Centro De Investigacion Biomedica En Red De Cancer), 28220 Madrid, Spain
| | - Begoña Bermejo
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (S.M.); (C.H.); (M.T.M.-M.); (M.T.); (B.O.-M.); (A.L.); (B.B.)
- Instituto de Salud Carlos III, CIBERONC (Centro De Investigacion Biomedica En Red De Cancer), 28220 Madrid, Spain
| | - Juan Miguel Cejalvo
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (S.M.); (C.H.); (M.T.M.-M.); (M.T.); (B.O.-M.); (A.L.); (B.B.)
- Instituto de Salud Carlos III, CIBERONC (Centro De Investigacion Biomedica En Red De Cancer), 28220 Madrid, Spain
| |
Collapse
|
18
|
Jiang H, Sun J, Liu F, Wu X, Wen Z. An Immune-Related Long Noncoding RNA Pair as a New Biomarker to Predict the Prognosis of Patients in Breast Cancer. Front Genet 2022; 13:895200. [PMID: 35812755 PMCID: PMC9257047 DOI: 10.3389/fgene.2022.895200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Immune-related long non-coding RNAs (irlncRNAs) might remodel the tumor immune microenvironment by changing the inherent properties of tumor cells and the expression of immune genes, which have been used to predict the efficacy of immunotherapy and the prognosis of various tumors. However, the value of irlncRNAs in breast cancer (BRCA) remains unclear.Materials and Methods: Initially, transcriptome data and immune-related gene sets were downloaded from The Cancer Genome Atlas (TCGA) database. The irlncRNAs were extracted from the Immunology Database and Analysis Portal (ImmPort) database. Differently expressed irlncRNAs (DEirlncRNAs) were further identified by utilizing the limma R package. Then, univariate and multivariate Cox regression analyses were conducted to select the DEirlncRNAs associated with the prognosis of BRCA patients. In addition, the univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses were performed to determine the DEirlncRNA pairs with the independent prediction capability of prognosis in BRCA patients. Finally, the chosen DEirlncRNA pair would be evaluated in terms of survival time, clinicopathological characteristics, tumor-infiltrating immune cells, immune checkpoints (ICs), signaling pathways, and potential small-molecule drugs.Results: A total of 21 DEirlncRNA pairs were extracted, and among them, lncRNA MIR4435-2HG and lncRNA U62317.1 were chosen to establish a risk signature that served as an independent prognostic biomarker in BRCA patients. Patients in the high-risk group had a worse prognosis than those in the low-risk group, and they also had an abundance of infiltration of CD4+ T and CD8+ T cells to enhance the immune response to tumor cells. Furthermore, the risk signature showed a strong correlation with ICs, signaling pathways, and potential small-molecule drugs.Conclusion: Our research revealed that the risk signature independent of specific DEirlncRNA pair expression was closely associated with the prognosis and tumor immune microenvironment in BRCA patients and had the potential to function as an independent prognostic biomarker and a predictor of immunotherapy for BRCA patients, which would provide new insights for BRCA accurate treatment.
Collapse
Affiliation(s)
- Hanwen Jiang
- Department of Neurology, Brain Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingxian Sun
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fucong Liu
- Department of Neurology, Brain Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xincai Wu
- Department of Neurology, Brain Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaohui Wen
- Department of Neurology, Brain Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Zhaohui Wen,
| |
Collapse
|
19
|
Wu W, Zhang Z, Jing D, Huang X, Ren D, Shao Z, Zhang Z. SGLT2 inhibitor activates the STING/IRF3/IFN-β pathway and induces immune infiltration in osteosarcoma. Cell Death Dis 2022; 13:523. [PMID: 35662245 PMCID: PMC9166744 DOI: 10.1038/s41419-022-04980-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
Abstract
SGLT2 (sodium-glucose cotransporter 2) is an important mediator of epithelial glucose transport and has been reported that SGLT2, robustly and diffusely expressed in malignant cancer cells, was overexpressed in various tumors, and inhibiting the SGLT2 expression significantly inhibited tumor progression. By blocking the functional activity of SGLT2, SGLT2 inhibitors have shown anticancer effects in several malignant cancers, including breast cancer, cervical cancer, hepatocellular cancer, prostate cancer, and lung cancer. However, the anticancer effect of SGLT2 inhibitors in osteosarcoma and the specific mechanism are still unclear. In the present study, we found that SGLT2 was overexpressed at the protein level in osteosarcoma. Furthermore, our results showed that the SGLT2 inhibitor significantly inhibited osteosarcoma tumor growth and induced infiltration of immune cells in vivo by upregulating STING expression and activating the IRF3/IFN-β pathway, which could attribute to the suppression of AKT phosphorylation. In addition, the combined treatment with SGLT2 inhibitor and STING agonist 2'3'-cGAMP exerted synergistic antitumor effects in osteosarcoma. Furthermore, the overexpression of SGLT2 at the protein level was correlated with the degradation of SGLT2 induced by TRIM21. This result demonstrated that SGLT2 is a novel therapeutic target of osteosarcoma, and that the SGLT2 inhibitor, especially in combination with 2'3'-cGAMP, is a potential therapeutic drug.
Collapse
Affiliation(s)
- Wei Wu
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zhenhao Zhang
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Doudou Jing
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Xin Huang
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Dianyun Ren
- grid.33199.310000 0004 0368 7223Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zengwu Shao
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zhicai Zhang
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
20
|
Peng W, Chang L, Li W, Liu Y, Zhang M. OCT4 and SOX2 Specific Cytotoxic T Cells Exhibit Not Only Good Efficiency but Also Synergize PD-1 Inhibitor (Nivolumab) in Treating Breast Cancer Stem-Like Cells and Drug-Resistant Breast Cancer Mice. Front Oncol 2022; 12:781093. [PMID: 35402219 PMCID: PMC8987438 DOI: 10.3389/fonc.2022.781093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose This study aimed to investigate the effect of OCT4&SOX2 specific cytotoxic T lymphocytes (CTLs) plus programmed cell death protein-1 (PD-1) inhibitor (nivolumab) on treating breast cancer stem-like cells (BCSCs) in vitro and drug-resistance breast cancer (DRBC) mice in vivo. Methods In total, 160 breast cancer patients were enrolled following the immunofluorescence assay to detect tumor OCT4 and SOX2 expressions. CD154-activated B cells were co-cultured with CD8+ T cells (from breast cancer patients) in the presence of OCT4&SOX2 peptides, CMV pp65 peptides (negative control), and no peptides (normal control). MCF7-BCSCs were constructed by drug-resistance experiment and sphere-formation assay, then DRBC mice were constructed by planting MCF7-BCSCs. Subsequently, different doses of OCT4&SOX2 CTLs and PD-1 inhibitor (nivolumab) were used to treat MCF7-BCSCs and DRBC mice. Results OCT4 and SOX2 correlated with poor differentiation, more advanced stage, and worse prognosis in breast cancer patients. In vitro, OCT4&SOX2 CTLs with effector-target ratio (ETR) 5:1, 10:1 and 20:1 presented with increased cytotoxic activity compared to CMV pp65 CTLs with ETR 20:1 (negative control) and Control CTLs with ETR 20:1 (normal control) on killing MCF7-BCSCs. Besides, PD-1 inhibitor (nivolumab) improved the cytotoxic activity of OCT4&SOX2 CTLs against MCF7-BCSCs in a dose-dependent manner. In vivo, OCT4&SOX2 CTLs plus PD-1 inhibitor (nivolumab) decreased tumor volume and tumor weight while increased tumor apoptosis rate compared to OCT4&SOX2 CTLs alone, PD-1 inhibitor (nivolumab) alone, and control. Conclusion OCT4&SOX2 CTLs exhibit good efficiency and synergize PD-1 inhibitor (nivolumab) in treating BCSCs and DRBC.
Collapse
Affiliation(s)
- Wei Peng
- Department of General Surgery, Guangdong Provincial People's Hospital Zhuhai Hospital (Zhuhai Golden Bay Center Hospital), Zhuhai, China
| | - Liang Chang
- Department of General Surgery, Guangdong Provincial People's Hospital Zhuhai Hospital (Zhuhai Golden Bay Center Hospital), Zhuhai, China
| | - Wenqiang Li
- Department of General Surgery, Guangdong Provincial People's Hospital Zhuhai Hospital (Zhuhai Golden Bay Center Hospital), Zhuhai, China
| | - Yanan Liu
- Department of Intensive Care Unit, Guangdong Provincial People's Hospital Zhuhai Hospital (Zhuhai Golden Bay Center Hospital), Zhuhai, China
- *Correspondence: Yanan Liu, ; Min Zhang,
| | - Min Zhang
- Department of General Surgery, Cixi People’s Hospital, Ningbo, China
- *Correspondence: Yanan Liu, ; Min Zhang,
| |
Collapse
|
21
|
Zhu M, Chen L, Kong X, Wang X, Li X, Fang Y, Wang J. The Systemic Immune-Inflammation Index is an Independent Predictor of Survival in Breast Cancer Patients. Cancer Manag Res 2022; 14:775-820. [PMID: 35241935 PMCID: PMC8887616 DOI: 10.2147/cmar.s346406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose The current investigation examines the potential clinical value and prognostic significance of a systemic immune-inflammation index (SII) in patients with breast cancer. Patients and Methods A total of 477 individuals underwent neoadjuvant chemotherapy, and 308 individuals did not at our center between January 1998 and December 2016 were selected. An optimized SII threshold was generated using a receiver operating characteristic curve (ROC). The relationship between various factors and breast cancer in predicting disease-free survival (DFS) and overall survival (OS) were analyzed. Results The SII < 560 group (Low SII group) and SII ≥ 560 group (High SII group) are divided according to the threshold value. SII was an independent predictor for breast cancer DFS and OS based on univariate and multivariate analyses. Low SII patients had higher mean DFS and OS in contrast to those in the high SII groups (46.65 vs 27.37 months and 69.92 vs 49.53 months). Those in the low SII cohort who also had early or advanced breast cancer, different molecular subtypes, and with or without lymph vessel invasion all had higher mean survival time of DFS and OS in contrast to those with raised SII values (P<0.05). The mean DFS and OS durations also varied based on different Miller and Payne grades (MPG) (P <0.005), and different response groups (P<0.05). Conclusion SII can be used as an easily accessible and minimally invasive potential prognostic factor in individuals with breast cancer and may also guide clinicians in treating and prognosticating patients with breast cancer.
Collapse
Affiliation(s)
- Mengliu Zhu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Li Chen
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
- Correspondence: Jing Wang; Yi Fang, Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China, Email ;
| |
Collapse
|
22
|
Matusz-Fisher A, Tan AR. Combination of HER2-targeted agents with immune checkpoint inhibitors in the treatment of HER2-positive breast cancer. Expert Opin Biol Ther 2021; 22:385-395. [PMID: 34806498 DOI: 10.1080/14712598.2021.1981284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Human epidermal growth factor receptor 2 (HER2)-positive breast cancers account for approximately 15 to 20% of breast cancer diagnoses. Historically, HER2-positive breast cancers had been associated with poorer prognosis. The addition of HER2-targeted agents to treatment regimens has significantly improved outcomes for patients with HER2-positive breast cancer. Despite this, relapses continue to occur in about 20% of patients. Newer therapeutic strategies are needed. The role of immunotherapy in the treatment of HER2-positive breast cancer is currently under clinical investigation. AREAS COVERED This article will focus on the clinical trial data evaluating immune checkpoint inhibitors, including pembrolizumab, atezolizumab, avelumab, durvalumab, and nivolumab in the treatment of HER2-positive breast cancer. EXPERT OPINION The incorporation of immunotherapy in the treatment of HER2-positive breast cancer is a reasonable strategy. Clinical trials of checkpoint inhibitors with HER2-targeted agents show clinical activity in HER2-positive breast cancer tumors that are programmed cell death-ligand 1 (PD-L1) positive and also when used as an earlier line of therapy in the metastatic setting. Treatment of HER2-positive breast cancer with immunotherapy and HER2-targeted agents warrants continued clinical investigation.
Collapse
Affiliation(s)
- Ashley Matusz-Fisher
- Hematology/Oncology Fellow, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Antoinette R Tan
- Chief of Breast Medical Oncology, Co-Director, Phase I Program, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
23
|
A bispecific antibody targeting HER2 and PD-L1 inhibits tumor growth with superior efficacy. J Biol Chem 2021; 297:101420. [PMID: 34798072 PMCID: PMC8671946 DOI: 10.1016/j.jbc.2021.101420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/26/2022] Open
Abstract
Activation of the programmed cell death protein 1 and programmed cell death ligand 1 (PD-1/PD-L1) signaling axis plays important roles in intrinsic or acquired resistance to human epidermal growth factor receptor 2 (HER2)-directed therapies in the clinic. Therefore, therapies simultaneously targeting both HER2 and PD-1/PD-L1 signaling pathways are of great significance. Here, aiming to direct the anti-PD-L1 responses toward HER2-expressing tumor cells, we constructed a humanized bispecific IgG1 subclass antibody targeting both HER2 and PD-L1 (HER2/PD-L1; BsAb), which displayed satisfactory purity, thermostability, and serum stability. We found that BsAb showed enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) activity in vitro. In the late phase of peripheral blood mononuclear cell (PBMC)-humanized HER2+ tumor xenograft models, BsAb showed superior therapeutic efficacies as compared with monoclonal antibodies (mAbs) or combination treatment strategies. In cynomolgus monkeys, BsAb showed favorable pharmacokinetics and toxicity profiles when administered at a 10 mg/kg dosage. Thus, HER2/PD-L1 BsAb was demonstrated as a potentially effective option for managing HER2+ and trastuzumab-resistant tumors in the clinic. We propose that the enhanced antitumor activities of BsAb in vivo may be due to direct inhibition of HER2 signaling or activation of T cells.
Collapse
|
24
|
O’Shea AE, Clifton GT, Peoples GE. Results from a randomized trial combining trastuzumab with a peptide vaccine suggest a role for HER2-targeted therapy in triple-negative breast cancer. Oncotarget 2021; 12:2318-2319. [PMID: 34786184 PMCID: PMC8590818 DOI: 10.18632/oncotarget.27998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Anne E. O’Shea
- Correspondence to: Anne E. O’Shea, Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX, USA email
| | | | | |
Collapse
|
25
|
Shen N, Yang C, Zhang X, Tang Z, Chen X. Cisplatin nanoparticles possess stronger anti-tumor synergy with PD1/PD-L1 inhibitors than the parental drug. Acta Biomater 2021; 135:543-555. [PMID: 34400305 DOI: 10.1016/j.actbio.2021.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/31/2022]
Abstract
Programmed cell death protein 1 (PD1)/programmed death-ligand 1 (PD-L1) inhibitors provide an evolution in the field of cancer therapy. This results in unprecedented rates of long-lasting tumor responses, once cancer patients respond to PD1/PD-L1 inhibitors. However, the response rate of most cancers is not greater than 30%, which results in a limited therapeutic efficacy. Therefore, the increase of the therapeutic efficacy of PD1/PD-L1 inhibitors is of utmost importance. Hence, this study demonstrated that the sustained increase of tumor PD-L1 levels induced by long-tumor retaining cisplatin (Cis) nanoparticles improved the therapeutic outcomes of PD1/PD-L1 inhibitors. Cis-loaded poly(L-glutamic acid)-graft-methoxy poly(ethylene glycol) complex nanoparticle (Cisplatin nanoparticle, P-Cis) caused tumor PD-L1 overexpression in a time dependent manner in vitro and amplified tumor PD-L1 signals at 72 h post treatment in vivo. Synergistic tumor inhibition was achieved when P-Cis was combined with PD1/PD-L1 inhibitors, such as BMS-202 and anti-PD1 antibody (aPD1), and a significantly superior tumor inhibition rate was observed in the combination group (P-Cis plus aPD1). In addition, when mice were treated with a single dose of P-Cis plus aPD1, its synergistic anti-tumor effect was much stronger than that of a single dose of Cis plus aPD1, as their Q values were 1.15 and 1.05 in the Lewis lung carcinoma (LLC) tumor model, and 1.92 and 0.95 in the B16F10 tumor model, respectively. The single dose of P-Cis could increase tumor PD-L1 expression at 72 h post injection, while a single-dose of Cis did not, thus the sustained tumor PD-L1 overexpression induced by P-Cis was essential for enhancing aPD1 therapy. The sustained tumor PD-L1 overexpression highlighted the involvement of PD1/PD-L1 pathway in tumor cell proliferation and CD8+ T cell weakening and increased the role and possibility of PD1/PD-L1 inhibitors to block the PD1/PD-L1 pathway. Collectively, this study identified a potential clinical treatment with P-Cis plus PD1/PD-L1 inhibitors. STATEMENT OF SIGNIFICANCE: Programmed cell death protein 1 (PD1)/programmed death-ligand 1 (PD-L1) inhibitors provide an evolution in the field of cancer therapy. However, the response rate of most cancers is not greater than 30%, which results in a limited therapeutic efficacy. Therefore, the increase of the therapeutic efficacy of PD1/PD-L1 inhibitors is of utmost importance. Here, Cisplatin (Cis) loaded poly(L-glutamic acid)-graft-methoxy poly(ethylene glycol) complex nanoparticle (P-Cis) is found to improve the therapeutic outcomes of PD1/PD-L1 inhibitors via sustained increase of tumor PD-L1 levels, and P-Cis possesses stronger anti-tumor synergy with PD1/PD-L1 inhibitors than the parental drug. This identifies a potential clinical treatment with P-Cis plus PD1/PD-L1 inhibitors.
Collapse
Affiliation(s)
- Na Shen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, PR China
| | - Chenguang Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, PR China
| | - Xuefei Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Xiangtan University, Xiangtan 411105, PR China.
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, PR China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, PR China
| |
Collapse
|
26
|
Jeong S, Lee N, Park MJ, Jeon K, Song W. Currently Used Laboratory Methodologies for Assays Detecting PD-1, PD-L1, PD-L2 and Soluble PD-L1 in Patients with Metastatic Breast Cancer. Cancers (Basel) 2021; 13:cancers13205225. [PMID: 34680373 PMCID: PMC8534186 DOI: 10.3390/cancers13205225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Several methods targeting the programmed death protein-1 (PD-1) axis have been developed and evaluated for the detection of immune checkpoint levels that are strongly involved in immunotherapy for patients with metastatic breast cancer. Variations in different assays used in diverse studies have affected their result interpretation and clinical utility. When applying these assays to the laboratory, a comprehensive understanding of the characteristics of them should be recognized. We reviewed applied laboratory techniques for detecting PD-1, PD-ligand (L)1, PD-L2, and soluble PD-L1, which are important for selecting metastatic cancer patients for immunotherapy. Advances in methodologies according to the epoch are also investigated to gain insight into immunologic techniques and to facilitate appropriate laboratory settings for evaluating the PD-1 axis status, which are useful for estimating outcomes and planning patient-tailored immunotherapy strategies. Abstract Approximately 20% of breast cancer (BC) patients suffer from distant metastasis. The incidence and prevalence rates of metastatic BC have increased annually. Immune checkpoint inhibitors are an emerging area of treatment, especially for metastatic patients with poor outcomes. Several antibody drugs have been developed and approved for companion testing of the programmed death protine-1 (PD-1) axis. We reviewed currently used laboratory methodologies for assays determining PD-1 axis to provide a comprehensive understanding of principles, advantages, and drawbacks involved in their implementation. The most commonly used method is immunohistochemistry (92.9%) for PD-L1 expression using tissue samples (96.4%). The commonly used anti-PD-L1 antibody clone were commercially available 22C3 (30.8%), SP142 (19.2%), SP263 (15.4%), and E1L3N (11.5%). Enzyme-linked immunosorbent assay and electrochemiluminescent immunoassay that target soluble PD-ligand (L)1 were developed and popularized in 2019–2021, in contrast to 2016–2018. Easy accessibility and non-invasiveness due to the use of blood samples, quantitative outputs, and relatively rapid turnaround times make them more preferable. Regarding scoring methods, a combination of tumor and immune cells (45.5% in 2016–2018 to 57.1% in 2019–2021) rather than each cell alone became more popular. Information about antibody clones, platforms, scoring methods, and related companion drugs is recommended for reporting PD-L1 expression.
Collapse
Affiliation(s)
- Seri Jeong
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07440, Korea; (S.J.); (N.L.); (M.-J.P.)
| | - Nuri Lee
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07440, Korea; (S.J.); (N.L.); (M.-J.P.)
| | - Min-Jeong Park
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07440, Korea; (S.J.); (N.L.); (M.-J.P.)
| | - Kibum Jeon
- Department of Laboratory Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07440, Korea;
| | - Wonkeun Song
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07440, Korea; (S.J.); (N.L.); (M.-J.P.)
- Correspondence: ; Tel.: +82-2-829-5259
| |
Collapse
|
27
|
Liu C, Qiang J, Deng Q, Xia J, Deng L, Zhou L, Wang D, He X, Liu Y, Zhao B, Lv J, Yu Z, Lei QY, Shao ZM, Zhang XY, Zhang L, Liu S. ALDH1A1 activity in tumor-initiating cells remodels myeloid-derived suppressor cells to promote breast cancer progression. Cancer Res 2021; 81:5919-5934. [PMID: 34580061 DOI: 10.1158/0008-5472.can-21-1337] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/17/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022]
Abstract
Tumor-initiating cells (TIC) are associated with tumor initiation, growth, metastasis, and recurrence. Aldehyde dehydrogenase 1A1 (ALDH1A1) is a TIC marker in many cancers, including breast cancer. However the molecular mechanisms underlying ALDH1A1 functions in solid tumors remain largely unknown. Here we demonstrate that ALDH1A1 enzymatic activity facilitates breast tumor growth. Mechanistically, ALDH1A1 decreased the intracellular pH in breast cancer cells to promote phosphorylation of TAK1, activate NFκB signaling, and increase the secretion of granulocyte macrophage colony-stimulating factor (GM-CSF), which led to myeloid-derived suppressor cell (MDSC) expansion and immunosuppression. Furthermore, the ALDH1A1 inhibitor disulfiram and chemotherapeutic agent gemcitabine cooperatively inhibited breast tumor growth and tumorigenesis by purging ALDH+ TICs and activating T cell immunity. These findings elucidate how active ALDH1A1 modulates the immune system to promote tumor development, highlghting new therapeutic strategies for malignant breast cancer.
Collapse
Affiliation(s)
- Cuicui Liu
- Cancer Institute, Fudan University Shanghai Cancer Center
| | | | - Qiaodan Deng
- Cancer Institute, Fudan University Shanghai Cancer Center
| | - Jie Xia
- Cancer Institute, Fudan University Shanghai Cancer Center
| | - Lu Deng
- Stowers Institute for Medical Research
| | - Lei Zhou
- Cancer Institute, Fudan University Shanghai Cancer Center
| | | | - Xueyan He
- Life Science, University of Science and Technology of China
| | | | | | - Jinhui Lv
- Shanghai East Hospital, Tongji University School of Medicine
| | - Zuoren Yu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Life Sciences and Technology
| | - Qun-Ying Lei
- Department of Oncology, Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University
| | - Zhi-Ming Shao
- Breast Surgery, Fudan University Shanghai Cancer Center
| | - Xiao-Yong Zhang
- The Institute of Science and Technology for Brain-inspired Intelligence, Fudan University
| | | | - Suling Liu
- Cancer Institute, Fudan University Shanghai Cancer Center
| |
Collapse
|
28
|
Bernal-Estévez DA, Ortíz Barbosa MA, Ortíz-Montero P, Cifuentes C, Sánchez R, Parra-López CA. Autologous Dendritic Cells in Combination With Chemotherapy Restore Responsiveness of T Cells in Breast Cancer Patients: A Single-Arm Phase I/II Trial. Front Immunol 2021; 12:669965. [PMID: 34489928 PMCID: PMC8417880 DOI: 10.3389/fimmu.2021.669965] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Animal studies and preclinical studies in cancer patients suggest that the induction of immunogenic cell death (ICD) by neoadjuvant chemotherapy with doxorubicin and cyclophosphamide (NAC-AC) recovers the functional performance of the immune system. This could favor immunotherapy schemes such as the administration of antigen-free autologous dendritic cells (DCs) in combination with NAC-AC to profit as cryptic vaccine immunogenicity of treated tumors. Objective To explore the safety and immunogenicity of autologous antigen-free DCs administered to breast cancer patients (BCPs) in combination with NAC-AC. Materials and Methods A phase I/II cohort clinical trial was performed with 20 BCPs treated with NAC-AC [nine who received DCs and 11 who did not (control group)]. The occurrence of adverse effects and the functional performance of lymphocytes from BCPs before and after four cycles of NAC-AC receiving DCs or not were assessed using flow cytometry and compared with that from healthy donors (HDs). Flow cytometry analysis using manual and automated algorithms led us to examine functional performance and frequency of different lymphocyte compartments in response to a stimulus in vitro. This study was registered at clinicaltrials.gov (NCT03450044). Results No grade II or higher adverse effects were observed associated with the transfer of DCs to patients during NAC-AC. Interestingly, in response to the in vitro stimulation, deficient phosphorylation of Zap70 and AKT proteins observed before chemotherapy in most patients’ CD4 T cells significantly recovered after NAC-AC only in patients who received DCs. Conclusions The transfer of autologous DCs in combination with NAC-AC in BCPs is a safe procedure. That, in BCPs, the administration of DCs in combination with NAC-AC favors the recovery of the functional capacity of T cells suggests that this combination may potentiate the adjuvant effect of ICD induced by NAC-AC on T cells and, hence, potentiate the immunogenicity of tumors as cryptic vaccines.
Collapse
Affiliation(s)
- David A Bernal-Estévez
- Immunology and Clinical Oncology Research Group, Fundación Salud de los Andes, Bogotá, Colombia
| | - Mauren A Ortíz Barbosa
- Immunology and Clinical Oncology Research Group, Fundación Salud de los Andes, Bogotá, Colombia
| | - Paola Ortíz-Montero
- Immunology and Clinical Oncology Research Group, Fundación Salud de los Andes, Bogotá, Colombia
| | - Claudia Cifuentes
- Oncology Department, Hospital Universitario Mayor de Méderi, Bogotá, Colombia
| | - Ramiro Sánchez
- Immunology and Translational Medicine Research Group, Department of Microbiology, Medical School, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos A Parra-López
- Immunology and Translational Medicine Research Group, Department of Microbiology, Medical School, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
29
|
Niavarani SR, Lawson C, Boudaud M, Simard C, Tai LH. Oncolytic vesicular stomatitis virus-based cellular vaccine improves triple-negative breast cancer outcome by enhancing natural killer and CD8 + T-cell functionality. J Immunother Cancer 2021; 8:jitc-2019-000465. [PMID: 32179632 PMCID: PMC7073779 DOI: 10.1136/jitc-2019-000465] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 01/19/2023] Open
Affiliation(s)
- Seyedeh-Raheleh Niavarani
- Immunology and Cell Biology, Université de Sherbrooke, Faculté de médecine et des sciences de la santé, Sherbrooke, Quebec, Canada
| | - Christine Lawson
- Immunology and Cell Biology, Université de Sherbrooke, Faculté de médecine et des sciences de la santé, Sherbrooke, Quebec, Canada
| | - Marie Boudaud
- Pediatrics, Université de Sherbrooke, Faculté de médecine et des sciences de la santé, Sherbrooke, Quebec, Canada
| | - Camille Simard
- Pharmacology and Physiology, Université de Sherbrooke, Faculté de médecine et des sciences de la santé, Sherbrooke, Quebec, Canada
| | - Lee-Hwa Tai
- Immunology and Cell Biology, Université de Sherbrooke, Faculté de médecine et des sciences de la santé, Sherbrooke, Quebec, Canada .,Centre de recherche du CHUS, Sherbrooke, Quebec, Canada
| |
Collapse
|
30
|
Li JJ, Tsang JY, Tse GM. Tumor Microenvironment in Breast Cancer-Updates on Therapeutic Implications and Pathologic Assessment. Cancers (Basel) 2021; 13:cancers13164233. [PMID: 34439387 PMCID: PMC8394502 DOI: 10.3390/cancers13164233] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
The tumor microenvironment (TME) in breast cancer comprises local factors, cancer cells, immune cells and stromal cells of the local and distant tissues. The interaction between cancer cells and their microenvironment plays important roles in tumor proliferation, propagation and response to therapies. There is increasing research in exploring and manipulating the non-cancerous components of the TME for breast cancer treatment. As the TME is now increasingly recognized as a treatment target, its pathologic assessment has become a critical component of breast cancer management. The latest WHO classification of tumors of the breast listed stromal response pattern/fibrotic focus as a prognostic factor and includes recommendations on the assessment of tumor infiltrating lymphocytes and PD-1/PD-L1 expression, with therapeutic implications. This review dissects the TME of breast cancer, describes pathologic assessment relevant for prognostication and treatment decision, and details therapeutic options that interacts with and/or exploits the TME in breast cancer.
Collapse
Affiliation(s)
| | | | - Gary M. Tse
- Correspondence: ; Tel.: 852-3505-2359; Fax: 852-2637-4858
| |
Collapse
|
31
|
Abstract
Herein, we wanted to explore the molecular landscape of mucosal melanoma from different sites and identify potential molecular targets for future therapy. Mucosal melanomas (N = 40) from different sites (conjunctiva, sinonasal cavity, rectum, and vagina) were investigated. Targeted next-generation sequencing along with Nanostring gene expression profiling was performed. Genetically, conjunctival melanoma was characterized by BRAF-V600E (30%) and NF1 mutations (17%). Mucosal melanomas at nonsun-exposed sites harbored alterations in NRAS, KIT, NF1, along with atypical BRAF mutations. When comparing the gene expression profile of conjunctival melanoma and nonsun-exposed mucosal melanoma, 41 genes were found to be significantly deregulated. Programmed death-ligand 1 (PD-L1) presented a significant sixfold upregulation in conjunctival melanoma compared to the other mucosal melanomas. While melanomas of the sinonasal cavity, vagina, and rectum are molecularly similar, conjunctival melanoma is characterized by a higher frequency of BRAF-V600E mutations and differential expression of several genes involved in the immune response.
Collapse
|
32
|
Liu Q, Qi Y, Zhai J, Kong X, Wang X, Wang Z, Fang Y, Wang J. Molecular and Clinical Characterization of LAG3 in Breast Cancer Through 2994 Samples. Front Immunol 2021; 12:599207. [PMID: 34267742 PMCID: PMC8276078 DOI: 10.3389/fimmu.2021.599207] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the promising impact of cancer immunotherapy targeting CTLA4 and PD1/PDL1, numerous cancer patients fail to respond. LAG3 (Lymphocyte Activating 3), also named CD233, serves as an alternative inhibitory receptor to be targeted in the clinic. The impacts of LAG3 on immune cell populations and coregulation of immune responses in breast cancer remain largely unknown. To characterize the role of LAG3 in breast cancer, we investigated transcriptome data and associated clinical information derived from 2,994 breast cancer patients. We estimated the landscape of the relationship between LAG3 and 10 types of cell populations of breast cancer. We investigated the correlation pattern between LAG3 and immune modulators in pancancer, particularly the synergistic role of LAG3 with other immune checkpoint members in breast cancer. LAG3 expression was closely related to the malignancy of breast cancer and may serve as a potential biomarker. LAG3 may play an important role in regulating the tumor immune microenvironment of T cells and other immune cells. More important, LAG3 may synergize with CTLA4, PD1/PDL1, and other immune checkpoints, thereby contributing more evidence to improve combination cancer immunotherapy by simultaneously targeting LAG3, PD1/PDL1, and CTLA4.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhongzhao Wang
- *Correspondence: Jing Wang, ; Yi Fang, ; Zhongzhao Wang,
| | - Yi Fang
- *Correspondence: Jing Wang, ; Yi Fang, ; Zhongzhao Wang,
| | - Jing Wang
- *Correspondence: Jing Wang, ; Yi Fang, ; Zhongzhao Wang,
| |
Collapse
|
33
|
Gumusay O, Wabl CA, Rugo HS. Trials of Immunotherapy in Triple Negative Breast Cancer. CURRENT BREAST CANCER REPORTS 2021. [DOI: 10.1007/s12609-021-00418-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Messeha SS, Zarmouh NO, Soliman KFA. Polyphenols Modulating Effects of PD-L1/PD-1 Checkpoint and EMT-Mediated PD-L1 Overexpression in Breast Cancer. Nutrients 2021; 13:nu13051718. [PMID: 34069461 PMCID: PMC8159140 DOI: 10.3390/nu13051718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Investigating dietary polyphenolic compounds as antitumor agents are rising due to the growing evidence of the close association between immunity and cancer. Cancer cells elude immune surveillance for enhancing their progression and metastasis utilizing various mechanisms. These mechanisms include the upregulation of programmed death-ligand 1 (PD-L1) expression and Epithelial-to-Mesenchymal Transition (EMT) cell phenotype activation. In addition to its role in stimulating normal embryonic development, EMT has been identified as a critical driver in various aspects of cancer pathology, including carcinogenesis, metastasis, and drug resistance. Furthermore, EMT conversion to another phenotype, Mesenchymal-to-Epithelial Transition (MET), is crucial in developing cancer metastasis. A central mechanism in the upregulation of PD-L1 expression in various cancer types is EMT signaling activation. In breast cancer (BC) cells, the upregulated level of PD-L1 has become a critical target in cancer therapy. Various signal transduction pathways are involved in EMT-mediated PD-L1 checkpoint overexpression. Three main groups are considered potential targets in EMT development; the effectors (E-cadherin and Vimentin), the regulators (Zeb, Twist, and Snail), and the inducers that include members of the transforming growth factor-beta (TGF-β). Meanwhile, the correlation between consuming flavonoid-rich food and the lower risk of cancers has been demonstrated. In BC, polyphenols were found to downregulate PD-L1 expression. This review highlights the effects of polyphenols on the EMT process by inhibiting mesenchymal proteins and upregulating the epithelial phenotype. This multifunctional mechanism could hold promises in the prevention and treating breast cancer.
Collapse
Affiliation(s)
- Samia S. Messeha
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health Florida A&M University, Tallahassee, FL 32307, USA;
| | - Najla O. Zarmouh
- Faculty of Medical Technology-Misrata, Libyan National Board for Technical & Vocational Education, Misrata LY72, Libya;
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health Florida A&M University, Tallahassee, FL 32307, USA;
- Correspondence: ; Tel.: +1-850-599-3306; Fax: +1-850-599-3667
| |
Collapse
|
35
|
Hu M, Li Y, Lu Y, Wang M, Li Y, Wang C, Li Q, Zhao H. The regulation of immune checkpoints by the hypoxic tumor microenvironment. PeerJ 2021; 9:e11306. [PMID: 34012727 PMCID: PMC8109006 DOI: 10.7717/peerj.11306] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) influences the occurrence and progression of tumors, and hypoxia is an important characteristic of the TME. The expression of programmed death 1 (PD1)/programmed death-ligand 1 (PDL1), cytotoxic T-lymphocyte-associated antigen 4 (CTLA4), and other immune checkpoints in hypoxic malignant tumors is often significantly increased, and is associated with poor prognosis. The application of immune checkpoint inhibitors (ICIs) for treating lung cancer, urothelial carcinoma, and gynecological tumors has achieved encouraging efficacy; however, the rate of efficacy of ICI single-drug treatment is only about 20%. In the present review, we discuss the possible mechanisms by which the hypoxic TME regulates immune checkpoints. By activating hypoxia-inducible factor-1α (HIF-1α), regulating the adenosine (Ado)-A2aR pathway, regulating the glycolytic pathway, and driving epithelial-mesenchymal transition (EMT) and other biological pathways, hypoxia regulates the expression levels of CTLA4, PD1, PDL1, CD47, lymphocyte activation gene 3 (LAG3), T-cell immunoglobulin and mucin domain 3 (TIM3), and other immune checkpoints, which interfere with the immune effector cell anti-tumor response and provide convenient conditions for tumors to escape immune surveillance. The combination of HIF-1α inhibitors, Ado-inhibiting tumor immune microenvironment regulatory drugs, and other drugs with ICIs has good efficacy in both preclinical studies and phase I-II clinical studies. Exploring the effects of TME hypoxia on the expression of immune checkpoints and the function of infiltrating immune cells has greatly clarified the relationship between the hypoxic TME and immune escape, which is of great significance for the development of new drugs and the search for predictive markers of the efficacy of immunotherapy for treating malignant tumors. In the future, combination therapy with hypoxia pathway inhibitors and ICIs may be an effective anti-tumor treatment strategy.
Collapse
Affiliation(s)
- Min Hu
- Department of Biochemistry & Molecular Biology, Basic Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China.,Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yongfu Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Yuting Lu
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Miao Wang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yingrui Li
- Department of Biochemistry & Molecular Biology, Basic Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China.,Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chaoying Wang
- Department of Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong Zhao
- Department of Biochemistry & Molecular Biology, Basic Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
36
|
Peg V, López-García MÁ, Comerma L, Peiró G, García-Caballero T, López ÁC, Suárez-Gauthier A, Ruiz I, Rojo F. PD-L1 testing based on the SP142 antibody in metastatic triple-negative breast cancer: summary of an expert round-table discussion. Future Oncol 2021; 17:1209-1218. [DOI: 10.2217/fon-2020-1100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is more aggressive than other breast cancer subtypes. TNBC is characterized by increased expression of Programmed Death-ligand 1 (PD-L1), a signal used by many tumors to escape the immune response. Expression of PD-L1 is a positive predictor of response to immunotherapy; therefore, it should be investigated in TNBC in order to select patients who may benefit from anti-PD-L1 therapies. While many PD-L1 assays are available, only the VENTANA platform with the anti-PD-L1 (SP142) antibody is licensed as a companion diagnostic device for selecting patients with metastatic/advanced TNBC who are candidates for treatment with atezolizumab. In this article, we provide a summary of an expert round-table discussion about PD-L1 testing, using the SP142 antibody in metastatic TNBC.
Collapse
Affiliation(s)
- Vicente Peg
- Departamento de Anatomia Patològica, Vall d’Hebron Hospital Universitari, Barcelona Hospital Campus, Barcelona, Spain; Grupo de Patología Molecular, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain; Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain; Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - María Ángeles López-García
- Servicio de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Sevilla (Spain); Centro de Investigacion Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Comerma
- Departamento de Anatomía Patológica, Hospital del Mar, Barcelona, Spain
| | - Gloria Peiró
- Departamento de Patología, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Tomás García-Caballero
- Departamento de Ciencias Morfológicas, Facultad de Medicina y Odontología, Universidad de Santiago, Santiago de Compostela, Spain
| | - Ángel Concha López
- Servicio de Anatomía Patológica, Complejo Hospitalario Universitario A Coruña, Biobanco INIBIC, A Coruña, Spain
| | - Ana Suárez-Gauthier
- Departamento de Anatomía Patológica, Laboratorio de Dianas Terapéuticas, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - Irune Ruiz
- Servicio de Patología, Hospital Universitario Donostia, Donostia, Spain
| | - Federico Rojo
- Servicio de Anatomía Patológica, IIS-Fundación Jiménez Díaz-CIBERONC, Madrid, Spain
| |
Collapse
|
37
|
Schreiber AR, Kagihara JA, Weiss JA, Nicklawsky A, Gao D, Borges VF, Kabos P, Diamond JR. Clinical Outcomes for Patients With Metastatic Breast Cancer Treated With Immunotherapy Agents in Phase I Clinical Trials. Front Oncol 2021; 11:640690. [PMID: 33816286 PMCID: PMC8010246 DOI: 10.3389/fonc.2021.640690] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/01/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Immuno-oncology (IO) agents have demonstrated efficacy across many tumor types and have led to change in standard of care. In breast cancer, atezolizumab and pembrolizumab were recently FDA-approved in combination with chemotherapy specifically for patients with PD-L1-positive metastatic triple-negative breast cancer (TNBC). However, the single agent PD-1/PD-L1 inhibitors demonstrate only modest single agent efficacy in breast cancer. The purpose of this study was to investigate the efficacy of novel IO agents in patients with metastatic breast cancer (MBC), beyond TNBC, treated in phase I clinical trials at the University of Colorado. METHODS We performed a retrospective analysis using a database of patients with MBC who received treatment with IO agents in phase I/Ib clinical trials at the University of Colorado Hospital from January 1, 2012 to July 1, 2018. Patient demographics, treatments and clinical outcomes were obtained. RESULTS We identified 43 patients treated with an IO agent either as a single agent or in combination. The average age was 53 years; 55.8% had hormone receptor-positive/HER2-negative breast cancer, 39.5% TNBC and 4.7% HER2-positive. Patients received an average of 2 prior lines of chemotherapy (range 0-7) in the metastatic setting. Most patients (72.1%) received IO alone and 27.9% received IO plus chemotherapy. Median progression-free survival (PFS) was 2.3 months and median overall survival (OS) was 12.1 months. Patients remaining on study ≥ 6 months (20.9%) were more likely to be treated with chemotherapy plus IO compared to patients with a PFS < 6 months (77.8% v. 14.7%). No differences in number of metastatic sites, prior lines of chemotherapy, breast cancer subtype, absolute lymphocyte count, or LDH were identified between patients with a PFS ≥ 6 months vs. < 6 months. CONCLUSIONS Our phase I experience demonstrates benefit from IO therapy that was not limited to patients with TNBC and confirms improved efficacy from IO agents in combination with chemotherapy. A subset of patients with MBC treated in phase I clinical trials with an IO agent derived prolonged clinical benefit. Predictors of response to immunotherapy in breast cancer remain uncharacterized and further research is needed to identify these factors.
Collapse
Affiliation(s)
- Anna R. Schreiber
- Department of Medicine, University of Colorado Anschutz, Aurora, CO, United States
| | - Jodi A. Kagihara
- Department of Medicine, University of Colorado Cancer Center, Aurora, CO, United States
| | - Jennifer A. Weiss
- Department of Medicine, University of Colorado Anschutz, Aurora, CO, United States
| | - Andrew Nicklawsky
- University of Colorado School of Medicine, Aurora, CO, United States
| | - Dexiang Gao
- University of Colorado School of Medicine, Aurora, CO, United States
| | - Virginia F. Borges
- Department of Medicine, University of Colorado Cancer Center, Aurora, CO, United States
| | - Peter Kabos
- Department of Medicine, University of Colorado Cancer Center, Aurora, CO, United States
| | - Jennifer R. Diamond
- Department of Medicine, University of Colorado Cancer Center, Aurora, CO, United States
| |
Collapse
|
38
|
Abstract
Introduction: Existing HER2-targeted therapies modulate the tumor microenvironment and the immunologic response cancer in a favorable way. While these therapies have made dramatic improvements in the treatment and prognosis of HER2-overexpressing malignancies, additional treatment options are still needed.Areas covered: This review covers the immunomodulatory effects of approved HER2-targeted therapies. We discuss the preclinical data that demonstrate an additive effect of the combination of trastuzumab or other HER2-targeting agents with immunomodulatory drugs. Finally, we report the initial studies on the combination of HER2-targeted agents together with immune checkpoint inhibitors or cancer vaccines in breast cancer.Expert opinion: Preclinical data suggest a synergistic effect of HER2-targeted therapy together with both checkpoint inhibitor and cancer vaccine immunotherapy. Results from initial trials with PD-1/PD-L1-blocking therapy together with HER2-targeted therapy have been negative, but responses were seen in patients with PD-L1+ breast cancer. Trastuzumab together with HER2-targeted cancer vaccination has shown benefits in triple negative breast cancer. Further trials are necessary and warranted to confirm the benefit of these combinations.
Collapse
Affiliation(s)
- Guy T Clifton
- Department of General Surgery, Brooke Army Medical Center, Fort Sam Houston, TX, USA
| | | |
Collapse
|
39
|
Setordzi P, Chang X, Liu Z, Wu Y, Zuo D. The recent advances of PD-1 and PD-L1 checkpoint signaling inhibition for breast cancer immunotherapy. Eur J Pharmacol 2021; 895:173867. [PMID: 33460617 DOI: 10.1016/j.ejphar.2021.173867] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/14/2020] [Accepted: 01/11/2021] [Indexed: 12/31/2022]
Abstract
Over the past decade, there has been sustained research activity on programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) immune checkpoint inhibitors for breast cancer (BC) immunotherapy. Several clinical studies have demonstrated the anti-tumor efficacy of monotherapy drugs targeting PD-1 and PD-L1 checkpoint signaling in BC. Besides, the combination of anti-PD-1/PD-L1 agents with other inhibitors, including poly-adenosine diphosphate-ribose polymerase (PARP) inhibitors, vaccines, mitogen-activated protein kinase (MEK) inhibitors, and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) inhibitors are being investigated to improve drug efficacy. These trials have performed well and have shown better and more sustainable therapeutic responses. As follows, the purpose of this review is to discuss the recent advances in BC immunotherapy targeting the inhibition of PD-1/PD-L1 immune checkpoint signaling, when recommended as a monotherapy or in conjunction with other treatments. We look forward to providing new insights into the current state of BC research and the future direction of PD-1/PD-L1 immune checkpoint signaling.
Collapse
Affiliation(s)
- Patience Setordzi
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xing Chang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Zi Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
40
|
Pan X, Li R, Guo H, Zhang W, Xu X, Chen X, Ding L. Dihydropyridine Calcium Channel Blockers Suppress the Transcription of PD-L1 by Inhibiting the Activation of STAT1. Front Pharmacol 2021; 11:539261. [PMID: 33519429 PMCID: PMC7838064 DOI: 10.3389/fphar.2020.539261] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) which is upregulated in various epithelial tumors, plays a central role in the evasion of the immune system. In addition to monoclonal antibodies that blocking PD1/PD-L1 axis, finding small molecule compounds that can suppress PD-L1 expression might be another substitutable strategy for PD1/PD-L1 based therapy. Here, we found that dihydropyridine calcium channel blockers dose-dependently reduced the expression of PD-L1, both in the cytoplasm and cell surface. IFNγ induced PD-L1 transcription was consistently suppressed by Lercanidipine in 24 h, whereas, the half-life of PD-L1 protein was not significantly affected. IFNγ trigged significant STAT1 phosphorylation, which was eliminated by Lercanidipine. Similarly, STAT1 phosphorylation could also be abolished by extracellular calcium chelating agent EGTA and intracellular calcium chelator BAPTA-AM. Furthermore, Lercanidipine enhanced killing ability of T cells by down-regulating PD-L1. Taken together, our studies suggest that calcium signal is a crucial factor that mediates the transcription of PD-L1 and regulation of calcium can be used as a potential strategy for PD-L1 inhibition.
Collapse
Affiliation(s)
- Xiaohui Pan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Run Li
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wenxin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaqing Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xi Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Qi Y, Chen L, Liu Q, Kong X, Fang Y, Wang J. Research Progress Concerning Dual Blockade of Lymphocyte-Activation Gene 3 and Programmed Death-1/Programmed Death-1 Ligand-1 Blockade in Cancer Immunotherapy: Preclinical and Clinical Evidence of This Potentially More Effective Immunotherapy Strategy. Front Immunol 2021; 11:563258. [PMID: 33488573 PMCID: PMC7820761 DOI: 10.3389/fimmu.2020.563258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022] Open
Abstract
Although various immunotherapies have exerted promising effects on cancer treatment, many patients with cancer continue to exhibit poor responses. Because of its negative regulatory effects on T cells and its biological functions related to immune and inflammatory responses, there has been considerable emphasis on a protein-coding gene named lymphocyte-activation gene 3 (LAG3). Recently, evidence demonstrated marked synergy in its targeted therapy with programmed death-1 and programmed death-1 ligand-1 (PD-1/PD-L1) blockade, and a variety of LAG3 targeted agents are in clinical trials, indicating the important role of LAG3 in immunotherapy. This mini-review discusses preclinical and clinical studies investigating PD-1 pathway blockade in combination with LAG3 inhibition as a potentially more effective immunotherapy strategy for further development in the clinic. This strategy might provide a new approach for the design of more effective and precise cancer immune checkpoint therapies.
Collapse
Affiliation(s)
- Yihang Qi
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Chen
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
42
|
Determining Factors in the Therapeutic Success of Checkpoint Immunotherapies against PD-L1 in Breast Cancer: A Focus on Epithelial-Mesenchymal Transition Activation. J Immunol Res 2021; 2021:6668573. [PMID: 33506060 PMCID: PMC7808819 DOI: 10.1155/2021/6668573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common neoplasm diagnosed in women around the world. Checkpoint inhibitors, targeting the programmed death receptor-1 or ligand-1 (PD-1/PD-L1) axis, have dramatically changed the outcome of cancer treatment. These therapies have been recently considered as alternatives for treatment of breast cancers, in particular those with the triple-negative phenotype (TNBC). A further understanding of the regulatory mechanisms of PD-L1 expression is required to increase the benefit of PD-L1/PD-1 checkpoint immunotherapy in breast cancer patients. In this review, we will compile the most recent studies evaluating PD-1/PD-L1 checkpoint inhibitors in breast cancer. We review factors that determine the therapeutic success of PD-1/PD-L1 immunotherapies in this pathology. In particular, we focus on pathways that interconnect the epithelial-mesenchymal transition (EMT) with regulation of PD-L1 expression. We also discuss the relationship between cellular metabolic pathways and PD-L1 expression that are involved in the promotion of resistance in TNBC.
Collapse
|
43
|
Tian Y, Sun X, Cheng G, Ji E, Yang S, Feng J, Zheng L. The association of CMTM6 expression with prognosis and PD-L1 expression in triple-negative breast cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:131. [PMID: 33569433 PMCID: PMC7867887 DOI: 10.21037/atm-20-7616] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Immune checkpoint inhibitors play a vital role in triple-negative breast cancer (TNBC) immunotherapy. A recent study showed that chemokine-like factor (CKLF)-like MARVEL transmembrane domain containing 6 (CMTM6) has a crucial role in programmed death-ligand 1 (PD-L1) stability. The aim of this study was to investigate the relationship between CMTM6 and PD-L1 in TNBC and the association with clinical characteristics. Methods A total of 143 patients, including 75 with human epidermal growth factor receptor 2 (HER2)-driven breast cancer and 68 with TNBC, were included in this study. In 83 paired primary breast cancers (PBCs) and metastatic breast cancers (MBC) comprising 45 HER2-driven breast cancers and 38 TNBC, CMTM6 and PD-L1 were detected based on immunohistochemistry (IHC) with FFPE tissues. Another 60 PBCs comprising 30 HER2-driven breast cancers and 30 TNBC in order to detect CMTM6 and PD-L1 mRNA expressions based on real-time polymerase chain reaction (RT-PCR) using frozen tissues. Furthermore, 153 patients comprising 30 TNBC and 123 HER2-driven breast cancer based on The Cancer Genome Atlas (TCGA) database were used to confirm the difference mRNA expression. Results The expression of CMTM6 in patients with TNBC was significantly higher than in those with HER2-driven PBC (IHC, P=0.036, mRNA, P=0.036, TCGA dataset, P=0.039). CMTM6 was correlated with PD-L1 based on IHC in triple-negative MBC (P=0.004); the same result was found based on mRNA data in triple- negative PBC (P=0.021). Moreover, a high expression of CMTM6 in TNBC was associated with poor progression-free survival (PFS) (P=0.030, 95% CI: 1.08-4.57, HR =2.22). After multiple Cox regression analysis, CMTM6 in TNBC emerged as an independent risk factor for PFS (P=0.027, 95% CI: 1.11-5.20, HR =2.40). The expression of PD-L1 was negatively correlated with lymph node metastasis (P=0.026) and was not associated with PFS. Conclusions The expression of CMTM6 was higher in TNBC than in HER2-driven breast cancer. In TNBC, CMTM6 was correlated with PD-L1 expression, and potentially could be used as an independent risk factor for predicting PFS.
Collapse
Affiliation(s)
- Yiping Tian
- Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Xiaohui Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guoping Cheng
- Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Enming Ji
- Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Shifeng Yang
- Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Jianguo Feng
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China.,Department of Experimental Research Center, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Linfeng Zheng
- Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
44
|
Pan YC, Nishikawa T, Chang CY, Tai JA, Kaneda Y. CXCL2 combined with HVJ-E suppresses tumor growth and lung metastasis in breast cancer and enhances anti-PD-1 antibody therapy. MOLECULAR THERAPY-ONCOLYTICS 2020; 20:175-186. [PMID: 33575480 PMCID: PMC7851488 DOI: 10.1016/j.omto.2020.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022]
Abstract
Breast cancer has a high risk of metastasis; however, no effective treatment has been established. We developed a novel immunotherapy for breast cancer to enhance cytotoxic T lymphocytes against cancer cells using N1-type neutrophils with anti-tumor properties. For this purpose, we combined CXCL2 (CXC chemokine ligand 2) plasmid DNA with inactivated Sendai virus (hemagglutinating virus of Japan)-envelope (HVJ-E). The combination of CXCL2 DNA and HVJ-E (C/H) suppressed the growth of murine breast cancers in orthotopic syngeneic models by enhancing cytotoxic T lymphocytes and inhibited lung metastasis of breast cancer from primary lesions. N1-type neutrophils (CD11b+ Ly6G+ FAS+) increased in the tumor microenvironment with C/H treatment, and tumor suppression and cytotoxic T lymphocyte activation from C/H was blocked after administrating anti-neutrophil antibodies, which indicates the role of N1-type neutrophils in cancer immunotherapy. We also demonstrated that the anti-tumor activities of C/H treatment were enhanced by the administration of anti-PD-1 antibodies through neutrophil-mediated cytotoxic T lymphocyte activation. Thus, the triple combination of C/H and anti-PD-1 antibody C/H treatment may provide an improvement in cancer immunotherapy.
Collapse
Affiliation(s)
- Yi Chun Pan
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Tomoyuki Nishikawa
- Department of Device Application for Molecular Therapeutics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Chin Yang Chang
- Department of Device Application for Molecular Therapeutics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Jiayu A Tai
- Department of Device Application for Molecular Therapeutics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | | |
Collapse
|
45
|
Zhang Y, Lin A, Li Y, Ding W, Meng H, Luo P, Zhang J. Age and Mutations as Predictors of the Response to Immunotherapy in Head and Neck Squamous Cell Cancer. Front Cell Dev Biol 2020; 8:608969. [PMID: 33363171 PMCID: PMC7755718 DOI: 10.3389/fcell.2020.608969] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
The immunosuppressive tumor microenvironment plays an essential role in the treatment of head and neck squamous cell carcinoma (HNSC). Compared to traditional chemoradiotherapy, immune checkpoint inhibitors (ICIs) have become increasingly important in HNSC therapy. Prior studies linked the efficacy of ICIs to PD-L1, microsatellite instability (MSI), HPV infection, tumor mutation burden (TMB), and tumor lymphocyte infiltration in patients with HNSC, but further verification is needed. Additional predictors are needed to recognize HNSC patients with a good response to ICIs. We collected the clinical information and mutation data of HNSC patients from Memorial Sloan Kettering Cancer Center (MSKCC) and The Cancer Genome Atlas (TCGA) databases to generate two clinical cohorts. The MSKCC cohort was used to recognize predictors related to the efficacy of ICIs, and the TCGA cohort was used to further examine the immune microenvironment features and signaling pathways that are significantly enriched in the subgroups of predictors. Multivariate Cox regression analysis indicated that age (HR = 0.50, p = 0.014) and ARID1A (HR = 0.13, p = 0.048), PIK3CA (HR = 0.45, p = 0.021), and TP53 (HR = 1.82, p = 0.035) mutations were potential predictors for ICI efficacy in HNSC patients. Age > 65 years and ARID1A or PIK3CA mutations correlated with good overall survival (OS). TP53 mutant-type (MT) patients experienced a worse prognosis than TP53 wild-type (WT) patients. The subgroups associated with a good prognosis (age > 65 years, ARID1A-MT, and PIK3CA-MT) universally had a high TMB and increased expression of immune checkpoint molecules. Although TP53-MT was associated with a high TMB, the expression of most immune checkpoint molecules and immune-related genes was lower in TP53-MT patients than TP53-WT patients, which may reflect low immunogenicity. Pathways related to the immunosuppressive tumor microenvironment were mostly enriched in the subgroups associated with a poor prognosis (age ≤ 65 years, low TMB, ARID1A-WT, PIK3CA-WT, and TP53-MT). In conclusion, the factors age > 65 years, PIK3CA-MT, and ARID1A-MT predicted favorable efficacy for ICI treatment in HNSC patients, and TP53 mutation was a negative predictor.
Collapse
Affiliation(s)
- Yueming Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yonghe Li
- Department of Otolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weimin Ding
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Meng
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
46
|
Huang X, Shao D, Wu H, Zhu C, Guo D, Zhou Y, Chen C, Lin Y, Lu T, Zhao B, Wang C, Sun Q. Genomic Profiling Comparison of Germline BRCA and Non- BRCA Carriers Reveals CCNE1 Amplification as a Risk Factor for Non- BRCA Carriers in Patients With Triple-Negative Breast Cancer. Front Oncol 2020; 10:583314. [PMID: 33194720 PMCID: PMC7662137 DOI: 10.3389/fonc.2020.583314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Differences in genomic profiling and immunity-associated parameters between germline BRCA and non-BRCA carriers in TNBC with high tumor burden remain unexplored. This study aimed to compare the differences and explore potential prognostic predictors and therapeutic targets. Methods: The study cohort included 21 consecutive TNBC cases with germline BRCA1/2 mutations and 54 non-BRCA carriers with a tumor size ≥ 2 cm and/or ≥1 affected lymph nodes. Differences in clinicopathological characteristics and genomic profiles were analyzed through next-generation sequencing. Univariate Kaplan-Meier analysis and Cox regression model were applied to survival analysis. Immunohistochemistry was used to confirm the consistency between CCNE1 amplification and cyclin E1 protein overexpression. Results: The cohort included 16 and five patients with germline BRCA1 and BRCA2 mutations, respectively. Patients with germline BRCA1/2 mutations were diagnosed at a significantly younger age and were more likely to have a family history of breast and/or ovarian cancer. Six non-BRCA carriers (11.11%) carried germline mutations in other cancer susceptibility genes, including five mutations in five homologous recombination repair (HRR) pathway genes (9.26%) and one mutation in MSH3 (1.85%). Somatic mutations in HRR pathway genes were found in 22.22 and 14.29% of the non-BRCA and BRCA carriers, respectively. PIK3CA missense mutation (p = 0.046) and CCNE1 amplification (p = 0.2) were found only in the non-BRCA carriers. The median tumor mutation burden (TMB) was 4.1 Muts/Mb, whereas none of the cases had high microsatellite instability (MSI). BRCA status did not affect disease-free survival (DFS, p = 0.15) or overall survival (OS, p = 0.52). CCNE1 amplification was an independent risk factor for DFS in non-BRCA carriers with TNBC (HR 13.07, 95% CI 2.47-69.24, p = 0.003). Consistency between CCNE1 amplification and cyclin E1 protein overexpression was confirmed with an AUC of 0.967 for cyclin E1 signal intensity. Conclusions: We found differences in genetic alterations between germline BRCA and non-BRCA carriers with TNBC and a high tumor burden. TMB and MSI may not be suitable predictors of TNBC for immune checkpoint inhibitors. Notably, CCNE1 amplification is a novel potential prognostic marker and therapeutic target for non-BRCA carriers with TNBC. Cyclin E1 may be used instead of CCNE1 to improve clinical applicability.
Collapse
Affiliation(s)
- Xin Huang
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Di Shao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Beijing, China
| | | | - Dan Guo
- Clinical Biobank, Medical Science Research Center, Peking Union Medical College Hospital, Beijing, China
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Chang Chen
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yan Lin
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Tao Lu
- Department of Pathology, Peking Union Medical College Hospital, Beijing, China
| | - Bin Zhao
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Changjun Wang
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
47
|
Tan X, Chen W, Jiao C, Liang H, Yun H, He C, Chen J, Ma X, Xie Y. Anti-tumor and immunomodulatory activity of the aqueous extract of Sarcodon imbricatus in vitro and in vivo. Food Funct 2020; 11:1110-1121. [PMID: 31825431 DOI: 10.1039/c9fo01230c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sarcodon imbricatus (S. imbricatus), a well-known edible mushroom, is one of the most commonly consumed wild mushrooms in China because of its nutritional value. Previous studies have demonstrated that S. imbricatus has immunoregulatory activity. We previously described the potential anti-tumor activity of several types of mushrooms, including S. imbricatus. In this study, the results demonstrate that an aqueous extract of S. imbricatus (SIE) effectively inhibits the growth, migration, and invasion properties of breast cancer cells in vitro and reduces tumor growth in vivo. In addition, the SIE increased serum concentrations of interleukin (IL)-2, IL-6 and tumor necrosis factor-α, natural killer cell activity and the viability of splenocytes and reduced the expression of programmed cell death-Ligand 1 (PD-L1) in 4T1 tumor-bearing mice. Collectively, these results are the first demonstration that the SIE has anti-tumor and immunomodulatory effects in the 4T1 mouse breast cancer model. These findings provide a scientific rationale for the potential therapeutic use of S. imbricatus in breast cancer patients.
Collapse
Affiliation(s)
- Xupeng Tan
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Oner G, Altintas S, Canturk Z, Tjalma W, Van Berckelaer C, Broeckx G, Zwaenepoel K, Tholhuijsen M, Verhoeven Y, Berneman Z, Peeters M, Pauwels P, van Dam PA. The immunologic aspects in hormone receptor positive breast cancer. Cancer Treat Res Commun 2020; 25:100207. [PMID: 32896829 DOI: 10.1016/j.ctarc.2020.100207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/04/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Although hormone receptor positive/HER2-negative (HR +/HER2-) breast cancer is the most diagnosed breast cancer type, the immunologic aspects HR positive breast cancer (BC) has been neglected until recently. The purpose of this paper is to review the current knowledge of the immune environment in HR positive BC and the potential use of immunotherapy in these patients. METHOD A computer-based literature research was carried out using PubMed, American Society of Clinical Oncology Annual Meeting (ASCO) and San Antonio Breast Cancer Symposium (SABCS). RESULTS The tumour microenvironment (TME), with infiltrating immune cells, plays an important role in HR positive BC. However, the effects of these immune cells are different in the luminal cancers compared to the other breast cancer types. Even though PD-1 and PD-L1 are less expressed in HR positive BC, pathological complete response (pCR) was more often seen after PD-1 inhibitor treatment in patients with an increased expression. The studies support the assertion that endocrine therapy has immunomodulatory effect. CONCLUSION The reviewed literature indicates that immune cells play an important role in HR positive BC. Considerably more research is needed to determine the real effect of the TME in this patient group.
Collapse
Affiliation(s)
- Gizem Oner
- Multidisciplinary Oncologic Centre Antwerp [(MOCA)], Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium; Department of General Surgery, Kocaeli University, Kocaeli, Turkey.
| | - Sevilay Altintas
- Multidisciplinary Oncologic Centre Antwerp [(MOCA)], Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium
| | - Zafer Canturk
- Department of General Surgery, Kocaeli University, Kocaeli, Turkey
| | - Wiebren Tjalma
- Multidisciplinary Oncologic Centre Antwerp [(MOCA)], Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium
| | | | - Glenn Broeckx
- Department of Histopathology, Antwerp University Hospital, Edegem, Belgium
| | - Karen Zwaenepoel
- Department of Histopathology, Antwerp University Hospital, Edegem, Belgium
| | - Maria Tholhuijsen
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium
| | - Yannick Verhoeven
- Multidisciplinary Oncologic Centre Antwerp [(MOCA)], Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium
| | - Zwi Berneman
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium; Department of Hematology, Antwerp University, Edegem, Belgium
| | - Marc Peeters
- Multidisciplinary Oncologic Centre Antwerp [(MOCA)], Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium; Department of Histopathology, Antwerp University Hospital, Edegem, Belgium
| | - Peter A van Dam
- Multidisciplinary Oncologic Centre Antwerp [(MOCA)], Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
49
|
Behravan J, Razazan A, Behravan G. Towards Breast Cancer Vaccines, Progress and Challenges. Curr Drug Discov Technol 2020; 16:251-258. [PMID: 29732989 DOI: 10.2174/1570163815666180502164652] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 01/01/2023]
Abstract
Breast cancer is the second leading cause of cancer death among women. National cancer institute of the US estimates that one in eight women will be diagnosed with breast cancer during their lifetime. Considering the devastating effects of the disease and the alarming numbers many scientists and research groups have devoted their research to fight breast cancer. Several recommendations are to be considered as preventing measures which include living a healthy lifestyle, regular physical activity, weight control and smoking cessation. Early detection of the disease by annual and regular mammography after the age of 40 is recommended by many healthcare institutions. This would help the diagnosis of the disease at an earlier stage and the start of the treatment before it is spread to other parts of the body. Current therapy for breast cancer includes surgical ablation, radiotherapy and chemotherapy which is often associated with adverse effects and even may lead to a relapse of the disease at a later stage. In order to achieve a long-lasting anticancer response with minimal adverse effects, development of breast cancer vaccines is under investigation by many laboratories. The immune system can be stimulated by a vaccine against breast cancer. This approach has attracted a great enthusiasm in recent years. No breast cancer vaccines have been approved for clinical use today. One breast cancer vaccine (NeuVax) has now completed clinical trial phase III and a few preventive and therapeutic breast cancer vaccines are at different steps of development. We think that with the recent advancements in immunotherapy, a breast cancer vaccine is not far from reach.
Collapse
Affiliation(s)
- Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Mediphage Bioceuticals, Inc., 661 University Avenue, Suite 1300, MaRS Centre, West Tower, Toronto M5G0B7, Canada
| | - Atefeh Razazan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazal Behravan
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
50
|
Jarrett AM, Bloom MJ, Godfrey W, Syed AK, Ekrut DA, Ehrlich LI, Yankeelov TE, Sorace AG. Mathematical modelling of trastuzumab-induced immune response in an in vivo murine model of HER2+ breast cancer. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2020; 36:381-410. [PMID: 30239754 DOI: 10.1093/imammb/dqy014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 06/14/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023]
Abstract
The goal of this study is to develop an integrated, mathematical-experimental approach for understanding the interactions between the immune system and the effects of trastuzumab on breast cancer that overexpresses the human epidermal growth factor receptor 2 (HER2+). A system of coupled, ordinary differential equations was constructed to describe the temporal changes in tumour growth, along with intratumoural changes in the immune response, vascularity, necrosis and hypoxia. The mathematical model is calibrated with serially acquired experimental data of tumour volume, vascularity, necrosis and hypoxia obtained from either imaging or histology from a murine model of HER2+ breast cancer. Sensitivity analysis shows that model components are sensitive for 12 of 13 parameters, but accounting for uncertainty in the parameter values, model simulations still agree with the experimental data. Given theinitial conditions, the mathematical model predicts an increase in the immune infiltrates over time in the treated animals. Immunofluorescent staining results are presented that validate this prediction by showing an increased co-staining of CD11c and F4/80 (proteins expressed by dendritic cells and/or macrophages) in the total tissue for the treated tumours compared to the controls ($p < 0.03$). We posit that the proposed mathematical-experimental approach can be used to elucidate driving interactions between the trastuzumab-induced responses in the tumour and the immune system that drive the stabilization of vasculature while simultaneously decreasing tumour growth-conclusions revealed by the mathematical model that were not deducible from the experimental data alone.
Collapse
Affiliation(s)
- Angela M Jarrett
- Institute for Computational Engineering and Sciences, University of Texas, Austin, TX, USA.,Livestrong Cancer Institutes, University of Texas, Austin, TX, USA
| | - Meghan J Bloom
- Department of Biomedical Engineering, University of Texas, Austin, TX, USA
| | - Wesley Godfrey
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Anum K Syed
- Department of Biomedical Engineering, University of Texas, Austin, TX, USA
| | - David A Ekrut
- Institute for Computational Engineering and Sciences, University of Texas, Austin, TX, USA
| | - Lauren I Ehrlich
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA.,Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, USA.,Livestrong Cancer Institutes, University of Texas, Austin, TX, USA
| | - Thomas E Yankeelov
- Institute for Computational Engineering and Sciences, University of Texas, Austin, TX, USA.,Department of Biomedical Engineering, University of Texas, Austin, TX, USA.,Department of Diagnostic Medicine, University of Texas, Austin, TX, USA.,Livestrong Cancer Institutes, University of Texas, Austin, TX, USA
| | - Anna G Sorace
- Department of Biomedical Engineering, University of Texas, Austin, TX, USA.,Department of Diagnostic Medicine, University of Texas, Austin, TX, USA.,Department of Oncology, University of Texas, Austin, TX, USA.,Livestrong Cancer Institutes, University of Texas, Austin, TX, USA
| |
Collapse
|