1
|
Firuzpour F, Saleki K, Aram C, Rezaei N. Nanocarriers in glioblastoma treatment: a neuroimmunological perspective. Rev Neurosci 2024:revneuro-2024-0097. [PMID: 39733347 DOI: 10.1515/revneuro-2024-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/08/2024] [Indexed: 12/31/2024]
Abstract
Glioblastoma multiforme (GBM) is the most fatal brain tumor with a poor prognosis with current treatments, mainly because of intrinsic resistance processes. GBM is also referred to as grade 4 astrocytoma, that makes up about 15.4 % of brain cancers globally as well as 60-75 % of astrocytoma. The most prevalent therapeutic choices for GBM comprise surgery in combination with radiotherapy and chemotherapy, providing patients with an average survival of 6-14 months. Nanocarriers provide various benefits such as enhanced drug solubility, biocompatibility, targeted activity, as well as minimized side effects. In addition, GBM treatment comes with several challenges such as the presence of the blood-brain barrier (BBB), blood-brain tumor barrier (BBTB), overexpressed efflux pumps, infiltration, invasion, drug resistance, as well as immune escape due to tumor microenvironment (TME) and cancer stem cells (CSC). Recent research has focused on nanocarriers due to their ability to self-assemble, improve bioavailability, provide controlled release, and penetrate the BBB. These nano-based components could potentially enhance drug accumulation in brain tumor tissues and reduce systemic toxicity, making them a compelling solution for GBM therapy. This review captures the complexities associated with multi-functional nano drug delivery systems (NDDS) in crossing the blood-brain barrier (BBB) and targeting cancer cells. In addition, it presents a succinct overview of various types of targeted multi-functional nano drug delivery system (NDDS) which has exhibited promising value for improving drug delivery to the brain.
Collapse
Affiliation(s)
- Faezeh Firuzpour
- USERN Office, Babol University of Medical Sciences, 47176-41367, Babol, Iran
- Student Research Committee, Babol University of Medical Sciences, 47176-41367, Babol, Iran
| | - Kiarash Saleki
- USERN Office, Babol University of Medical Sciences, 47176-41367, Babol, Iran
- Student Research Committee, Babol University of Medical Sciences, 47176-41367, Babol, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
| | - Cena Aram
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- Department of Immunology, School of Medicine, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
| |
Collapse
|
2
|
Shimojukkoku Y, Nguyen PT, Ishihata K, Ishida T, Kajiya Y, Oku Y, Kawaguchi K, Tsuchiyama T, Saijo H, Shima K, Sasahira T. Role of early growth response-1 as a tumor suppressor in oral squamous cell carcinoma. Discov Oncol 2024; 15:714. [PMID: 39589658 PMCID: PMC11599674 DOI: 10.1007/s12672-024-01611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) exhibits pronounced local invasiveness and a propensity for lymph node metastasis. Given its frequent detection at advanced stages and the consequential postoperative functional impairments, the identification of effective molecular markers for early detection and treatment is imperative. Early growth response-1 (EGR-1) serves as a versatile transcription factor expressed across various cell types. Its role in cancer is contentious, acting as either an oncogene or a tumor suppressor gene. METHODS This study undertook comprehensive analyses, including big data scrutiny, expression profiling using 50 OSCC samples, and in vitro functional assessments, to elucidate EGR-1's involvement in OSCC. RESULTS Comparative analysis revealed significantly reduced EGR-1 expression in oral cancer tissues compared to healthy controls or normal oral mucosa. In vitro experimentation with multiple OSCC cell lines demonstrated that EGR-1 curbed cell proliferation, migration, and invasion capabilities. Additionally, it was observed that EGR-1 prompted G0/G1 arrest in OSCC cells by modulating the activity of cell cycle regulators. CONCLUSIONS These findings strongly support EGR-1's tumor-suppressive role in OSCC and hint at the potential for novel OSCC therapies aimed at restoring aberrant EGR-1 function.
Collapse
Affiliation(s)
- Yudai Shimojukkoku
- Department of Molecular Oral Pathology and Oncology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
- Department of Oral and Maxillofacial Surgery, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Phuong Thao Nguyen
- Department of Molecular Oral Pathology and Oncology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kiyohide Ishihata
- Department of Oral and Maxillofacial Surgery, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takayuki Ishida
- Department of Oral and Maxillofacial Surgery, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuka Kajiya
- Department of Molecular Oral Pathology and Oncology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yasunobu Oku
- Department of Molecular Oral Pathology and Oncology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Koshiro Kawaguchi
- Department of Molecular Oral Pathology and Oncology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takahiro Tsuchiyama
- Department of Molecular Oral Pathology and Oncology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
- Department of Maxillofacial Diagnostic and Surgical Science, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hideto Saijo
- Department of Oral and Maxillofacial Surgery, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kaori Shima
- Department of Molecular Oral Pathology and Oncology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Tomonori Sasahira
- Department of Molecular Oral Pathology and Oncology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan.
| |
Collapse
|
3
|
Oraee-Yazdani S, Akhlaghpasand M, Rostami F, Golmohammadi M, Tavanaei R, Shokri G, Hafizi M, Oraee-Yazdani M, Zali AR, Soleimani M. Case report: Stem cell-based suicide gene therapy mediated by the herpes simplex virus thymidine kinase gene reduces tumor progression in multifocal glioblastoma. Front Neurol 2023; 14:1060180. [PMID: 37034076 PMCID: PMC10075310 DOI: 10.3389/fneur.2023.1060180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction The prognosis for glioblastoma multiforme (GBM), a malignant brain tumor, is poor despite recent advancements in treatments. Suicide gene therapy is a therapeutic strategy for cancer that requires a gene to encode a prodrug-activating enzyme which is then transduced into a vector, such as mesenchymal stem cells (MSCs). The vector is then injected into the tumor tissue and exerts its antitumor effects. Case presentation A 37-year-old man presented to our department with two evident foci of glioblastoma multiforme at the left frontal and left parietal lobes. The patient received an injection of bone marrow-derived MSCs delivering the herpes simplex virus thymidine kinase (HSV-tk) gene to the frontal focus of the tumor, followed by ganciclovir administration as a prodrug for 14 days. For follow-up, the patient was periodically assessed using magnetic resonance imaging (MRI). The growth and recurrence patterns of the foci were assessed. After the injection on 09 February 2019, the patient's follow-up appointment on 19 December 2019 MRI revealed a recurrence of parietal focus. However, the frontal focus had a slight and unremarkable enhancement. On the last follow-up (18 March 2020), the left frontal focus had no prominent recurrence; however, the size of the left parietal focus increased and extended to the contralateral hemisphere through the corpus callosum. Eventually, the patient passed away on 16 July 2020 (progression-free survival (PFS) = 293 days, overall survival (OS) = 513 days). Conclusion The gliomatous focus (frontal) treated with bone marrow-derived MSCs carrying the HSV-TK gene had a different pattern of growth and recurrence compared with the non-treated one (parietal). Trial registration IRCT20200502047277N2. Registered 10 May 2020-Retrospectively registered, https://eng.irct.ir/trial/48110.
Collapse
Affiliation(s)
- Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Saeed Oraee-Yazdani
| | - Mohammadhosein Akhlaghpasand
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Rostami
- Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Golmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roozbeh Tavanaei
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Maryam Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali-Reza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
4
|
Yu S, Chen L, Xu H, Long S, Jiang J, Wei W, Niu X, Li X. Application of nanomaterials in diagnosis and treatment of glioblastoma. Front Chem 2022; 10:1063152. [PMID: 36569956 PMCID: PMC9780288 DOI: 10.3389/fchem.2022.1063152] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Diagnosing and treating glioblastoma patients is currently hindered by several obstacles, such as tumor heterogeneity, the blood-brain barrier, tumor complexity, drug efflux pumps, and tumor immune escape mechanisms. Combining multiple methods can increase benefits against these challenges. For example, nanomaterials can improve the curative effect of glioblastoma treatments, and the synergistic combination of different drugs can markedly reduce their side effects. In this review, we discuss the progression and main issues regarding glioblastoma diagnosis and treatment, the classification of nanomaterials, and the delivery mechanisms of nanomedicines. We also examine tumor targeting and promising nano-diagnosis or treatment principles based on nanomedicine. We also summarize the progress made on the advanced application of combined nanomaterial-based diagnosis and treatment tools and discuss their clinical prospects. This review aims to provide a better understanding of nano-drug combinations, nano-diagnosis, and treatment options for glioblastoma, as well as insights for developing new tools.
Collapse
Affiliation(s)
- Shuangqi Yu
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Lijie Chen
- China Medical University, Shenyang, Liaoning, China
| | - Hongyu Xu
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Shengrong Long
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Jiazhi Jiang
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,*Correspondence: Xiang Li, ; Xing Niu, ; Wei Wei,
| | - Xing Niu
- China Medical University, Shenyang, Liaoning, China,*Correspondence: Xiang Li, ; Xing Niu, ; Wei Wei,
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,*Correspondence: Xiang Li, ; Xing Niu, ; Wei Wei,
| |
Collapse
|
5
|
Cheng TM, Chu HY, Huang HM, Li ZL, Chen CY, Shih YJ, Whang-Peng J, Cheng RH, Mo JK, Lin HY, Wang K. Toxicologic Concerns with Current Medical Nanoparticles. Int J Mol Sci 2022; 23:7597. [PMID: 35886945 PMCID: PMC9322368 DOI: 10.3390/ijms23147597] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023] Open
Abstract
Nanotechnology is one of the scientific advances in technology. Nanoparticles (NPs) are small materials ranging from 1 to 100 nm. When the shape of the supplied nanoparticles changes, the physiological response of the cells can be very different. Several characteristics of NPs such as the composition, surface chemistry, surface charge, and shape are also important parameters affecting the toxicity of nanomaterials. This review covered specific topics that address the effects of NPs on nanomedicine. Furthermore, mechanisms of different types of nanomaterial-induced cytotoxicities were described. The distributions of different NPs in organs and their adverse effects were also emphasized. This review provides insight into the scientific community interested in nano(bio)technology, nanomedicine, and nanotoxicology. The content may also be of interest to a broad range of scientists.
Collapse
Affiliation(s)
- Tsai-Mu Cheng
- Graduate Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (T.-M.C.); (H.-Y.C.)
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsiu-Yi Chu
- Graduate Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (T.-M.C.); (H.-Y.C.)
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Zi-Lin Li
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (C.-Y.C.); (Y.-J.S.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chiang-Ying Chen
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (C.-Y.C.); (Y.-J.S.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Ya-Jung Shih
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (C.-Y.C.); (Y.-J.S.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | | | - R. Holland Cheng
- Department of Molecular & Cellular Biology, University of California, Davis, CA 95616, USA;
| | - Ju-Ku Mo
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Hung-Yun Lin
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Molecular & Cellular Biology, University of California, Davis, CA 95616, USA;
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (C.-Y.C.); (Y.-J.S.)
| |
Collapse
|
6
|
Khan I, Baig MH, Mahfooz S, Imran MA, Khan MI, Dong JJ, Cho JY, Hatiboglu MA. Nanomedicine for Glioblastoma: Progress and Future Prospects. Semin Cancer Biol 2022; 86:172-186. [PMID: 35760272 DOI: 10.1016/j.semcancer.2022.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
Glioblastoma is the most aggressive form of brain tumor, accounting for the highest mortality and morbidity rates. Current treatment for patients with glioblastoma includes maximal safe tumor resection followed by radiation therapy with concomitant temozolomide (TMZ) chemotherapy. The addition of TMZ to the conformal radiation therapy has improved the median survival time only from 12 months to 16 months in patients with glioblastoma. Despite these aggressive treatment strategies, patients' prognosis remains poor. This therapeutic failure is primarily attributed to the blood-brain barrier (BBB) that restricts the transport of TMZ from reaching the tumor site. In recent years, nanomedicine has gained considerable attention among researchers and shown promising developments in clinical applications, including the diagnosis, prognosis, and treatment of glioblastoma tumors. This review sheds light on the morphological and physiological complexity of the BBB. It also explains the development of nanomedicine strategies to enhance the permeability of drug molecules across the BBB.
Collapse
Affiliation(s)
- Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, Istanbul, Turkey
| | - Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, Istanbul, Turkey
| | - Mohammad Azhar Imran
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Mohd Imran Khan
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Jae Yong Cho
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea.
| | - Mustafa Aziz Hatiboglu
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, Istanbul, Turkey; Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey.
| |
Collapse
|
7
|
Mahmoud AB, Ajina R, Aref S, Darwish M, Alsayb M, Taher M, AlSharif SA, Hashem AM, Alkayyal AA. Advances in immunotherapy for glioblastoma multiforme. Front Immunol 2022; 13:944452. [PMID: 36311781 PMCID: PMC9597698 DOI: 10.3389/fimmu.2022.944452] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/23/2022] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant brain tumor of the central nervous system and has a very poor prognosis. The current standard of care for patients with GBM involves surgical resection, radiotherapy, and chemotherapy. Unfortunately, conventional therapies have not resulted in significant improvements in the survival outcomes of patients with GBM; therefore, the overall mortality rate remains high. Immunotherapy is a type of cancer treatment that helps the immune system to fight cancer and has shown success in different types of aggressive cancers. Recently, healthcare providers have been actively investigating various immunotherapeutic approaches to treat GBM. We reviewed the most promising immunotherapy candidates for glioblastoma that have achieved encouraging results in clinical trials, focusing on immune checkpoint inhibitors, oncolytic viruses, nonreplicating viral vectors, and chimeric antigen receptor (CAR) immunotherapies.
Collapse
Affiliation(s)
- Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Almadinah Almunwarah, Saudi Arabia
- Strategic Research and Innovation Laboratories, Taibah University, Almadinah Almunwarah, Saudi Arabia
- King Abdullah International Medical Research Centre, King Saud University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- *Correspondence: Ahmad Bakur Mahmoud, ; Almohanad A. Alkayyal,
| | - Reham Ajina
- King Abdullah International Medical Research Centre, King Saud University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Sarah Aref
- King Abdullah International Medical Research Centre, King Saud University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Manar Darwish
- Strategic Research and Innovation Laboratories, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - May Alsayb
- College of Applied Medical Sciences, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Mustafa Taher
- College of Applied Medical Sciences, Taibah University, Almadinah Almunwarah, Saudi Arabia
- Strategic Research and Innovation Laboratories, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Shaker A. AlSharif
- King Fahad Hospital, Ministry of Health, Almadinah Almunwarah, Saudi Arabia
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center; King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Almohanad A. Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
- Immunology Research Program, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- *Correspondence: Ahmad Bakur Mahmoud, ; Almohanad A. Alkayyal,
| |
Collapse
|
8
|
Ding G, Wang T, Han Z, Tian L, Cheng Q, Luo L, Zhao B, Wang C, Feng S, Wang L, Meng Z, Meng Q. Substance P containing peptide gene delivery vectors for specifically transfecting glioma cells mediated by a neurokinin-1 receptor. J Mater Chem B 2021; 9:6347-6356. [PMID: 34251002 DOI: 10.1039/d1tb00577d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gene therapy provides a promising treatment for glioblastoma multiforme, which mainly depends on two key aspects, crossing the blood brain barrier (BBB) effectively and transfecting target cells selectively. In this work, we reported a series of peptide-based vectors for transfecting glioma cells specifically consisting of several functional segments including a cell-penetrating peptide, targeting segment substance P (SP), an endosomal escape segment, a PEG linker and a stearyl moiety. The conformations and DNA-loading capacities of peptide vectors and the self-assembly behaviors of peptide/pGL3 complexes were characterized. The in vitro gene transfection was evaluated in U87, 293T-NK1R, and normal 293T cell lines. The transfection efficiency ratio of P-02 (SP-PEG4-K(C18)-(LLHH)3-R9) to Lipo2000 in the U87 cell line was about 36% higher than that in the 293T cell line. The neurokinin-1 receptor (NK1R) in U87 cells mediated the transfection process via interactions with the ligand SP in peptide vectors. The mechanism of NK1R mediated transfection was demonstrated by the use of gene-modified 293T cells expressing NK1R, as well as the gene transfection in the presence of free SP. Besides, P-02 could promote the pGL3 plasmids to cross the BBB model in vitro and achieved the EGFP gene transfection in the brain of zebrafish successfully. The designed peptide vectors, owing to their specific transfection capacity in glioma cells, provide a potential approach for glioblastoma multiforme gene therapy.
Collapse
Affiliation(s)
- Guihua Ding
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Intracerebral Administration of Autologous Mesenchymal Stem Cells as HSV-TK Gene Vehicle for Treatment of Glioblastoma Multiform: Safety and Feasibility Assessment. Mol Neurobiol 2021; 58:4425-4436. [PMID: 34021868 DOI: 10.1007/s12035-021-02393-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Widespread investigation has revealed the promising ability of suicidal genes in the treatment of glioma tumors; nevertheless, promoting their effects relies on the ability to apply suitable vehicles and techniques. In this study, the safety and feasibility of using bone marrow-derived mesenchymal stem cells (MSCs) in combination with prodrug for treatment of patients with primary and secondary glioblastoma multiform (GBM) was assessed. Five GBM patients were recruited. Following gross total resection of the tumor and adjuvant radiotherapy and chemotherapy, intracerebral injection of autologous MSCs transduced with lentivirus containing herpes simplex virus thymidine kinase (HSV-TK) was performed followed by intravenous administration of ganciclovir for 2 weeks. The treatment was well tolerated by all patients. Mild-to-moderate fever, headache, and cerebrospinal fluid leukocytosis were evident in three, two, and one patient, respectively. The progression-free survival (PFS) and overall survival (OS) of patients were 95.79 ± 51.40 and 128.85 ± 48.81 weeks, respectively. The 1-year PFS and OS were 60% and 100%, respectively, among our patients, and two patients had more than 3 years of OS and more than 2 years of PFS. It seems that intracerebral administration of bone marrow MSC containing the HSV-TK gene in combination with intravenous ganciclovir would be safe and feasible in the treatment of patients with GBM.
Collapse
|
10
|
Wang T, Meng Z, Kang Z, Ding G, Zhao B, Han Z, Zheng Z, Wang C, Meng Q. Peptide Gene Delivery Vectors for Specific Transfection of Glioma Cells. ACS Biomater Sci Eng 2020; 6:6778-6789. [DOI: 10.1021/acsbiomaterials.0c01336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Taoran Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Ziyao Kang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Guihua Ding
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Zhenbin Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Zhibing Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Chenhong Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| |
Collapse
|
11
|
Taiarol L, Formicola B, Magro RD, Sesana S, Re F. An update of nanoparticle-based approaches for glioblastoma multiforme immunotherapy. Nanomedicine (Lond) 2020; 15:1861-1871. [PMID: 32731839 DOI: 10.2217/nnm-2020-0132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme is a serious medical issue in the brain oncology field due to its aggressiveness and recurrence. Immunotherapy has emerged as a valid approach to counteract the growth and metastasization of glioblastoma multiforme. Among the different innovative approaches investigated, nanoparticles gain attention because of their versatility which is key in allowing precise targeting of brain tumors and increasing targeted drug delivery to the brain, thus minimizing adverse effects. This article reviews the progress made in this field over the past 2 years, focusing on nonspherical and biomimetic particles and on vectors for the delivery of nucleic acids. However, challenges still need to be addressed, considering the improvement of the particles passage across the blood-meningeal barrier and/or the blood-brain barrier, promoting the clinical translatability of these approaches.
Collapse
Affiliation(s)
- Lorenzo Taiarol
- School of Medicine & Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, 20900, Italy
| | - Beatrice Formicola
- School of Medicine & Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, 20900, Italy
| | - Roberta Dal Magro
- School of Medicine & Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, 20900, Italy
| | - Silvia Sesana
- School of Medicine & Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, 20900, Italy
| | - Francesca Re
- School of Medicine & Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, 20900, Italy
| |
Collapse
|
12
|
Lukas RV, Wainwright DA, Horbinski CM, Iwamoto FM, Sonabend AM. Immunotherapy Against Gliomas: is the Breakthrough Near? Drugs 2019; 79:1839-1848. [PMID: 31598900 PMCID: PMC6868342 DOI: 10.1007/s40265-019-01203-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapeutic approaches have been, and continue to be, aggressively investigated in the treatment of infiltrating gliomas. While the results of late-phase clinical studies have been disappointing in this disease space thus far, the success of immunotherapies in other malignancies as well as the incremental gains in our understanding of immune-tumour interactions in gliomas has fuelled a strong continued interest of their evaluation in these tumours. We discuss a range of immunotherapeutic approaches including, but not limited to, vaccines, checkpoint inhibitors, oncolytic viruses, and gene therapies. Potential biomarkers under investigation to help elucidate which patients may respond or not respond to immunotherapeutic regimens are reviewed. Directions for future investigations are also noted.
Collapse
Affiliation(s)
- Rimas V Lukas
- Department of Neurology, Northwestern University, 710 N. Lake Shore Drive, Abbott Hall 1114, Chicago, IL, 60611, USA.
- Lou & Jean Malnati Brain Tumor Institute at the Lurie Comprehensive Cancer Center, Northwestern University, Chicago, USA.
| | - Derek A Wainwright
- Lou & Jean Malnati Brain Tumor Institute at the Lurie Comprehensive Cancer Center, Northwestern University, Chicago, USA
- Department of Neurological Surgery, Northwestern University, Chicago, USA
- Department of Microbiology-Immunology, Northwestern University, Chicago, USA
- Department of Medicine-Hematology/Oncology, Northwestern University, Chicago, USA
| | - Craig M Horbinski
- Lou & Jean Malnati Brain Tumor Institute at the Lurie Comprehensive Cancer Center, Northwestern University, Chicago, USA
- Department of Neurological Surgery, Northwestern University, Chicago, USA
- Department of Pathology, Northwestern University, Chicago, USA
| | | | - Adam M Sonabend
- Lou & Jean Malnati Brain Tumor Institute at the Lurie Comprehensive Cancer Center, Northwestern University, Chicago, USA
- Department of Neurological Surgery, Northwestern University, Chicago, USA
| |
Collapse
|
13
|
Cloughesy TF, Landolfi J, Vogelbaum MA, Ostertag D, Elder JB, Bloomfield S, Carter B, Chen CC, Kalkanis SN, Kesari S, Lai A, Lee IY, Liau LM, Mikkelsen T, Nghiemphu P, Piccioni D, Accomando W, Diago OR, Hogan DJ, Gammon D, Kasahara N, Kheoh T, Jolly DJ, Gruber HE, Das A, Walbert T. Durable complete responses in some recurrent high-grade glioma patients treated with Toca 511 + Toca FC. Neuro Oncol 2019; 20:1383-1392. [PMID: 29762717 DOI: 10.1093/neuonc/noy075] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Vocimagene amiretrorepvec (Toca 511) is an investigational gamma-retroviral replicating vector encoding cytosine deaminase that, when used in combination with extended-release 5-fluorocytosine (Toca FC), results preclinically in local production of 5-fluorouracil, depletion of immune-suppressive myeloid cells, and subsequent induction of antitumor immunity. Recurrent high-grade glioma (rHGG) patients have a high unmet need for effective therapies that produce durable responses lasting more than 6 months. In this setting, relapse is nearly universal and most responses are transient. Methods In this Toca 511 ascending-dose phase I trial (NCT01470794), HGG patients who recurred after standard of care underwent surgical resection and received Toca 511 injected into the resection cavity wall, followed by orally administered cycles of Toca FC. Results Among 56 patients, durable complete responses were observed. A subgroup was identified based on Toca 511 dose and entry requirements for the follow-up phase III study. In this subgroup, which included both isocitrate dehydrogenase 1 (IDH1) mutant and wild-type tumors, the durable response rate is 21.7%. Median duration of follow-up for responders is 35.7+ months. As of August 25, 2017, all responders remain in response and are alive 33.9+ to 52.2+ months after Toca 511 administration, suggesting a positive association of durable response with overall survival. Conclusions Multiyear durable responses have been observed in rHGG patients treated with Toca 511 + Toca FC in a phase I trial, and the treatment will be further evaluated in a randomized phase III trial. Among IDH1 mutant patients treated at first recurrence, there may be an enrichment of complete responders.
Collapse
Affiliation(s)
- Timothy F Cloughesy
- Departments of Neuro-Oncology and Neurosurgery, University of California, Los Angeles, California
| | - Joseph Landolfi
- New Jersey Neuroscience Institute, JFK Brain Tumor Center, Edison, New Jersey
| | | | | | - James B Elder
- Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Stephen Bloomfield
- New Jersey Neuroscience Institute, JFK Brain Tumor Center, Edison, New Jersey
| | - Bob Carter
- Moores Cancer Center, Department of Neurosciences, University of California, San Diego, California
| | - Clark C Chen
- Moores Cancer Center, Department of Neurosciences, University of California, San Diego, California
| | | | - Santosh Kesari
- Moores Cancer Center, Department of Neurosciences, University of California, San Diego, California
| | - Albert Lai
- Departments of Neuro-Oncology and Neurosurgery, University of California, Los Angeles, California
| | - Ian Y Lee
- Henry Ford Hospital, Detroit, Michigan
| | - Linda M Liau
- Departments of Neuro-Oncology and Neurosurgery, University of California, Los Angeles, California
| | | | - Phioanh Nghiemphu
- Departments of Neuro-Oncology and Neurosurgery, University of California, Los Angeles, California
| | - David Piccioni
- Moores Cancer Center, Department of Neurosciences, University of California, San Diego, California
| | | | | | | | | | - Noriyuki Kasahara
- Tocagen Inc., San Diego, California.,Departments of Cell Biology and Pathology, University of Miami, UM
| | | | | | | | - Asha Das
- Tocagen Inc., San Diego, California
| | | |
Collapse
|
14
|
Novel Semi-Replicative Retroviral Vector Mediated Double Suicide Gene Transfer Enhances Antitumor Effects in Patient-Derived Glioblastoma Models. Cancers (Basel) 2019; 11:cancers11081090. [PMID: 31370279 PMCID: PMC6721803 DOI: 10.3390/cancers11081090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/12/2019] [Accepted: 07/30/2019] [Indexed: 01/10/2023] Open
Abstract
As glioblastomas are mostly localized infiltrative lesions, gene therapy based on the retroviral replicating vector (RRV) system is considered an attractive strategy. Combinations of multiple suicide genes can circumvent the limitations associated with each gene, achieving direct and synergistic cytotoxic effects, along with bystander cell killing. In this study, we constructed a semi-and pseudotyped-RRV (sp-RRV) system harboring two suicide genes—herpes simplex virus type 1 thymidine kinase (TK) and yeast cytosine deaminase (CD)—to verify the dissemination and antitumor efficacy of our sp-RRV system (spRRVe-sEF1α-TK/sRRVgp-sEF1α-CD) in seven patient-derived glioblastoma stem-like cells (GSCs). Flow cytometry and high-content analysis revealed a wide range of transduction efficiency and good correlation between the delivery of therapeutic genes and susceptibility to the prodrugs ganciclovir and 5-fluorocytosine in patient-derived GSCs in vitro. Intra-tumoral delivery of spRRVe-sEF1α-TK/sRRVgp-sEF1α-CD, combined with prodrug treatment, synergistically inhibited cell proliferation and angiogenesis while increasing apoptosis and the depletion of tumor-associated macrophages in orthotopic glioblastoma xenografts. Genomic profiling of patient-derived GSCs revealed that the key genes preventing sp-RRV infection and transmission were associated with cell adhesion, migration, development, differentiation, and proliferation. This is the first report demonstrating that a novel sp-RRV-mediated TK/CD double suicide gene transfer system has high oncolytic power against extremely heterogeneous and treatment-refractory glioblastomas.
Collapse
|
15
|
Manikandan C, Kaushik A, Sen D. Viral vector: potential therapeutic for glioblastoma multiforme. Cancer Gene Ther 2019; 27:270-279. [PMID: 31316136 DOI: 10.1038/s41417-019-0124-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/29/2019] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme is a highly malignant primary brain tumour found in adults and is highlighted as the most devastating among all the other grades of glioma. Well-established standard treatment methods, such as chemotherapy, radiation and surgery, have resulted in modest improvement in the survival of patients. Hence, the arduous search for novel treatments backed by advancements in molecular biology still persists. Glioblastoma has many distinctive characteristics, which makes it a potential candidate for gene therapy. Gene therapy involves the delivery of genetic material of therapeutic use into tumour cells, which produces a specific antitumour response. Moreover, viruses stimulate a vigorous cytotoxic effect, they are easily modifiable and the inherent property of horizontal transfer of genetic material makes them valuable tools for genetic engineering. In this review, we have enlisted the various viral vectors employed in gene therapy for glioblastoma.
Collapse
Affiliation(s)
- Ceera Manikandan
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT) University, Vellore, Tamil Nadu, 632014, India
| | - Akshita Kaushik
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT) University, Vellore, Tamil Nadu, 632014, India
| | - Dwaipayan Sen
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT) University, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
16
|
Abstract
The delivery of anticancer agents via passive approaches such as the enhanced permeability and retention effect is unlikely to achieve sufficient concentrations throughout the tumor volume for effective treatment. Cell-based delivery approaches using tumor tropic cells have the potential to overcome the limitations of passive approaches. Specifically, this review focuses on the use of monocytes/macrophages for the delivery of a variety of anticancer agents, including nanoparticles, chemotherapeutics and gene constructs. The efficacy of this delivery approach, both as monotherapy and in combination with light-based phototherapy modalities, has been demonstrated in numerous in vitro and animal studies, however, its clinical potential remains to be determined.
Collapse
|
17
|
Zhang Q, Xiang W, Yi DY, Xue BZ, Wen WW, Abdelmaksoud A, Xiong NX, Jiang XB, Zhao HY, Fu P. Current status and potential challenges of mesenchymal stem cell-based therapy for malignant gliomas. Stem Cell Res Ther 2018; 9:228. [PMID: 30143053 PMCID: PMC6109313 DOI: 10.1186/s13287-018-0977-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Glioma, which accounts for more than 30% of primary central nervous system tumours, is characterised by symptoms such as headaches, epilepsy, and blurred vision. Glioblastoma multiforme is the most aggressive, malignant, and lethal brain tumour in adults. Even with progressive combination treatment with surgery, radiotherapy, and chemotherapy, the prognosis for glioma patients is still extremely poor. Compared with the poor outcome and slowly developing technologies for surgery and radiotherapy, the application of targeted chemotherapy with a new mechanism has become a research focus in this field. Moreover, targeted therapy is promising for most solid tumours. The tumour-tropic ability of stem cells, including neural stem cells and mesenchymal stem cells, provides an alternative therapeutic approach. Thus, mesenchymal stem cell-based therapy is based on a tumour-selective capacity and has been thought to be an effective anti-tumour option over the past decades. An increasing number of basic studies on mesenchymal stem cell-based therapy for gliomas has yielded complex outcomes. In this review, we summarise the biological characteristics of human mesenchymal stem cells, and the current status and potential challenges of mesenchymal stem cell-based therapy in patients with malignant gliomas.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China
| | - Wei Xiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China
| | - Dong-Ye Yi
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China
| | - Bing-Zhou Xue
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China
| | - Wan-Wan Wen
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2, Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Ahmed Abdelmaksoud
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China
| | - Nan-Xiang Xiong
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China
| | - Xiao-Bing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China
| | - Hong-Yang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
18
|
Li Z, Yu XF, Chu PK. Recent advances in cell-mediated nanomaterial delivery systems for photothermal therapy. J Mater Chem B 2018; 6:1296-1311. [DOI: 10.1039/c7tb03166a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell-mediated “Trojan Horse” delivery vehicles overcome the drug delivery barriers to transport nano-agents enhancing the efficiency of photothermal therapy.
Collapse
Affiliation(s)
- Zhibin Li
- Department of Physics and Department of Materials Science and Engineering
- City University of Hong Kong
- Kowloon
- China
- Center for Biomedical Materials and Interfaces
| | - Xue-Feng Yu
- Center for Biomedical Materials and Interfaces
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
- P. R. China
| | - Paul K. Chu
- Department of Physics and Department of Materials Science and Engineering
- City University of Hong Kong
- Kowloon
- China
| |
Collapse
|