1
|
Pan J, Wang Y, Huang S, Mao S, Ling Q, Li C, Li F, Yu M, Huang X, Huang J, Lv Y, Li X, Ye W, Wang H, Wang J, Jin J. High expression of BCAT1 sensitizes AML cells to PARP inhibitor by suppressing DNA damage response. J Mol Med (Berl) 2024; 102:415-433. [PMID: 38340163 DOI: 10.1007/s00109-023-02409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 02/12/2024]
Abstract
Previous evidence has confirmed that branched-chain aminotransferase-1 (BCAT1), a key enzyme governing branched-chain amino acid (BCAA) metabolism, has a role in cancer aggression partly by restricting αKG levels and inhibiting the activities of the αKG-dependent enzyme family. The oncogenic role of BCAT1, however, was not fully elucidated in acute myeloid leukemia (AML). In this study, we investigated the clinical significance and biological insight of BCAT1 in AML. Using q-PCR, we analyzed BCAT1 mRNAs in bone marrow samples from 332 patients with newly diagnosed AML. High BCAT1 expression independently predicts poor prognosis in patients with AML. We also established BCAT1 knockout (KO)/over-expressing (OE) AML cell lines to explore the underlying mechanisms. We found that BCAT1 affects cell proliferation and modulates cell cycle, cell apoptosis, and DNA damage/repair process. Additionally, we demonstrated that BCAT1 regulates histone methylation by reducing intracellular αKG levels in AML cells. Moreover, high expression of BCAT1 enhances the sensitivity of AML cells to the Poly (ADP-ribose) polymerase (PARP) inhibitor both in vivo and in vitro. Our study has demonstrated that BCAT1 expression can serve as a reliable predictor for AML patients, and PARP inhibitor BMN673 can be used as an effective treatment strategy for patients with high BCAT1 expression. KEY MESSAGES: High expression of BCAT1 is an independent risk factor for poor prognosis in patients with CN-AML. High BCAT1 expression in AML limits intracellular αKG levels, impairs αKG-dependent histone demethylase activity, and upregulates H3K9me3 levels. H3K9me3 inhibits ATM expression and blocks cellular DNA damage repair process. Increased sensitivity of BCAT1 high expression AML to PARP inhibitors may be used as an effective treatment strategy in AML patients.
Collapse
Affiliation(s)
- Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Yungui Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Shujuan Huang
- Department of Hematology, the First Affiliated Hospital of University of Science and Technology of China, Anhui, Hefei, China
| | - Shihui Mao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Qing Ling
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Chenying Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Fenglin Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Mengxia Yu
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Yunfei Lv
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Xia Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Yu X, Wang Y, Tan J, Li Y, Yang P, Liu X, Lai J, Zhang Y, Cai L, Gu Y, Xu L, Li Y. Inhibition of NRF2 enhances the acute myeloid leukemia cell death induced by venetoclax via the ferroptosis pathway. Cell Death Discov 2024; 10:35. [PMID: 38238299 PMCID: PMC10796764 DOI: 10.1038/s41420-024-01800-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
Venetoclax, an inhibitor that selectively targets B cell lymphoma-2 (BCL-2) that has been approved for treating adult acute myeloid leukemia (AML) in combination with hypomethylating agents. However, its short duration of response and emergence of resistance are significant issues. In this study, we found that the sensitivity of AML cells to venetoclax was considerably enhanced by ML385, an inhibitor of the ferroptosis factor nuclear transcription factor erythroid 2-related factor 2 (NRF2). Using AML samples, we verified that NRF2 and its target gene ferritin heavy chain 1 (FTH1) were highly expressed in patients with AML and correlated with poor prognosis. Downregulation of NRF2 could inhibit FTH1 expression and significantly enhance the venetoclax-induced labile iron pool and lipid peroxidation. By contrast, NRF2 overexpression or administration of the reactive oxygen species inhibitor N-acetylcysteine and vitamin E could effectively suppress the anti-AML effects of ML385+venetoclax. Furthermore, the ferroptosis inducer erastin increased the anti-AML effects of venetoclax. Our study demonstrated that NRF2 inhibition could enhance the AML cell death induced by venetoclax via the ferroptosis pathway. Thus, the combination of ML385 with venetoclax may offer a favorable strategy for AML treatment.
Collapse
Affiliation(s)
- Xibao Yu
- The First Affiliated Hospital and Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
- Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou, 510663, China
| | - Yan Wang
- The First Affiliated Hospital and Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Jiaxiong Tan
- The First Affiliated Hospital and Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention & Therapy of Tianjin, Tianjin, 300060, China
| | - Yuchen Li
- The First Affiliated Hospital and Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Pengyue Yang
- The First Affiliated Hospital and Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Xuan Liu
- The First Affiliated Hospital and Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Jing Lai
- The First Affiliated Hospital and Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yue Zhang
- The First Affiliated Hospital and Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Letong Cai
- The First Affiliated Hospital and Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Yinfeng Gu
- The First Affiliated Hospital and Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Ling Xu
- The First Affiliated Hospital and Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.
| | - Yangqiu Li
- The First Affiliated Hospital and Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
3
|
Niu ZX, Wang YT, Sun JF, Nie P, Herdewijn P. Recent advance of clinically approved small-molecule drugs for the treatment of myeloid leukemia. Eur J Med Chem 2023; 261:115827. [PMID: 37757658 DOI: 10.1016/j.ejmech.2023.115827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Myeloid leukemia denotes a hematologic malignancy characterized by aberrant proliferation and impaired differentiation of blood progenitor cells within the bone marrow. Despite the availability of several treatment options, the clinical outlook for individuals afflicted with myeloid leukemia continues to be unfavorable, making it a challenging disease to manage. Over the past, substantial endeavors have been dedicated to the identification of novel targets and the advancement of enhanced therapeutic modalities to ameliorate the management of this disease, resulting in the discovery of many clinically approved small-molecule drugs for myeloid leukemia, including histone deacetylase inhibitors, hypomethylating agents, and tyrosine kinase inhibitors. This comprehensive review succinctly presents an up-to-date assessment of the application and synthetic routes of clinically sanctioned small-molecule drugs employed in the treatment of myeloid leukemia. Additionally, it provides a concise exploration of the pertinent challenges and prospects encompassing drug resistance and toxicity. Overall, this review effectively underscores the considerable promise exhibited by clinically endorsed small-molecule drugs in the therapeutic realm of myeloid leukemia, while concurrently shedding light on the prospective avenues that may shape the future landscape of drug development within this domain.
Collapse
Affiliation(s)
- Zhen-Xi Niu
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Ya-Tao Wang
- First People's Hospital of Shangqiu, Henan Province, Shangqiu, 476100, China; Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| | - Jin-Feng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin, 133002, China.
| | - Peng Nie
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| | - Piet Herdewijn
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| |
Collapse
|
4
|
Khani-Eshratabadi M, Mousavi SH, Zarrabi M, Motallebzadeh Khanmiri J, Zeinali Bardar Z. Human Umbilical Cord Mesenchymal Stem Cell-Derived Microvesicles Could Induce Apoptosis and Autophagy in Acute Myeloid Leukemia. IRANIAN BIOMEDICAL JOURNAL 2023; 27:247-56. [PMID: 37873637 PMCID: PMC10707811 DOI: 10.61186/ibj.27.5.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/31/2023] [Indexed: 12/17/2023]
Abstract
Background Microvesicles (MV) have been identified as candidate biomarkers for treating acute myeloid leukemia (AML). This study investigated the effects of human umbilical cord-derived mesenchymal stem cell (hUCMSC)-derived MVs on apoptosis and autophagy in the KG-1 leukemic cell line. Methods The hUCMSCs were cultured and characterized by flow cytometry. MVs were isolated by ultracentrifugation, and the concentration was determined using the Bradford method. The characteristics of MVs were confirmed using transmission electron microscopy, flow cytometry, and dynamic light scattering methods. KG-1 cells were treated with the desired concentrations of MVs for 24 h. The apoptosis induction and reactive oxygen species production were evaluated using flow cytometry. RT-PCR was performed to evaluate apoptosis- and autophagy-related genes expression. Results Following tretment of KG-1 cells with 25, 50, and 100 μg/ml concentrations of MVs, the apoptosis rates were 47.85%, 47.15%, and 51.35% (p < 0.0001), and the autophagy-induced ROS levels were 73.9% (p < 0.0002), 84.8% (p < 0.0001), and 85.4% (p < 0.0001), respectively. BAX and ATG7 gene expression increased significantly at all concentrations compared to the control, and this level was higher at 50 μg/ml than that of the other concentrations. In addition, LC3 and Beclin 1 expression increased significantly in a concentration-dependen manner. Conversely, BCL2 expression decreased compared to the control. Conclusion Our findings indicate that hUCMSC-MVs could induce cell death pathways of autophagy and apoptosis in the KG-1 cell lines and exert potent antiproliferative and proapoptotic effects on KG-1 cells in vitro. Therefore, hUCMSC-MVs may be a potential approach for cancer therapy as a novel cell-to-cell communication strategy.
Collapse
Affiliation(s)
- Mohammad Khani-Eshratabadi
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
- Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hadi Mousavi
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Zarrabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Jamal Motallebzadeh Khanmiri
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zeinali Bardar
- Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Glytsou C, Chen X, Zacharioudakis E, Al-Santli W, Zhou H, Nadorp B, Lee S, Lasry A, Sun Z, Papaioannou D, Cammer M, Wang K, Zal T, Zal MA, Carter BZ, Ishizawa J, Tibes R, Tsirigos A, Andreeff M, Gavathiotis E, Aifantis I. Mitophagy Promotes Resistance to BH3 Mimetics in Acute Myeloid Leukemia. Cancer Discov 2023; 13:1656-1677. [PMID: 37088914 PMCID: PMC10330144 DOI: 10.1158/2159-8290.cd-22-0601] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/30/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023]
Abstract
BH3 mimetics are used as an efficient strategy to induce cell death in several blood malignancies, including acute myeloid leukemia (AML). Venetoclax, a potent BCL-2 antagonist, is used clinically in combination with hypomethylating agents for the treatment of AML. Moreover, MCL1 or dual BCL-2/BCL-xL antagonists are under investigation. Yet, resistance to single or combinatorial BH3-mimetic therapies eventually ensues. Integration of multiple genome-wide CRISPR/Cas9 screens revealed that loss of mitophagy modulators sensitizes AML cells to various BH3 mimetics targeting different BCL-2 family members. One such regulator is MFN2, whose protein levels positively correlate with drug resistance in patients with AML. MFN2 overexpression is sufficient to drive resistance to BH3 mimetics in AML. Insensitivity to BH3 mimetics is accompanied by enhanced mitochondria-endoplasmic reticulum interactions and augmented mitophagy flux, which acts as a prosurvival mechanism to eliminate mitochondrial damage. Genetic or pharmacologic MFN2 targeting synergizes with BH3 mimetics by impairing mitochondrial clearance and enhancing apoptosis in AML. SIGNIFICANCE AML remains one of the most difficult-to-treat blood cancers. BH3 mimetics represent a promising therapeutic approach to eliminate AML blasts by activating the apoptotic pathway. Enhanced mitochondrial clearance drives resistance to BH3 mimetics and predicts poor prognosis. Reverting excessive mitophagy can halt BH3-mimetic resistance in AML. This article is highlighted in the In This Issue feature, p. 1501.
Collapse
Affiliation(s)
- Christina Glytsou
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pediatrics, Robert Wood Johnson Medical School, and Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Xufeng Chen
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Emmanouil Zacharioudakis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wafa Al-Santli
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hua Zhou
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Bettina Nadorp
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Soobeom Lee
- Department of Biology, New York University, New York, NY 10003, USA
| | - Audrey Lasry
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Zhengxi Sun
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitrios Papaioannou
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Michael Cammer
- Microscopy Core, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kun Wang
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tomasz Zal
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Malgorzata Anna Zal
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bing Z. Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jo Ishizawa
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Aristotelis Tsirigos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Iannis Aifantis
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
6
|
Boscaro E, Urbino I, Catania FM, Arrigo G, Secreto C, Olivi M, D'Ardia S, Frairia C, Giai V, Freilone R, Ferrero D, Audisio E, Cerrano M. Modern Risk Stratification of Acute Myeloid Leukemia in 2023: Integrating Established and Emerging Prognostic Factors. Cancers (Basel) 2023; 15:3512. [PMID: 37444622 DOI: 10.3390/cancers15133512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
An accurate estimation of AML prognosis is complex since it depends on patient-related factors, AML manifestations at diagnosis, and disease genetics. Furthermore, the depth of response, evaluated using the level of MRD, has been established as a strong prognostic factor in several AML subgroups. In recent years, this rapidly evolving field has made the prognostic evaluation of AML more challenging. Traditional prognostic factors, established in cohorts of patients treated with standard intensive chemotherapy, are becoming less accurate as new effective therapies are emerging. The widespread availability of next-generation sequencing platforms has improved our knowledge of AML biology and, consequently, the recent ELN 2022 recommendations significantly expanded the role of new gene mutations. However, the impact of rare co-mutational patterns remains to be fully disclosed, and large international consortia such as the HARMONY project will hopefully be instrumental to this aim. Moreover, accumulating evidence suggests that clonal architecture plays a significant prognostic role. The integration of clinical, cytogenetic, and molecular factors is essential, but hierarchical methods are reaching their limit. Thus, innovative approaches are being extensively explored, including those based on "knowledge banks". Indeed, more robust prognostic estimations can be obtained by matching each patient's genomic and clinical data with the ones derived from very large cohorts, but further improvements are needed.
Collapse
Affiliation(s)
- Eleonora Boscaro
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Irene Urbino
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Federica Maria Catania
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Giulia Arrigo
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Carolina Secreto
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Matteo Olivi
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Stefano D'Ardia
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Chiara Frairia
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Valentina Giai
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Roberto Freilone
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Dario Ferrero
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy
| | - Ernesta Audisio
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Marco Cerrano
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| |
Collapse
|
7
|
Cerrano M, Chevret S, Raffoux E, Rabian F, Sébert M, Valade S, Itzykson R, Lemiale V, Adès L, Boissel N, Dombret H, Azoulay E, Lengliné E. Benefits of dexamethasone on early outcomes in patients with acute myeloid leukemia with hyperleukocytosis: a propensity score matched analysis. Ann Hematol 2023; 102:761-768. [PMID: 36773040 PMCID: PMC9919741 DOI: 10.1007/s00277-023-05119-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
Hyperleukocytosis is associated with a significant early mortality rate in patients with acute myeloid leukemia (AML). To date, no controlled trial has ever evaluated a strategy to reduce this risk, and the initial management of these patients remains heterogeneous worldwide. The aim of the present study was to evaluate the influence of a short course of intravenous dexamethasone on the early outcomes of patients with hyperleukocytic AML with white blood cell (WBC) count above 50 × 109/L. Clinical and biological data of all consecutive patients (1997-2017) eligible for intensive chemotherapy from a single center were retrospectively collected. A total of 251 patients with a median age of 51 years and a median WBC count of 120 × 109/L were included, 95 of whom received dexamethasone. Patients treated with dexamethasone had higher WBC count and a more severe disease compared with those who did not, and they presented more often with leukostasis and hypoxemia, resulting in a more frequent need for life-sustaining therapies (p < 0.001). To account for these imbalances, patients were compared after adjusting for a propensity score, which included all variables with a prognostic influence in the overall cohort. In the matched cohort, dexamethasone was associated with lower early death (OR = 0.34, p = 0.0026) and induction failure rate (OR = 0.44, p = 0.02) and better overall survival (HR = 0.60, p = 0.011), with no impact on relapse risk (cHR = 0.73, p = 0.39). The overall survival benefit was confirmed among all tested subgroups. This study suggests that dexamethasone administration is safe and associated with a lower risk of induction mortality in patients with hyperleukocytic AML and deserves prospective evaluation.
Collapse
Affiliation(s)
- Marco Cerrano
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, 1 Avenue Claude Vellefaux 75010, Paris, France.,Department of Oncology, Division of Haematology, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Sylvie Chevret
- Service de Biostatistique Et Information Médicale, Hôpital Saint-Louis, Paris, France
| | - Emmanuel Raffoux
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, 1 Avenue Claude Vellefaux 75010, Paris, France
| | - Florence Rabian
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, 1 Avenue Claude Vellefaux 75010, Paris, France
| | - Marie Sébert
- Hématologie Seniors, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France.,INSERM U944, Université de Paris, Paris, France
| | - Sandrine Valade
- Medical Intensive Care Unit, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Raphael Itzykson
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, 1 Avenue Claude Vellefaux 75010, Paris, France.,INSERM U944, Université de Paris, Paris, France
| | - Virginie Lemiale
- Medical Intensive Care Unit, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Lionel Adès
- Hématologie Seniors, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France.,INSERM U944, Université de Paris, Paris, France
| | - Nicolas Boissel
- Hématologie Adolescents Et Jeunes Adultes, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Hervé Dombret
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, 1 Avenue Claude Vellefaux 75010, Paris, France.,INSERM U944, Université de Paris, Paris, France
| | - Elie Azoulay
- Medical Intensive Care Unit, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Etienne Lengliné
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, 1 Avenue Claude Vellefaux 75010, Paris, France.
| |
Collapse
|
8
|
Mehta NK, Pfluegler M, Meetze K, Li B, Sindel I, Vogt F, Marklin M, Heitmann JS, Kauer J, Osburg L, Zekri L, Bühring HJ, Mueller S, Hörner S, Baeuerle PA, Michaelson JS, Jung G, Salih HR. A novel IgG-based FLT3xCD3 bispecific antibody for the treatment of AML and B-ALL. J Immunother Cancer 2022; 10:e003882. [PMID: 35288466 PMCID: PMC8921914 DOI: 10.1136/jitc-2021-003882] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In lymphoid malignancies, the introduction of chimeric antigen receptor T (CAR-T) cells and bispecific antibodies (bsAbs) has achieved remarkable clinical success. However, such immunotherapeutic strategies are not yet established for acute myeloid leukemia (AML), the most common form of acute leukemia in adults. Common targets in AML such as CD33, CD123, and CLEC12A are highly expressed on both AML blasts and on normal myeloid cells and hematopoietic stem cells (HSCs), thereby raising toxicity concerns. In B-cell acute lymphoblastic leukemia (B-ALL), bsAbs and CAR-T therapy targeting CD19 and CD22 have demonstrated clinical success, but resistance via antigen loss is common, motivating the development of agents focused on alternative targets. An attractive emerging target is FLT3, a proto-oncogene expressed in both AML and B-ALL, with low and limited expression on myeloid dendritic cells and HSCs. METHODS We developed and characterized CLN-049, a T cell-activating bsAb targeting CD3 and FLT3, constructed as an IgG heavy chain/scFv fusion. CLN-049 binds the membrane proximal extracellular domain of the FLT3 protein tyrosine kinase, which facilitates the targeting of leukemic blasts regardless of FLT3 mutational status. CLN-049 was evaluated for preclinical safety and efficacy in vitro and in vivo. RESULTS CLN-049 induced target-restricted activation of CD4+ and CD8+ T cells. AML cell lines expressing a broad range of surface levels of FLT3 were efficiently lysed on treatment with subnanomolar concentrations of CLN-049, whereas FLT3-expressing hematopoietic progenitor cells and dendritic cells were not sensitive to CLN-049 killing. Treatment with CLN-049 also induced lysis of AML and B-ALL patient blasts by autologous T cells at the low effector-to-target ratios typically observed in patients with overt disease. Lysis of leukemic cells was not affected by supraphysiological levels of soluble FLT3 or FLT3 ligand. In mouse xenograft models, CLN-049 was highly active against human leukemic cell lines and patient-derived AML and B-ALL blasts. CONCLUSIONS CLN-049 has a favorable efficacy and safety profile in preclinical models, warranting evaluation of its antileukemic activity in the clinic.
Collapse
Affiliation(s)
| | - Martin Pfluegler
- Immunology, Eberhard Karls Universitat Tubingen, Tubingen, Germany
- Clinical Collaboration Unit Translational Immunology, University Hospitals Tubingen, Tubingen, Germany
| | | | - Bochong Li
- Cullinan Florentine Corp, Cambridge, Massachusetts, USA
| | - Isabelle Sindel
- Immunology, Eberhard Karls Universitat Tubingen, Tubingen, Germany
| | - Fabian Vogt
- Immunology, Eberhard Karls Universitat Tubingen, Tubingen, Germany
| | - Melanie Marklin
- Clinical Collaboration Unit Translational Immunology, University Hospitals Tubingen, Tubingen, Germany
| | - Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, University Hospitals Tubingen, Tubingen, Germany
| | - Joseph Kauer
- Immunology, Eberhard Karls Universitat Tubingen, Tubingen, Germany
- Clinical Collaboration Unit Translational Immunology, University Hospitals Tubingen, Tubingen, Germany
| | - Lukas Osburg
- Immunology, Eberhard Karls Universitat Tubingen, Tubingen, Germany
| | - Latifa Zekri
- Immunology, Eberhard Karls Universitat Tubingen, Tubingen, Germany
- Clinical Collaboration Unit Translational Immunology, University Hospitals Tubingen, Tubingen, Germany
| | - Hans-Jörg Bühring
- Internal Medicine, Eberhard Karls Universitat Tubingen, Tubingen, Germany
| | - Stefanie Mueller
- Clinical Collaboration Unit Translational Immunology, University Hospitals Tubingen, Tubingen, Germany
| | - Sebastian Hörner
- Immunology, Eberhard Karls Universitat Tubingen, Tubingen, Germany
| | - Patrick A Baeuerle
- Cullinan Florentine Corp, Cambridge, Massachusetts, USA
- Immunology, Ludwig-Maximilians-Universitat Munchen, Munchen, Germany
| | | | - Gundram Jung
- Immunology, Eberhard Karls Universitat Tubingen, Tubingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, University Hospitals Tubingen, Tubingen, Germany
- Image-Guided and Functional Instructed Tumor Therapy, Eberhard Karls Universitat Tubingen, Tubingen, Germany
| |
Collapse
|
9
|
Montoya S, Soong D, Nguyen N, Affer M, Munamarty SP, Taylor J. Targeted Therapies in Cancer: To Be or Not to Be, Selective. Biomedicines 2021; 9:1591. [PMID: 34829820 PMCID: PMC8615814 DOI: 10.3390/biomedicines9111591] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/31/2022] Open
Abstract
Development of targeted therapies in recent years revealed several nonchemotherapeutic options for patients. Chief among targeted therapies is small molecule kinase inhibitors targeting key oncogenic signaling proteins. Through competitive and noncompetitive inhibition of these kinases, and therefore the pathways they activate, cancers can be slowed or completely eradicated, leading to partial or complete remissions for many cancer types. Unfortunately, for many patients, resistance to targeted therapies, such as kinase inhibitors, ultimately develops and can necessitate multiple lines of treatment. Drug resistance can either be de novo or acquired after months or years of drug exposure. Since resistance can be due to several unique mechanisms, there is no one-size-fits-all solution to this problem. However, combinations that target complimentary pathways or potential escape mechanisms appear to be more effective than sequential therapy. Combinations of single kinase inhibitors or alternately multikinase inhibitor drugs could be used to achieve this goal. Understanding how to efficiently target cancer cells and overcome resistance to prior lines of therapy became imperative to the success of cancer treatment. Due to the complexity of cancer, effective treatment options in the future will likely require mixing and matching these approaches in different cancer types and different disease stages.
Collapse
Affiliation(s)
| | | | | | | | | | - Justin Taylor
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, 1501 NW 10th Avenue, Miami, FL 33136, USA; (S.M.); (D.S.); (N.N.); (M.A.); (S.P.M.)
| |
Collapse
|
10
|
Bolandi SM, Pakjoo M, Beigi P, Kiani M, Allahgholipour A, Goudarzi N, Khorashad JS, Eiring AM. A Role for the Bone Marrow Microenvironment in Drug Resistance of Acute Myeloid Leukemia. Cells 2021; 10:2833. [PMID: 34831055 PMCID: PMC8616250 DOI: 10.3390/cells10112833] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with a poor prognosis and remarkable resistance to chemotherapeutic agents. Understanding resistance mechanisms against currently available drugs helps to recognize the therapeutic obstacles. Various mechanisms of resistance to chemotherapy or targeted inhibitors have been described for AML cells, including a role for the bone marrow niche in both the initiation and persistence of the disease, and in drug resistance of the leukemic stem cell (LSC) population. The BM niche supports LSC survival through direct and indirect interactions among the stromal cells, hematopoietic stem/progenitor cells, and leukemic cells. Additionally, the BM niche mediates changes in metabolic and signal pathway activation due to the acquisition of new mutations or selection and expansion of a minor clone. This review briefly discusses the role of the BM microenvironment and metabolic pathways in resistance to therapy, as discovered through AML clinical studies or cell line and animal models.
Collapse
Affiliation(s)
- Seyed Mohammadreza Bolandi
- Department of Immunology, Razi Vaccine and Sera Research Institute, Karaj, Iran; (S.M.B.); (N.G.)
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Mahdi Pakjoo
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; (M.P.); (P.B.)
| | - Peyman Beigi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; (M.P.); (P.B.)
| | - Mohammad Kiani
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Ali Allahgholipour
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Negar Goudarzi
- Department of Immunology, Razi Vaccine and Sera Research Institute, Karaj, Iran; (S.M.B.); (N.G.)
| | - Jamshid S. Khorashad
- Centre for Haematology, Hammersmith Hospital, Imperial College London, London W12 0HS, UK;
| | - Anna M. Eiring
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| |
Collapse
|
11
|
Li S, Ji Y, Peng Y, Kota V, Kim C. Patient characteristics, treatment patterns, and mortality in elderly patients newly diagnosed with acute myeloid leukemia meeting ineligibility criteria for high intensity chemotherapy. Leuk Lymphoma 2021; 63:131-141. [PMID: 34643153 DOI: 10.1080/10428194.2021.1973669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
To describe patient characteristics, treatment patterns, and survival among elderly patients (≥66 years) newly diagnosed with acute myeloid leukemia (AML) meeting ≥1 ineligibility criteria for high-intensity chemotherapy (HIC; i.e. age >75 years, cardiac disease/prior anthracycline therapy, or secondary AML), we analyzed 2007-2017 100% Medicare hematologic cancer data. Patients were stratified based on whether they received HIC or low-intensity chemotherapy (LIC) or best supportive care (BSC) within 60 days after AML diagnosis. Of 4,152 patients, 43.2% received chemotherapy, 33.8% BSC, and 23.1% no therapy. Among chemotherapy-treated patients, HIC was more common than LIC (58.8 vs 41.2%), despite targeting patients meeting ≥1 ineligibility criteria for HIC. Poor overall survival was observed for patients receiving chemotherapy and BSC (median overall survival [interquartile range]: HIC, 1.9 [0.8, 6.6] months; LIC, 3.8 [1.4, 9.3] months; BSC, 1.0 [0.4, 2.5] months). Results highlight the need for additional effective and tolerable treatments for this population.
Collapse
Affiliation(s)
- Shuling Li
- Chronic Disease Research Group (CDRG), Hennepin Healthcare Research Institute, Minneapolis, MN, USA
| | - Yuanyuan Ji
- Chronic Disease Research Group (CDRG), Hennepin Healthcare Research Institute, Minneapolis, MN, USA
| | - Yi Peng
- Chronic Disease Research Group (CDRG), Hennepin Healthcare Research Institute, Minneapolis, MN, USA
| | | | - Christopher Kim
- Center for Observational Research, Amgen Inc., Thousand Oaks, CA, USA
| |
Collapse
|
12
|
Evolving Therapeutic Approaches for Older Patients with Acute Myeloid Leukemia in 2021. Cancers (Basel) 2021; 13:cancers13205075. [PMID: 34680226 PMCID: PMC8534216 DOI: 10.3390/cancers13205075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The better understanding of disease biology, the availability of new effective drugs and the increased awareness of patients’ heterogeneity in terms of fitness and personal expectations has made the current treatment paradigm of AML in the elderly very challenging. Here, we discuss the evolving criteria used to define eligibility for induction chemotherapy and transplantation, the introduction of new agents in the treatment of patients with very different clinical conditions, the implications of precision medicine and the importance of quality of life and supportive care, proposing a simplified algorithm that we follow in 2021. Abstract Acute myeloid leukemia (AML) in older patients is characterized by unfavorable prognosis due to adverse disease features and a high rate of treatment-related complications. Classical therapeutic options range from intensive chemotherapy in fit patients, potentially followed by allogeneic hematopoietic cell transplantation (allo-HCT), to hypomethylating agents or palliative care alone for unfit/frail ones. In the era of precision medicine, the treatment paradigm of AML is rapidly changing. On the one hand, a plethora of new targeted drugs with good tolerability profiles are becoming available, offering the possibility to achieve a prolonged remission to many patients not otherwise eligible for more intensive therapies. On the other hand, better tools to assess patients’ fitness and improvements in the selection and management of those undergoing allo-HCT will hopefully reduce treatment-related mortality and complications. Importantly, a detailed genetic characterization of AML has become of paramount importance to choose the best therapeutic option in both intensively treated and unfit patients. Finally, improving supportive care and quality of life is of major importance in this age group, especially for the minority of patients that are still candidates for palliative care because of very poor clinical conditions or unwillingness to receive active treatments. In the present review, we discuss the evolving approaches in the treatment of older AML patients, which is becoming increasingly challenging following the advent of new effective drugs for a very heterogeneous and complex population.
Collapse
|
13
|
Zhang L, Khadka B, Wu J, Feng Y, Long B, Xiao R, Liu J. Bone Marrow Mesenchymal Stem Cells-Derived Exosomal miR-425-5p Inhibits Acute Myeloid Leukemia Cell Proliferation, Apoptosis, Invasion and Migration by Targeting WTAP. Onco Targets Ther 2021; 14:4901-4914. [PMID: 34594112 PMCID: PMC8478487 DOI: 10.2147/ott.s286326] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/22/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Acute myeloid leukemia (AML) is a predominant blood malignancy with high mortality and severe morbidity. AML is affected by microRNAs (miRNAs) loaded in exosomes derived from bone marrow mesenchymal stem cells (BM-MSCs). MiR-425-5p has been reported to participate in different cancer models. However, the function of BM-MSCs-derived exosomal miR-425-5p in AML is unclear. Methods The expression of miR-425-5p was measured by qRT-PCR in clinical AML samples. The immunophenotype of BM-MSCs was analyzed using antibodies against CD44, CD90, and CD105. The exosome was isolated from BM-MSCs. The effect of BM-MSCs-derived exosomal miR-425-5p on AML was analyzed by CCK-8 assay, Edu assay, transwell assay, flow cytometry in AML cells. qRT-PCR, luciferase reporter gene assay and Western blot analysis were also conducted in AML cells. Results The expression levels of miR-425-5p were decreased in CD34 + CD38-AML cells from primary AML patients compared to that from the bone marrow of healthy cases, and were reduced in exosomes from AML patients compared that from healthy cases. Similarly, miR-425-5p was also down-regulated in AML cell lines compared with BM-MSCs. MiR-425-5p was able to express in exosomes from BM-MSCs. CCK-8, Edu, transwell assay and flow cytometry analysis revealed that BM-MSCs-derived exosomal miR-425-5p significantly inhibited cell viability, Edu positive cells, invasion and migration, and induced apoptosis of AML cells. Meanwhile, the expression levels of cleaved PARP and cleaved caspase3 were increased by BM-MSCs-derived exosomal miR-425-5p in cells. MiR-425-5p inhibited the expression of Wilms tumor 1-associated protein (WTAP). Moreover, overexpression of WTAP could reverse the miR-425-5p-induced inhibition effect on AML cell proliferation, apoptosis, migration and invasion. Conclusion BM-MSCs-derived exosomal miR-425-5p inhibits proliferation, invasion and migration of AML cells and induced apoptosis of AML cells by targeting WTAP. Therapeutically, BM-MSCs-derived exosomal miR-425-5p may serve as a potential target for AML therapy.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| | - Bijay Khadka
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| | - Jieying Wu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| | - Yashu Feng
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| | - Bing Long
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| | - Ruozhi Xiao
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| | - Jiajun Liu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| |
Collapse
|
14
|
Xu L, Liu L, Yao D, Zeng X, Zhang Y, Lai J, Zhong J, Zha X, Zheng R, Lu Y, Li M, Jin Z, Hebbar Subramanyam S, Chen S, Huang X, Li Y. PD-1 and TIGIT Are Highly Co-Expressed on CD8 + T Cells in AML Patient Bone Marrow. Front Oncol 2021; 11:686156. [PMID: 34490086 PMCID: PMC8416522 DOI: 10.3389/fonc.2021.686156] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/30/2021] [Indexed: 02/03/2023] Open
Abstract
Despite the great success of immune-checkpoint inhibitor (ICI) treatment for multiple cancers, evidence for the clinical use of ICIs in acute myeloid leukemia (AML) remains inadequate. Further exploration of the causes of immune evasion in the bone marrow (BM) environment, the primary leukemia site, and peripheral blood (PB) and understanding how T cells are affected by AML induction chemotherapy or the influence of age may help to select patients who may benefit from ICI treatment. In this study, we comprehensively compared the distribution of PD-1 and TIGIT, two of the most well-studied IC proteins, in PB and BM T cells from AML patients at the stages of initial diagnosis, complete remission (CR), and relapse-refractory (R/R) disease after chemotherapy. Our results show that PD-1 was generally expressed higher in PB and BM T cells from de novo (DN) and R/R patients, while it was partially recovered in CR patients. The expression of TIGIT was increased in the BM of CD8+ T cells from DN and R/R patients, but it did not recover with CR. In addition, according to age correlation analysis, we found that elderly AML patients possess an even higher percentage of PD-1 and TIGIT single-positive CD8+ T cells in PB and BM, which indicate greater impairment of T cell function in elderly patients. In addition, we found that both DN and R/R patients accumulate a higher frequency of PD-1+ and TIGIT+ CD8+ T cells in BM than in corresponding PB, indicating that a more immunosuppressive microenvironment in leukemia BM may promote disease progression. Collectively, our study may help guide the combined use of anti-PD-1 and anti-TIGIT antibodies for treating elderly AML patients and pave the way for the exploration of strategies for reviving the immunosuppressive BM microenvironment to improve the survival of AML patients.
Collapse
Affiliation(s)
- Ling Xu
- The Clinical Medicine Postdoctoral Research Station, Department of Hematology, First Affiliated Hospital; Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Lian Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Danlin Yao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Xiangbo Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Yikai Zhang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
- Laboratory Center, Tianhe Nuoya Bio-Engineering Co. Ltd, Guangzhou, China
| | - Jing Lai
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Jun Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital, Jinan University, Guangzhou, China Guangzhou, China
| | - Runhui Zheng
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China, China
| | - Yuhong Lu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Minming Li
- Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhenyi Jin
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Sudheendra Hebbar Subramanyam
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Xin Huang
- Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yangqiu Li
- The Clinical Medicine Postdoctoral Research Station, Department of Hematology, First Affiliated Hospital; Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Zhao C, Yang S, Lu W, Liu J, Wei Y, Guo H, Zhang Y, Shi J. Increased NFATC4 Correlates With Poor Prognosis of AML Through Recruiting Regulatory T Cells. Front Genet 2020; 11:573124. [PMID: 33329712 PMCID: PMC7728998 DOI: 10.3389/fgene.2020.573124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Despite that immune responses play important roles in acute myeloid leukemia (AML), immunotherapy is still not widely used in AML due to lack of an ideal target. Therefore, we identified key immune genes and cellular components in AML by an integrated bioinformatics analysis, trying to find potential targets for AML. Eighty-six differentially expressed immune genes (DEIGs) were identified from 751 differentially expressed genes (DEGs) between AML patients with fair prognosis and poor prognosis from the TCGA database. Among them, nine prognostic immune genes, including NCR2, NPDC1, KIR2DL4, KLC3, TWIST1, SNORD3B-1, NFATC4, XCR1, and LEFTY1, were identified by univariate Cox regression analysis. A multivariable prediction model was established based on prognostic immune genes. Kaplan–Meier survival curve analysis indicated that patients in the high-risk group had a shorter survival rate and higher mortality than those in the low-risk group (P < 0.001), indicating good effectiveness of the model. Furthermore, nuclear factors of activated T cells-4 (NFATC4) was recognized as the key immune gene identified by co-expression of differentially expressed transcription factors (DETFs) and prognostic immune genes. ATP-binding cassette transporters (ABC transporters) were the downstream KEGG pathway of NFATC4, identified by gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA). To explore the immune responses NFATC4 was involved in, an immune gene set of T cell co-stimulation was identified by single-cell GSEA (ssGSEA) and Pearson correlation analysis, positively associated with NFATC4 in AML (R = 0.323, P < 0.001, positive). In order to find out the immune cell types affected by NFATC4, the CIBERSORT algorithm and Pearson correlation analysis were applied, and it was revealed that regulatory T cells (Tregs) have the highest correlation with NFATC4 (R = 0.526, P < 0.001, positive) in AML from 22 subsets of tumor-infiltrating immune cells. The results of this study were supported by multi-omics database validation. In all, our study indicated that NFATC4 was the key immune gene in AML poor prognosis through recruiting Tregs, suggesting that NFATC4 might serve as a new therapy target for AML.
Collapse
Affiliation(s)
- Chong Zhao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shaoxin Yang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Lu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiali Liu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yanyu Wei
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hezhou Guo
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanjie Zhang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Shi
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Nair R, Salinas-Illarena A, Baldauf HM. New strategies to treat AML: novel insights into AML survival pathways and combination therapies. Leukemia 2020; 35:299-311. [PMID: 33122849 DOI: 10.1038/s41375-020-01069-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
The effective treatment of acute myeloid leukemia (AML) is very challenging. Due to the immense heterogeneity of this disease, treating it using a "one size fits all" approach is ineffective and only benefits a subset of patients. Instead, there is a shift towards more personalized treatment based on the patients' genomic signature. This shift has facilitated the increased revelation of novel insights into pathways that lead to the survival and propagation of AML cells. These AML survival pathways are involved in drug resistance, evasion of the immune system, reprogramming metabolism, and impairing differentiation. In addition, based on the reports of enhanced clinical efficiencies when combining drugs or treatments, deeper investigation into possible pathways, which can be targeted together to increase treatment response in a wider group of patients, is warranted. In this review, not only is a comprehensive summary of targets involved in these pathways provided, but also insights into the potential of targeting these molecules in combination therapy will be discussed.
Collapse
Affiliation(s)
- Ramya Nair
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Alejandro Salinas-Illarena
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Hanna-Mari Baldauf
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany.
| |
Collapse
|
17
|
Antileukemic activity of the VPS34-IN1 inhibitor in acute myeloid leukemia. Oncogenesis 2020; 9:94. [PMID: 33093450 PMCID: PMC7581748 DOI: 10.1038/s41389-020-00278-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive disease with a poor prognosis. Vacuolar protein sorting 34 (VPS34) is a member of the phosphatidylinositol-3-kinase lipid kinase family that controls the canonical autophagy pathway and vesicular trafficking. Using a recently developed specific inhibitor (VPS34-IN1), we found that VPS34 inhibition induces apoptosis in AML cells but not in normal CD34+ hematopoietic cells. Complete and acute inhibition of VPS34 was required for the antileukemic activity of VPS34-IN1. This inhibitor also has pleiotropic effects against various cellular functions related to class III PI3K in AML cells that may explain their survival impairment. VPS34-IN1 inhibits basal and L-asparaginase-induced autophagy in AML cells. A synergistic cell death activity of this drug was also demonstrated. VPS34-IN1 was additionally found to impair vesicular trafficking and mTORC1 signaling. From an unbiased approach based on phosphoproteomic analysis, we identified that VPS34-IN1 specifically inhibits STAT5 phosphorylation downstream of FLT3-ITD signaling in AML. The identification of the mechanisms controlling FLT3-ITD signaling by VPS34 represents an important insight into the oncogenesis of AML and could lead to new therapeutic strategies.
Collapse
|
18
|
Nuclear Receptors as Potential Therapeutic Targets for Myeloid Leukemia. Cells 2020; 9:cells9091921. [PMID: 32824945 PMCID: PMC7563802 DOI: 10.3390/cells9091921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor (NR) superfamily has been studied extensively in many solid tumors and some receptors have been targeted to develop therapies. However, their roles in leukemia are less clear and vary considerably among different types of leukemia. Some NRs participate in mediating the differentiation of myeloid cells, making them attractive therapeutic targets for myeloid leukemia. To date, the success of all-trans retinoic acid (ATRA) in treating acute promyelocytic leukemia (APL) remains a classical and unsurpassable example of cancer differentiation therapy. ATRA targets retinoic acid receptor (RAR) and forces differentiation and/or apoptosis of leukemic cells. In addition, ligands/agonists of vitamin D receptor (VDR) and peroxisome proliferator-activated receptor (PPAR) have also been shown to inhibit proliferation, induce differentiation, and promote apoptosis of leukemic cells. Encouragingly, combining different NR agonists or the addition of NR agonists to chemotherapies have shown some synergistic anti-leukemic effects. This review will summarize recent research findings and discuss the therapeutic potential of selected NRs in acute and chronic myeloid leukemia, focusing on RAR, VDR, PPAR, and retinoid X receptor (RXR). We believe that more mechanistic studies in this field will not only shed new lights on the roles of NRs in leukemia, but also further expand the clinical applications of existing therapeutic agents targeting NRs.
Collapse
|
19
|
Donker ML, Ossenkoppele GJ. Evaluating ivosidenib for the treatment of acute myeloid leukemia. Expert Opin Pharmacother 2020; 21:2205-2213. [DOI: 10.1080/14656566.2020.1806822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- M. L. Donker
- Department of Haematology, Amsterdam UMC, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands
| | - G. J. Ossenkoppele
- Department of Haematology, Amsterdam UMC, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Huang S, Li C, Zhang X, Pan J, Li F, Lv Y, Huang J, Ling Q, Ye W, Mao S, Huang X, Jin J. Abivertinib synergistically strengthens the anti-leukemia activity of venetoclax in acute myeloid leukemia in a BTK-dependent manner. Mol Oncol 2020; 14:2560-2573. [PMID: 32519423 PMCID: PMC7530784 DOI: 10.1002/1878-0261.12742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/23/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
B‐cell lymphoma 2 (BCL‐2), a crucial member of the anti‐apoptotic BCL‐2 family, is frequently dysregulated in cancer and plays an important role in acute myeloid leukemia (AML). Venetoclax is a highly selective BCL‐2 inhibitor that has been approved by the FDA for treating elderly AML patients. However, the emergence of resistance after long‐term treatment emphasizes the need for a deeper understanding of the potential mechanisms of resistance and effective rescue methods. By using RNA‐seq analysis in two human AML cohorts made up of three patients with complete remission and three patients without remission after venetoclax treatment, we identified that upregulation of BTK enabled AML blast resistance to venetoclax. Interestingly, we found that abivertinib, an oral BTK inhibitor, could synergize with venetoclax to inhibit the proliferation of primary AML cells and cell lines. It is worth noting that the combination of the two effectively enhanced the sensitivity of two AML patients (AML#3 and AML#12) to venetoclax. In this study, we demonstrated that combined use of the two drugs can synergistically inhibit the colony‐forming capacity of AML cells, arrest the AML cell cycle in the G0/G1 phase, and inhibit the BCL‐2 anti‐apoptotic family protein, activating the caspase family to induce apoptosis. Mechanistically, knockdown of BTK in AML cell lines impaired the synergistic effect of the two drugs. In vivo study showed similar results as those seen in vitro. Abivertinib in combination with venetoclax could significantly prolong the survival time and reduce the tumor burden of MV4‐11‐NSG mice compared with those of control and single‐agent groups. Our in vitro and in vivo studies have shown that the combination of abivertinib and venetoclax may benefit AML patients, especially in patients resistant to venetoclax or those that relapse. New clinical trials will be planned.
Collapse
Affiliation(s)
- Shujuan Huang
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Chenying Li
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Xiang Zhang
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Jiajia Pan
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Fenglin Li
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Yunfei Lv
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Jingwen Huang
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Qing Ling
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Wenle Ye
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Shihui Mao
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Xin Huang
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Jie Jin
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| |
Collapse
|
21
|
Sitges M, Boluda B, Garrido A, Morgades M, Granada I, Barragan E, Arnan M, Serrano J, Tormo M, Miguel Bergua J, Colorado M, Salamero O, Esteve J, Benavente C, Pérez-Encinas M, Coll R, Martí-Tutusaus JM, Brunet S, Sierra J, Ángel Sanz M, Montesinos P, Ribera JM, Vives S. Acute myeloid leukemia with inv(3)(q21.3q26.2)/t(3;3)(q21.3;q26.2): Study of 61 patients treated with intensive protocols. Eur J Haematol 2020; 105:138-147. [PMID: 32243655 DOI: 10.1111/ejh.13417] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Inv(3)(q21.3q26.2)/t(3;3)(q21.3;q26.2) is a rare poor prognosis cytogenetic abnormality present in acute myeloid leukemia (AML) and other myeloid neoplasms. OBJECTIVE The aim of this study was to evaluate the outcome of a cohort of 61 patients with newly diagnosed AML with inv(3)/t(3;3) treated with homogeneous intensive chemotherapy protocols conducted by the Spanish PETHEMA and CETLAM cooperative groups between 1999 and 2017. METHODS In this retrospective study the main clinical and biologic parameters were collected. The complete response (CR) rate, the cumulative incidence of relapse (CIR) and the overall survival (OS) were calculated. An analysis of prognostic factors for survival was performed. RESULTS Sixty-one patients received induction and only 18 (29%) achieved CR (median age, 46 years). Allogeneic hematopoietic stem cell transplantation (alloHSCT) was performed in 36 patients (59%), 15 with active disease. One- and 4-year CIR were 52% and 56%. One- and 4-year OS probabilities were 41% and 13%. By multivariate analysis monosomal karyotype (MK) was associated with poorer OS (HR 2.0, P = .017). CONCLUSION Inv(3)/t(3;3) AML is a poor prognosis entity with low response to standard chemotherapy and to alloHSCT because of frequent and early relapse. MK was associated with a poorer prognosis. Improved therapeutic strategies are clearly needed.
Collapse
Affiliation(s)
- Marta Sitges
- Hematology Departments of ICO-Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain.,ICO-Hospital Universitari Doctor Josep Trueta, Girona, Spain
| | - Blanca Boluda
- Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Ana Garrido
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Mireia Morgades
- Hematology Departments of ICO-Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Isabel Granada
- Hematology Departments of ICO-Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Eva Barragan
- Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Montserrat Arnan
- ICO-Hospital Duran i Reynals, IDIBELL, L'Hospitalet de Llobregat, Llobregat, Spain
| | | | - Mar Tormo
- Hospital Clínico Universitario, Valencia, Spain
| | | | | | - Olga Salamero
- Hospital Universitari Vall d'Hebron/VHIO, Barcelona, Spain
| | | | | | | | - Rosa Coll
- ICO-Hospital Universitari Doctor Josep Trueta, Girona, Spain
| | | | - Salut Brunet
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jorge Sierra
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Pau Montesinos
- Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Josep-Maria Ribera
- Hematology Departments of ICO-Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Susana Vives
- Hematology Departments of ICO-Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | | |
Collapse
|
22
|
Cerrano M, Ruella M, Perales MA, Vitale C, Faraci DG, Giaccone L, Coscia M, Maloy M, Sanchez-Escamilla M, Elsabah H, Fadul A, Maffini E, Pittari G, Bruno B. The Advent of CAR T-Cell Therapy for Lymphoproliferative Neoplasms: Integrating Research Into Clinical Practice. Front Immunol 2020; 11:888. [PMID: 32477359 PMCID: PMC7235422 DOI: 10.3389/fimmu.2020.00888] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/17/2020] [Indexed: 01/13/2023] Open
Abstract
Research on CAR T cells has achieved enormous progress in recent years. After the impressive results obtained in relapsed and refractory B-cell acute lymphoblastic leukemia and aggressive B-cell lymphomas, two constructs, tisagenlecleucel and axicabtagene ciloleucel, were approved by FDA. The role of CAR T cells in the treatment of B-cell disorders, however, is rapidly evolving. Ongoing clinical trials aim at comparing CAR T cells with standard treatment options and at evaluating their efficacy earlier in the disease course. The use of CAR T cells is still limited by the risk of relevant toxicities, most commonly cytokine release syndrome and neurotoxicity, whose management has nonetheless significantly improved. Some patients do not respond or relapse after treatment, either because of poor CAR T-cell expansion, lack of anti-tumor effects or after the loss of the target antigen on tumor cells. Investigators are trying to overcome these hurdles in many ways: by testing constructs which target different and/or multiple antigens or by improving CAR T-cell structure with additional functions and synergistic molecules. Alternative cell sources including allogeneic products (off-the-shelf CAR T cells), NK cells, and T cells obtained from induced pluripotent stem cells are also considered. Several trials are exploring the curative potential of CAR T cells in other malignancies, and recent data on multiple myeloma and chronic lymphocytic leukemia are encouraging. Given the likely expansion of CAR T-cell indications and their wider availability over time, more and more highly specialized clinical centers, with dedicated clinical units, will be required. Overall, the costs of these cell therapies will also play a role in the sustainability of many health care systems. This review will focus on the major clinical trials of CAR T cells in B-cell malignancies, including those leading to the first FDA approvals, and on the new settings in which these constructs are being tested. Besides, the most promising approaches to improve CAR T-cell efficacy and early data on alternative cell sources will be reviewed. Finally, we will discuss the challenges and the opportunities that are emerging with the advent of CAR T cells into clinical routine.
Collapse
Affiliation(s)
- Marco Cerrano
- Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Marco Ruella
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College, New York, NY, United States
| | - Candida Vitale
- Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Danilo Giuseppe Faraci
- Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Luisa Giaccone
- Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Marta Coscia
- Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Molly Maloy
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College, New York, NY, United States
| | - Miriam Sanchez-Escamilla
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College, New York, NY, United States
- Department of Hematological Malignancies and Stem Cell Transplantation, Research Institute of Marques de Valdecilla (IDIVAL), Santander, Spain
| | - Hesham Elsabah
- Department of Medical Oncology, Hematology/BMT Service, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Afraa Fadul
- Department of Medical Oncology, Hematology/BMT Service, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Enrico Maffini
- Hematology and Stem Cell Transplant Unit, Romagna Transplant Network, Ravenna, Italy
| | - Gianfranco Pittari
- Department of Medical Oncology, Hematology/BMT Service, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Benedetto Bruno
- Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| |
Collapse
|
23
|
Li Z, Philip M, Ferrell PB. Alterations of T-cell-mediated immunity in acute myeloid leukemia. Oncogene 2020; 39:3611-3619. [PMID: 32127646 PMCID: PMC7234277 DOI: 10.1038/s41388-020-1239-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 01/02/2023]
Abstract
Acute myeloid leukemia (AML) is a systemic, heterogeneous hematologic malignancy with poor overall survival. While some malignancies have seen improvements in clinical outcomes with immunotherapy, success of these agents in AML remains elusive. Despite limited progress, stem cell transplantation and donor lymphocyte infusions show that modulation of the immune system can improve overall survival of AML patients. Understanding the causes of immune evasion and disease progression will identify potential immune-mediated targets in AML. This review explores immunosuppressive mechanisms that alter T-cell-mediated immunity in AML.
Collapse
Affiliation(s)
- Zhuoyan Li
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary Philip
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P. Brent Ferrell
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
24
|
Post-remission therapy of adults aged 60 and older with acute myeloid leukemia in first complete remission: role of treatment intensity on the outcome. Ann Hematol 2020; 99:773-780. [PMID: 32088745 DOI: 10.1007/s00277-020-03922-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/14/2020] [Indexed: 10/24/2022]
Abstract
Although complete remission (CR) is achieved in 50 to 70% of older fit patients with acute myeloid leukemia (AML), consolidation therapy in this age group remains challenging. In this retrospective study, we aimed to compare outcome in elderly patients treated with different post-remission modalities, including allogenic and autologous hematopoietic stem cell transplantation (HSCT), intensive chemotherapy, and standard-dose chemotherapy (repeated 1 + 5 regimen). We collected data of 441 patients ≥ 60 years in first CR from a single institution. Median age was 67 years. Sixty-one (14%) patients received allo-HSCT, 51 (12%) auto-HSCT, 70 (16%) intensive chemotherapy with intermediate- or high-dose cytarabine (I/HDAC), and 190 (43%) 1 + 5 regimen. Median follow-up was 6.5 years. In multivariate analysis, allo-HSCT, cytogenetics, and PS had a significant impact on OS and LFS. In spite of a more favorable-risk profile, the patients who received I/HDAC had no significantly better LFS as compared with patients treated with 1 + 5 (median LFS 8.8 months vs 10.6 months, p = 0.96). In transplanted patients, median LFS was 13.3 months for auto-HSCT and 25.8 months for allo-HSCT. Pre-transplant chemotherapy with I/HDAC had no effect on the outcome. Toxicity was significantly increased for both transplanted and non-transplanted patients treated with I/HDAC, with more units of blood and platelet transfusion and more time spent in hospitalization, but no higher non-relapse mortality. This study shows that post-remission chemotherapy intensification is not associated with significantly better outcome as compared with standard-dose chemotherapy in elderly patients for whom, overall results remain disappointing.
Collapse
|
25
|
Ferrara F, Picardi A. Is outcome of older people with acute myeloid leukemia improving with new therapeutic approaches and stem cell transplantation? Expert Rev Hematol 2020; 13:99-108. [PMID: 31922453 DOI: 10.1080/17474086.2020.1715207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: The clinical outcome of older patients with acute myeloid leukemia (AML) is still poor, especially for those who are unfit to treatments aimed at altering the natural course of the disease. Hypomethylating agents (HMA) offer an important therapeutic opportunity to a consistent number of patients, but long-term results are largely unsatisfactory.Area covered: Recently, a number of new agents have been registered for AML, some of which selectively available for older patient population, with promising results in terms of response rate and survival. Furthermore, the upper age limit for allogeneic stem cell transplantation is constantly increasing, so that this procedure is offered and actually given to an increasing number of older patients with AML. A literature review was conducted of the PubMed database for articles published in English as well as for abstracts from most important and recent hematology meetings on AML in older patients.Expert opinion: Appropriate selection among different options on the basis of clinical fitness and molecular findings at diagnosis as well as at relapse would result in improvement of therapeutic results, sparing unnecessary toxicity and optimizing health systems resources.
Collapse
Affiliation(s)
- Felicetto Ferrara
- Division of Hematology and Stem Cell Transplantation Program, AORN Cardarelli Hospital, Naples, Italy
| | - Alessandra Picardi
- Division of Hematology and Stem Cell Transplantation Program, AORN Cardarelli Hospital, Naples, Italy.,Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| |
Collapse
|
26
|
Mosleh M, Mehrpouri M, Ghaffari S, Saei Z, Agaeipoor M, Jadali F, Satlsar ES, Gholampour R. Report of a new six-panel flow cytometry marker for early differential diagnosis of APL from HLA-DR negative Non-APL leukemia. Scandinavian Journal of Clinical and Laboratory Investigation 2019; 80:87-92. [DOI: 10.1080/00365513.2019.1700427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Mohammad Mosleh
- Faculty of Paramedical sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Rasad Pathobiology and Genetics Laboratory, Department of Flow Cytometry, Tehran, Iran
| | - Mahdieh Mehrpouri
- Rasad Pathobiology and Genetics Laboratory, Department of Flow Cytometry, Tehran, Iran
| | - Sasan Ghaffari
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Cell-based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Saei
- Department of Flow Cytometry, Takhte Tavous Pathobiology Laboratory, Tehran, Iran
| | - Mahnaz Agaeipoor
- Department of Flow Cytometry, Takhte Tavous Pathobiology Laboratory, Tehran, Iran
| | - Farzaneh Jadali
- Department of Flow Cytometry, Takhte Tavous Pathobiology Laboratory, Tehran, Iran
| | - Esmaeil Shahabi Satlsar
- Faculty of Paramedical sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Flow Cytometry, Takhte Tavous Pathobiology Laboratory, Tehran, Iran
| | | |
Collapse
|
27
|
Wang CH, Li QY, Nie L, Ma J, Yao CJ, Chen FP. LncRNA ANRIL promotes cell proliferation, migration and invasion during acute myeloid leukemia pathogenesis via negatively regulating miR-34a. Int J Biochem Cell Biol 2019; 119:105666. [PMID: 31830533 DOI: 10.1016/j.biocel.2019.105666] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE LncRNA ANRIL (antisense non-coding RNA in the INK4 locus) was highly expressed in acute myeloid leukemia (AML) patients to promote AML pathogenesis. In this study, we aimed to investigate the roles and molecular events of ANRIL associated with AML progression. METHODS Expression patterns of ANRIL and miR-34a in the bone marrow (BM) samples and cell lines were determined using qRT-PCR. Cell proliferation, apoptosis, migration and invasion of cells with ANRIL knockdown or miR-34a overexpression were assessed by CCK-8, EdU staining, flow cytometry and Transwell assays, respectively. The dual-luciferase reporter assay was employed to validate the relationship between miR-34a and Histone deacetylase 1 (HDAC1). The binding of E2 F1 (E2 F transcription factor 1) with gene promoter was analyzed by ChIP. Furthermore, the tumorigenicity of AML was determined by xenograft transplantation in nude mice. RESULTS ANRIL was up-regulated both in the BM samples from AML patients and cell lines (HL-60 and THP-1), of which expression was negatively correlated with miR-34a expression. ANRIL knockdown inhibited cell proliferation, migration and invasion but promoted apoptosis of AML cells, while overexpression of miR-34a exerted opposite effects. miR-34a was verified as a downstream gene targeted by ANRIL. Moreover, HDAC1 was a direct target of miR-34a, and HDAC1 overexpression impaired the recruitment of E2 F1 to ASPP2 (apoptosis stimulating proteins of p53) gene promoter. ANRIL knockdown significantly inhibited the tumorigenesis of AML. CONCLUSION ANRIL promotes AML development through HDAC1-mediated epigenetic suppression of ASPP2 via negatively regulating miR-34a, which might serve as a therapeutic target for AML treatment.
Collapse
Affiliation(s)
- Cheng-Hong Wang
- Department of Hematology, Xiangya Third Hospital, Central South University, Changsha 410013, PR China
| | - Qian-Yuan Li
- Department of Hematology, Xiangya Third Hospital, Central South University, Changsha 410013, PR China
| | - Lu Nie
- Department of Hematology, Xiangya Third Hospital, Central South University, Changsha 410013, PR China
| | - Jie Ma
- Department of Hematology, Xiangya Third Hospital, Central South University, Changsha 410013, PR China
| | - Chen-Jiao Yao
- Department of Hematology, Xiangya Third Hospital, Central South University, Changsha 410013, PR China
| | - Fang-Ping Chen
- Department of Hematology, Xiangya Third Hospital, Central South University, Changsha 410013, PR China.
| |
Collapse
|
28
|
Abstract
OBJECTIVE To describe the interdisciplinary management of acute leukemias across the continuum of care. DATA SOURCE Literature review and experiential knowledge. CONCLUSION Acute leukemia, including acute myelogenous leukemia, acute promyelocytic leukemia, and acute lymphoblastic leukemia, represent a heterogeneous group of hematologic malignancies with complex diagnostic requirements that drive risk-adapted treatment selection. Involvement of clinicians from a variety of specialties and disciplines is required to ensure safe and effective treatment, mitigate adverse events, and maintain or improve quality of life. Patient-centered communication, shared decision-making, and interdisciplinary communication are integral to patient outcomes. IMPLICATIONS FOR NURSING PRACTICE Oncology clinicians play a primary role in coordinating the interdisciplinary team and navigating the patient and caregiver experience across the acute leukemia continuum.
Collapse
Affiliation(s)
- Sandra Kurtin
- The University of Arizona Cancer Center, Tucson, AZ.
| |
Collapse
|
29
|
Cerrano M, Seegers V, Raffoux E, Rabian F, Sébert M, Itzykson R, Lemiale V, Adès L, Boissel N, Dombret H, Azoulay E, Lengliné E. Predictors and outcomes associated with hydroxyurea sensitivity in acute myeloid leukemia patients with high hyperleukocytosis. Leuk Lymphoma 2019; 61:737-740. [PMID: 31710255 DOI: 10.1080/10428194.2019.1683735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Marco Cerrano
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France.,Department of Oncology, Division of Hematology, AOU Città Della Salute e Della Scienza di Torino, Turin, Italy
| | - Valérie Seegers
- Institut de Cancérologie de l'Ouest - Paul Papin, Direction de la Recherche clinique et de l'innovation, Angers, France
| | - Emmanuel Raffoux
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Florence Rabian
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Marie Sébert
- Hématologie Seniors, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Raphael Itzykson
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Virginie Lemiale
- Medical Intensive Care Unit, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Lionel Adès
- Hématologie Seniors, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Nicolas Boissel
- Hématologie Adolescents et Jeunes Adultes, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Hervé Dombret
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Elie Azoulay
- Medical Intensive Care Unit, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Etienne Lengliné
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| |
Collapse
|
30
|
The Role of Forkhead Box Proteins in Acute Myeloid Leukemia. Cancers (Basel) 2019; 11:cancers11060865. [PMID: 31234353 PMCID: PMC6627614 DOI: 10.3390/cancers11060865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/29/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
Forkhead box (FOX) proteins are a group of transcriptional factors implicated in different cellular functions such as differentiation, proliferation and senescence. A growing number of studies have focused on the relationship between FOX proteins and cancers, particularly hematological neoplasms such as acute myeloid leukemia (AML). FOX proteins are widely involved in AML biology, including leukemogenesis, relapse and drug sensitivity. Here we explore the role of FOX transcription factors in the major AML entities, according to "The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia", and in the context of the most recurrent gene mutations identified in this heterogeneous disease. Moreover, we report the new evidences about the role of FOX proteins in drug sensitivity, mechanisms of chemoresistance, and possible targeting for personalized therapies.
Collapse
|