1
|
Xu H, Chai H, Chen M, Zhu R, Jiang S, Liu X, Wang Y, Chen J, Wei J, Mao Y, Shi Z. Single-cell RNA sequencing identifies a subtype of FN1 + tumor-associated macrophages associated with glioma recurrence and as a biomarker for immunotherapy. Biomark Res 2024; 12:114. [PMID: 39375795 PMCID: PMC11457430 DOI: 10.1186/s40364-024-00662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Glioma is the most common primary malignant tumor in the brain, and even with standard treatments including surgical resection, radiotherapy, and chemotherapy, the long-term survival rate of patients remains unsatisfactory. Recurrence is one of the leading causes of death in glioma patients. The molecular mechanisms underlying glioma recurrence remain unclear. METHODS Our study utilized single-cell sequencing, spatial transcriptomics, and RNA-seq data to identify a subtype of FN1 + tumor-associated macrophages (FN1 + TAMs) associated with glioma recurrence. RESULTS This study revealed an increased abundance of FN1 + TAMs in recurrent gliomas, indicating their potential involvement as a critical factor in glioma recurrence. A negative correlation was observed between the abundance of FN1 + TAMs in primary gliomas and the interval time to recurrence, suggesting poor prognosis for glioma patients with high levels of FN1 + TAMs. Further investigation showed that FN1 + TAMs were enriched in hypoxic tumor regions, implying that metabolic changes in tumors drive the production and recruitment of FN1 + TAMs. Additionally, FN1 + TAMs were found to contribute to the regulation of an immunosuppressive microenvironment in gliomas, and their abundance might serve as an indicator of patients' sensitivity to immunotherapy. Finally, we developed a user-friendly website, PRIMEG ( http://www.szflab.site/PRIMEG/ ), for exploring the immune microenvironment of primary and recurrent gliomas. CONCLUSION Our findings highlight a subtype of FN1 + TAMs associated with glioma recurrence, providing new insights into potential therapeutic targets. Moreover, the abundance of FN1 + TAMs hold promise for predicting immune therapy response and aiding in more precise risk stratification of recurrent glioma patients.
Collapse
Affiliation(s)
- Houshi Xu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huihui Chai
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ming Chen
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruize Zhu
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shan Jiang
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyu Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yue Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiawen Chen
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junji Wei
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China.
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China.
| | - Ying Mao
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China.
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhifeng Shi
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China.
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Keshavarz M, Dianat-Moghadam H, Ghorbanhosseini SS, Sarshari B. Oncolytic virotherapy improves immunotherapies targeting cancer stemness in glioblastoma. Biochim Biophys Acta Gen Subj 2024; 1868:130662. [PMID: 38901497 DOI: 10.1016/j.bbagen.2024.130662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Despite advances in cancer therapies, glioblastoma (GBM) remains the most resistant and recurrent tumor in the central nervous system. GBM tumor microenvironment (TME) is a highly dynamic landscape consistent with alteration in tumor infiltration cells, playing a critical role in tumor progression and invasion. In addition, glioma stem cells (GSCs) with self-renewal capability promote tumor recurrence and induce therapy resistance, which all have complicated eradication of GBM with existing therapies. Oncolytic virotherapy is a promising field of therapy that can kill tumor cells in a targeted manner. Manipulated oncolytic viruses (OVs) improve cancer immunotherapy by directly lysis tumor cells, infiltrating antitumor cells, inducing immunogenic cell death, and sensitizing immune-resistant TME to an immune-responsive hot state. Importantly, OVs can target stemness-driven GBM progression. In this review, we will discuss how OVs as a therapeutic option target GBM, especially the GSC subpopulation, and induce immunogenicity to remodel the TME, which subsequently enhances immunotherapies' efficiency.
Collapse
Affiliation(s)
- Mohsen Keshavarz
- Department of Medical Virology, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran.
| | - Seyedeh Sara Ghorbanhosseini
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behrang Sarshari
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Li X, Gou W, Zhang X. Neuroinflammation in Glioblastoma: Progress and Perspectives. Brain Sci 2024; 14:687. [PMID: 39061427 PMCID: PMC11274945 DOI: 10.3390/brainsci14070687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Glioblastoma is the most common and malignant primary brain tumor, with high morbidity and mortality. Despite an aggressive, multimodal treatment regimen, including surgical resection followed by chemotherapy and radiotherapy, the prognosis of glioblastoma patients remains poor. One formidable challenge to advancing glioblastoma therapy is the complexity of the tumor microenvironment. The tumor microenvironment of glioblastoma is a highly dynamic and heterogeneous system that consists of not only cancerous cells but also various resident or infiltrating inflammatory cells. These inflammatory cells not only provide a unique tumor environment for glioblastoma cells to develop and grow but also play important roles in regulating tumor aggressiveness and treatment resistance. Targeting the tumor microenvironment, especially neuroinflammation, has increasingly been recognized as a novel therapeutic approach in glioblastoma. In this review, we discuss the components of the tumor microenvironment in glioblastoma, focusing on neuroinflammation. We discuss the interactions between different tumor microenvironment components as well as their functions in regulating glioblastoma pathogenesis and progression. We will also discuss the anti-tumor microenvironment interventions that can be employed as potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Xiaoqin Zhang
- Department of Pathology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Zheng Y, Wang X, Ji Q, Fang A, Song L, Xu X, Lin Y, Peng Y, Yu J, Xie L, Chen F, Li X, Zhu S, Zhang B, Zhou L, Yu C, Wang Y, Wang L, Hu H, Zhang Z, Liu B, Wu Z, Li W. OH2 oncolytic virus: A novel approach to glioblastoma intervention through direct targeting of tumor cells and augmentation of anti-tumor immune responses. Cancer Lett 2024; 589:216834. [PMID: 38537773 DOI: 10.1016/j.canlet.2024.216834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024]
Abstract
Glioblastoma (GBM), the deadliest central nervous system cancer, presents a poor prognosis and scant therapeutic options. Our research spotlights OH2, an oncolytic viral therapy derived from herpes simplex virus 2 (HSV-2), which demonstrates substantial antitumor activity and favorable tolerance in GBM. The extraordinary efficacy of OH2 emanates from its unique mechanisms: it selectively targets tumor cells replication, powerfully induces cytotoxic DNA damage stress, and kindles anti-tumor immune responses. Through single-cell RNA sequencing analysis, we discovered that OH2 not only curtails the proliferation of cancer cells and tumor-associated macrophages (TAM)-M2 but also bolsters the infiltration of macrophages, CD4+ and CD8+ T cells. Further investigation into molecular characteristics affecting OH2 sensitivity revealed potential influencers such as TTN, HMCN2 or IRS4 mutations, CDKN2A/B deletion and IDO1 amplification. This study marks the first demonstration of an HSV-2 derived OV's effectiveness against GBM. Significantly, these discoveries have driven the initiation of a phase I/II clinical trial (ClinicalTrials.gov: NCT05235074). This trial is designed to explore the potential of OH2 as a therapeutic option for patients with recurrent central nervous system tumors following surgical intervention.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaomin Wang
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qiang Ji
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Aizhong Fang
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lairong Song
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoying Xu
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Lin
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yichen Peng
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jianyu Yu
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lei Xie
- Department of Neurosurgery, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Feng Chen
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaojie Li
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sipeng Zhu
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Botao Zhang
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lili Zhou
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunna Yu
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - YaLi Wang
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Liang Wang
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Han Hu
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Ziyi Zhang
- Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Binlei Liu
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China.
| | - Zhen Wu
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
5
|
Scuderi SA, Ardizzone A, Salako AE, Pantò G, De Luca F, Esposito E, Capra AP. Pentraxin 3: A Main Driver of Inflammation and Immune System Dysfunction in the Tumor Microenvironment of Glioblastoma. Cancers (Basel) 2024; 16:1637. [PMID: 38730589 PMCID: PMC11083335 DOI: 10.3390/cancers16091637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Brain tumors are a heterogeneous group of brain neoplasms that are highly prevalent in individuals of all ages worldwide. Within this pathological framework, the most prevalent and aggressive type of primary brain tumor is glioblastoma (GB), a subtype of glioma that falls within the IV-grade astrocytoma group. The death rate for patients with GB remains high, occurring within a few months after diagnosis, even with the gold-standard therapies now available, such as surgery, radiation, or a pharmaceutical approach with Temozolomide. For this reason, it is crucial to continue looking for cutting-edge therapeutic options to raise patients' survival chances. Pentraxin 3 (PTX3) is a multifunctional protein that has a variety of regulatory roles in inflammatory processes related to extracellular matrix (ECM). An increase in PTX3 blood levels is considered a trustworthy factor associated with the beginning of inflammation. Moreover, scientific evidence suggested that PTX3 is a sensitive and earlier inflammation-related marker compared to the short pentraxin C-reactive protein (CRP). In several tumoral subtypes, via regulating complement-dependent and macrophage-associated tumor-promoting inflammation, it has been demonstrated that PTX3 may function as a promoter of cancer metastasis, invasion, and stemness. Our review aims to deeply evaluate the function of PTX3 in the pathological context of GB, considering its pivotal biological activities and its possible role as a molecular target for future therapies.
Collapse
Affiliation(s)
- Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| | - Ayomide Eniola Salako
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
- University of Florence, 50121 Florence, Italy
| | - Giuseppe Pantò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy;
| | - Fabiola De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| |
Collapse
|
6
|
Dougé A, El Ghazzi N, Lemal R, Rouzaire P. Adoptive T Cell Therapy in Solid Tumors: State-of-the Art, Current Challenges, and Upcoming Improvements. Mol Cancer Ther 2024; 23:272-284. [PMID: 37903371 DOI: 10.1158/1535-7163.mct-23-0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/18/2023] [Accepted: 10/25/2023] [Indexed: 11/01/2023]
Abstract
In solid tumors, three main complementary approaches of adoptive T-cell therapies were successively developed: tumor-infiltrating lymphocytes, chimeric antigen receptor engineered T cells, and high-affinity T-cell receptor engineered T cells. In this review, we summarized rational and main results of these three adoptive T-cell therapies in solid tumors field and gave an overview of encouraging data and their limits. Then, we listed the major remaining challenges (including tumor antigen loss, on-target/off-tumor effect, tumor access difficulties and general/local immunosubversion) and their lines of research. Finally, we gave insight into the ongoing trials in solid tumor.
Collapse
Affiliation(s)
- Aurore Dougé
- Medical Oncology Department, University Hospital, Clermont-Ferrand, France
- EA(UR)7453 CHELTER - Clermont Auvergne University, Clermont-Ferrand, France
| | - Nathan El Ghazzi
- Medical Oncology Department, University Hospital, Clermont-Ferrand, France
| | - Richard Lemal
- EA(UR)7453 CHELTER - Clermont Auvergne University, Clermont-Ferrand, France
- Histocompatibility and Immunogenetic Department, University Hospital, Clermont-Ferrand, France
| | - Paul Rouzaire
- EA(UR)7453 CHELTER - Clermont Auvergne University, Clermont-Ferrand, France
- Histocompatibility and Immunogenetic Department, University Hospital, Clermont-Ferrand, France
| |
Collapse
|
7
|
Noch EK, Palma LN, Yim I, Bullen N, Qiu Y, Ravichandran H, Kim J, Rendeiro A, Davis MB, Elemento O, Pisapia DJ, Zhai K, LeKaye HC, Koutcher JA, Wen PY, Ligon KL, Cantley LC. Insulin feedback is a targetable resistance mechanism of PI3K inhibition in glioblastoma. Neuro Oncol 2023; 25:2165-2176. [PMID: 37399061 PMCID: PMC10708938 DOI: 10.1093/neuonc/noad117] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND Insulin feedback is a critical mechanism responsible for the poor clinical efficacy of phosphatidylinositol 3-kinase (PI3K) inhibition in cancer, and hyperglycemia is an independent factor associated with poor prognosis in glioblastoma (GBM). We investigated combination anti-hyperglycemic therapy in a mouse model of GBM and evaluated the association of glycemic control in clinical trial data from patients with GBM. METHODS The effect of the anti-hyperglycemic regimens, metformin and the ketogenic diet, was evaluated in combination with PI3K inhibition in patient-derived GBM cells and in an orthotopic GBM mouse model. Insulin feedback and the immune microenvironment were retrospectively evaluated in blood and tumor tissue from a Phase 2 clinical trial of buparlisib in patients with recurrent GBM. RESULTS We found that PI3K inhibition induces hyperglycemia and hyperinsulinemia in mice and that combining metformin with PI3K inhibition improves the treatment efficacy in an orthotopic GBM xenograft model. Through examination of clinical trial data, we found that hyperglycemia was an independent factor associated with poor progression-free survival in patients with GBM. We also found that PI3K inhibition increased insulin receptor activation and T-cell and microglia abundance in tumor tissue from these patients. CONCLUSION Reducing insulin feedback improves the efficacy of PI3K inhibition in GBM in mice, and hyperglycemia worsens progression-free survival in patients with GBM treated with PI3K inhibition. These findings indicate that hyperglycemia is a critical resistance mechanism associated with PI3K inhibition in GBM and that anti-hyperglycemic therapy may enhance PI3K inhibitor efficacy in GBM patients.
Collapse
Affiliation(s)
- Evan K Noch
- Division of Neuro-oncology, Department of Neurology, Weill Cornell Medicine, New York, New York, USA
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, New York, New York, USA
| | - Laura N Palma
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, New York, New York, USA
| | - Isaiah Yim
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, New York, New York, USA
| | - Nayah Bullen
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, New York, New York, USA
| | - Yuqing Qiu
- Department of Population Health Sciences, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, New York, USA
| | - Hiranmayi Ravichandran
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Junbum Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Andre Rendeiro
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Medical University of Vienna, Vienna, Austria
| | - Melissa B Davis
- Department of Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, USA
| | - David J Pisapia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Kevin Zhai
- Division of Neuro-oncology, Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | - Hongbiao Carl LeKaye
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jason A Koutcher
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Patrick Y Wen
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Neuro-oncology, Boston, Massachusetts, USA
| | - Keith L Ligon
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Pathology, Boston, Massachusetts, USA
| | - Lewis C Cantley
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Liu W, Zhao Y, Liu Z, Zhang G, Wu H, Zheng X, Tang X, Chen Z. Therapeutic effects against high-grade glioblastoma mediated by engineered induced neural stem cells combined with GD2-specific CAR-NK. Cell Oncol (Dordr) 2023; 46:1747-1762. [PMID: 37420122 DOI: 10.1007/s13402-023-00842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
PURPOSE High-grade glioblastoma is extremely challenging to treat because of its aggressiveness and resistance to conventional chemo- and radio-therapies. On the contrary, genetic and cellular immunotherapeutic strategies based on the stem and immune cells are emerging as promising treatments against glioblastoma (GBM). We aimed to developed a novel combined immunotherapeutic strategy to improve the treatment efficacy using genetically engineered PBMC-derived induced neural stem cells (iNSCs) expressing HSV-TK and second-generation CAR-NK cells against GBM. METHODS iNSCs cells expressing HSV-TK (iNSCsTK) and GD2-specific CAR-NK92 (GD2NK92) were generated from PBMC-derived iNSCs and NK92 cell lines, respectively. The anti-tumor effect of iNSCsTK and the combinational therapeutics of iNSCsTK and GD2NK92 were evaluated by GBM cell line using in vitro and in vivo experiments. RESULTS PBMC-derived iNSCsTK possessed tumor-tropism migration ability in vitro and in vivo, which exhibited considerable anti-tumor activity via bystander effect in the presence of ganciclovir (GCV). iNSCsTK/GCV could slow GBM progression and prolong median survival in tumor-bearing mice. However, the anti-tumor effect was limited to single therapy. Therefore, the combinational therapeutic effect of iNSCsTK/GCV and GD2NK92 against GBM was investigated. This approach displayed a more significant anti-tumor effect in vitro and in xenograft tumor mice. CONCLUSIONS PBMC-derived iNSCsTK showed a significant tumor-tropic migration and an effective anti-tumor activity with GCV in vitro and in vivo. In addition, combined with GD2NK92, iNSCsTK therapeutic efficacy improved dramatically to prolong the tumor-bearing animal model's median survival.
Collapse
Affiliation(s)
- Weihua Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Yu Zhao
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Zhongfeng Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Guangji Zhang
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Huantong Wu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Xin Zheng
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Xihe Tang
- Neurosurgery Center of Aeronautical General Hospital, Beijing, 100012, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China.
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China.
- , Beijing, China.
| |
Collapse
|
9
|
Agosti E, Zeppieri M, De Maria L, Tedeschi C, Fontanella MM, Panciani PP, Ius T. Glioblastoma Immunotherapy: A Systematic Review of the Present Strategies and Prospects for Advancements. Int J Mol Sci 2023; 24:15037. [PMID: 37894718 PMCID: PMC10606063 DOI: 10.3390/ijms242015037] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Glioblastoma (GBM) is characterized by aggressive growth and high rates of recurrence. Despite the advancements in conventional therapies, the prognosis for GBM patients remains poor. Immunotherapy has recently emerged as a potential treatment option. The aim of this systematic review is to assess the current strategies and future perspectives of the GBM immunotherapy strategies. A systematic search was conducted across major medical databases (PubMed, Embase, and Cochrane Library) up to 3 September 2023. The search strategy utilized relevant Medical Subject Heading (MeSH) terms and keywords related to "glioblastomas," "immunotherapies," and "treatment." The studies included in this review consist of randomized controlled trials, non-randomized controlled trials, and cohort studies reporting on the use of immunotherapies for the treatment of gliomas in human subjects. A total of 1588 papers are initially identified. Eligibility is confirmed for 752 articles, while 655 are excluded for various reasons, including irrelevance to the research topic (627), insufficient method and results details (12), and being case-series or cohort studies (22), systematic literature reviews, or meta-analyses (3). All the studies within the systematic review were clinical trials spanning from 1995 to 2023, involving 6383 patients. Neuro-oncology published the most glioma immunotherapy-related clinical trials (15/97, 16%). Most studies were released between 2018 and 2022, averaging nine publications annually during this period. Adoptive cellular transfer chimeric antigen receptor (CAR) T cells were the primary focus in 11% of the studies, with immune checkpoint inhibitors (ICIs), oncolytic viruses (OVs), and cancer vaccines (CVs) comprising 26%, 12%, and 51%, respectively. Phase-I trials constituted the majority at 51%, while phase-III trials were only 7% of the total. Among these trials, 60% were single arm, 39% double arm, and one multi-arm. Immunotherapies were predominantly employed for recurrent GBM (55%). The review also revealed ongoing clinical trials, including 9 on ICIs, 7 on CVs, 10 on OVs, and 8 on CAR T cells, totaling 34 trials, with phase-I trials representing the majority at 53%, and only one in phase III. Overcoming immunotolerance, stimulating robust tumor antigen responses, and countering immunosuppressive microenvironment mechanisms are critical for curative GBM immunotherapy. Immune checkpoint inhibitors, such as PD-1 and CTLA-4 inhibitors, show promise, with the ongoing research aiming to enhance their effectiveness. Personalized cancer vaccines, especially targeting neoantigens, offer substantial potential. Oncolytic viruses exhibited dual mechanisms and a breakthrough status in the clinical trials. CAR T-cell therapy, engineered for specific antigen targeting, yields encouraging results, particularly against IL13 Rα2 and EGFRvIII. The development of second-generation CAR T cells with improved specificity exemplifies their adaptability.
Collapse
Affiliation(s)
- Edoardo Agosti
- Department of Medical and Surgical Specialties, Division of Neurosurgery, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, P.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Lucio De Maria
- Department of Medical and Surgical Specialties, Division of Neurosurgery, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Camilla Tedeschi
- Department of Medical and Surgical Specialties, Division of Neurosurgery, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Marco Maria Fontanella
- Department of Medical and Surgical Specialties, Division of Neurosurgery, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Pier Paolo Panciani
- Department of Medical and Surgical Specialties, Division of Neurosurgery, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and NeuroScience Department, University Hospital of Udine, P.le S. Maria della Misericordia 15, 33100 Udine, Italy
| |
Collapse
|
10
|
Ming Y, Luo C, Ji B, Cheng J. ARPC5 acts as a potential prognostic biomarker that is associated with cell proliferation, migration and immune infiltrate in gliomas. BMC Cancer 2023; 23:937. [PMID: 37789267 PMCID: PMC10548738 DOI: 10.1186/s12885-023-11433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Gliomas are the most common malignant brain tumors, with powerful invasiveness and an undesirable prognosis. Actin related protein 2/3 complex subunit 5 (ARPC5) encodes a component of the Arp2/3 protein complex, which plays a significant role in regulating the actin cytoskeleton. However, the prognostic values and biological functions of ARPC5 in gliomas remain unclear. METHODS Based on the TCGA, GEO, HPA, and UALCAN database, we determined the expression of ARPC5 in glioma. The results were verified by immunohistochemistry and Western blot analysis of glioma samples. Moreover, Kaplan-Meier curves, ROC curves, Cox regression analyses, and prognostic nomograms were used to observe the correlation between the ARPC5 expression and the prognosis of glioma patients. GO and KEGG enrichment analyses were conducted to identify immune-related pathways involved with the differential expression of ARPC5. Subsequently, the TCGA database was used to estimate the relationship between ARPC5 expression and immunity-related indexes, such as immune scores, infiltrating immune cells, and TMB. The TCIA database was used to assess the correlation between ARPC5 with immunotherapy. The association between ARPC5 and T cells marker CD3 was also evaluated through immunohistochemistry methods. The correlation between ARPC5 and T cell, as well as the prognosis of patients, was also evaluated using immunological methods. Moreover, the effect of ARPC5 on the biological characteristics of LN229 and U251 cells was determined by MTT, clone formation, and transwell migration assay. RESULTS The high degree of ARPC5 was correlated with worse prognosis and unfavorable clinical characteristics of glioma patients. In the analysis of GO and KEGG, it is shown that ARPC5 was strongly correlated with multiple immune-related signaling pathways. The single-cell analysis revealed that ARPC5 expression was increased in astrocytes, monocytes and T cells. In addition, ARPC5 expression was strongly associated with immune scores, infiltrating immune cells, TMB, MSI, immune biomarkers, and immunotherapy. In experimental analysis, we found that ARPC5 was significantly overexpressed in gliomas and closely correlated with patient prognosis and CD3 expression. Functionally, the knockout of ARPC5 significantly reduced the proliferation and invasion of LN229 and U251 cells. CONCLUSIONS Our study revealed that the high expression level of ARPC5 may serve as a promising prognostic biomarker and be associated with tumor immunity in glioma.
Collapse
Affiliation(s)
- Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Networks, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyuan Luo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Networks, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Beihong Ji
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pennsylvania, USA
| | - Jian Cheng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
Maeoka R, Nakazawa T, Matsuda R, Morimoto T, Shida Y, Yamada S, Nishimura F, Nakamura M, Nakagawa I, Park YS, Tsujimura T, Nakase H. Therapeutic Anti-KIR Antibody of 1-7F9 Attenuates the Antitumor Effects of Expanded and Activated Human Primary Natural Killer Cells on In Vitro Glioblastoma-like Cells and Orthotopic Tumors Derived Therefrom. Int J Mol Sci 2023; 24:14183. [PMID: 37762486 PMCID: PMC10531877 DOI: 10.3390/ijms241814183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Glioblastoma (GBM) is the leading malignant intracranial tumor, where prognosis for which has remained extremely poor for two decades. Immunotherapy has recently drawn attention as a cancer treatment, including for GBM. Natural killer (NK) cells are immune cells that attack cancer cells directly and produce antitumor immunity-related cytokines. The adoptive transfer of expanded and activated NK cells is expected to be a promising GBM immunotherapy. We previously established an efficient expansion method that produced highly purified, activated primary human NK cells, which we designated genuine induced NK cells (GiNKs). The GiNKs demonstrated antitumor effects in vitro and in vivo, which were less affected by blockade of the inhibitory checkpoint receptor programmed death 1 (PD-1). In the present study, we assessed the antitumor effects of GiNKs, both alone and combined with an antibody targeting killer Ig-like receptor 2DLs (KIR2DL1 and DL2/3, both inhibitory checkpoint receptors of NK cells) in vitro and in vivo with U87MG GBM-like cells and the T98G GBM cell line. Impedance-based real-time cell growth assays and apoptosis detection assays revealed that the GiNKs exhibited growth inhibitory effects on U87MG and T98G cells by inducing apoptosis. KIR2DL1 blockade attenuated the growth inhibition of the cell lines in vitro. The intracranial administration of GiNKs prolonged the overall survival of the U87MG-derived orthotopic xenograft brain tumor model. The KIR2DL1 blockade did not enhance the antitumor effects; rather, it attenuated it in the same manner as in the in vitro experiment. GiNK immunotherapy directly administered to the brain could be a promising immunotherapeutic alternative for patients with GBM. Furthermore, KIR2DL1 blockade appeared to require caution when used concomitantly with GiNKs.
Collapse
Affiliation(s)
- Ryosuke Maeoka
- Department of Neurosurgery, Nara Medical University, Nara 634-8521, Japan; (R.M.); (T.M.); (Y.S.); (S.Y.); (F.N.); (M.N.); (I.N.); (Y.-S.P.); (H.N.)
| | - Tsutomu Nakazawa
- Department of Neurosurgery, Nara Medical University, Nara 634-8521, Japan; (R.M.); (T.M.); (Y.S.); (S.Y.); (F.N.); (M.N.); (I.N.); (Y.-S.P.); (H.N.)
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Japan;
- Clinic Grandsoul Nara, Uda 633-2221, Japan
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Nara 634-8521, Japan; (R.M.); (T.M.); (Y.S.); (S.Y.); (F.N.); (M.N.); (I.N.); (Y.-S.P.); (H.N.)
| | - Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Nara 634-8521, Japan; (R.M.); (T.M.); (Y.S.); (S.Y.); (F.N.); (M.N.); (I.N.); (Y.-S.P.); (H.N.)
| | - Yoichi Shida
- Department of Neurosurgery, Nara Medical University, Nara 634-8521, Japan; (R.M.); (T.M.); (Y.S.); (S.Y.); (F.N.); (M.N.); (I.N.); (Y.-S.P.); (H.N.)
| | - Shuichi Yamada
- Department of Neurosurgery, Nara Medical University, Nara 634-8521, Japan; (R.M.); (T.M.); (Y.S.); (S.Y.); (F.N.); (M.N.); (I.N.); (Y.-S.P.); (H.N.)
| | - Fumihiko Nishimura
- Department of Neurosurgery, Nara Medical University, Nara 634-8521, Japan; (R.M.); (T.M.); (Y.S.); (S.Y.); (F.N.); (M.N.); (I.N.); (Y.-S.P.); (H.N.)
| | - Mitsutoshi Nakamura
- Department of Neurosurgery, Nara Medical University, Nara 634-8521, Japan; (R.M.); (T.M.); (Y.S.); (S.Y.); (F.N.); (M.N.); (I.N.); (Y.-S.P.); (H.N.)
- Clinic Grandsoul Nara, Uda 633-2221, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Nara 634-8521, Japan; (R.M.); (T.M.); (Y.S.); (S.Y.); (F.N.); (M.N.); (I.N.); (Y.-S.P.); (H.N.)
| | - Young-Soo Park
- Department of Neurosurgery, Nara Medical University, Nara 634-8521, Japan; (R.M.); (T.M.); (Y.S.); (S.Y.); (F.N.); (M.N.); (I.N.); (Y.-S.P.); (H.N.)
| | - Takahiro Tsujimura
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Japan;
- Clinic Grandsoul Nara, Uda 633-2221, Japan
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, Nara 634-8521, Japan; (R.M.); (T.M.); (Y.S.); (S.Y.); (F.N.); (M.N.); (I.N.); (Y.-S.P.); (H.N.)
| |
Collapse
|
12
|
Qin L, Ren Q, Lu C, Zhu T, Lu Y, Chen S, Tong S, Jiang X, Lyu Z. Screening and anti-glioma activity of Chiloscyllium plagiosum anti-human IL-13Rα2 single-domain antibody. Immunology 2023; 170:105-119. [PMID: 37190788 DOI: 10.1111/imm.13658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Glioblastoma is a common and fatal malignant tumour of the central nervous system, with high invasiveness. Conventional treatments for this disease, including comprehensive treatment of surgical resection combined with chemoradiotherapy, are ineffective, with low survival rate and extremely poor prognosis. Targeted therapy is promising in overcoming the difficulties in brain tumour treatment and IL-13Rα2 is a widely watched target. The development of new therapies for glioma, however, is challenged by factors, such as the unique location and immune microenvironment of gliomas. The unique advantages of single-domain antibodies (sdAbs) may provide a novel potential treatment for brain tumours. In this study, Chiloscyllium plagiosum was immunized with recombinant IL-13Rα2 protein to produce sdAb and sdAb sequences were screened by multi-omics. The targeted sdAb genes obtained were efficiently expressed in the Escherichia coli prokaryotic expression system, showing a significant binding capacity to IL-13Rα2 in vitro. The cell proliferation and migration inhibitory effects of recombinant variable domain of the new antigen receptor (VNAR) on glioma cells were detected by CCK-8 and cell scratch assays. The sdAb obtained in this study showed high in vitro activity and favourable cell proliferation inhibitory effect on glioma cells, with potential clinical application value. The present study also provides a new direction and experimental basis for the development of targeted therapies for glioma.
Collapse
Affiliation(s)
- Lanyi Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qingyu Ren
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chaoling Lu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tianci Zhu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yijun Lu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shuangxing Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shuna Tong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaofeng Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhengbing Lyu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
13
|
Bartolomé RA, Casal JI. Proteomic profiling and network biology of colorectal cancer liver metastasis. Expert Rev Proteomics 2023; 20:357-370. [PMID: 37874121 DOI: 10.1080/14789450.2023.2275681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Tissue-based proteomic studies of colorectal cancer (CRC) metastasis have delivered fragmented results, with very few therapeutic targets and prognostic biomarkers moving beyond the discovery phase. This situation is likely due to the difficulties in obtaining and analyzing large numbers of patient-derived metastatic samples, the own heterogeneity of CRC, and technical limitations in proteomics discovery. As an alternative, metastatic CRC cell lines provide a flexible framework to investigate the underlying mechanisms and network biology of metastasis for target discovery. AREAS COVERED In this perspective, we comment on different in-depth proteomic studies of metastatic versus non-metastatic CRC cell lines. Identified metastasis-related proteins are introduced and discussed according to the spatial location in different cellular fractions, with special emphasis on membrane/adhesion proteins, secreted proteins, and nuclear factors, including miRNAs associated with liver metastasis. Moreover, we analyze the biological significance and potential therapeutic applications of the identified liver metastasis-related proteins. EXPERT OPINION The combination of protein discovery and functional analysis is the only way to accelerate the progress to clinical translation of the proteomic-derived findings in a relatively fast pace. Patient-derived organoids represent a promising alternative to patient tissues and cell lines, but further optimizations are still required for achieving solid and reproducible results.
Collapse
Affiliation(s)
- Rubén A Bartolomé
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| | - J Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| |
Collapse
|
14
|
Wang C, Li Y, Gu L, Chen R, Zhu H, Zhang X, Zhang Y, Feng S, Qiu S, Jian Z, Xiong X. Gene Targets of CAR-T Cell Therapy for Glioblastoma. Cancers (Basel) 2023; 15:cancers15082351. [PMID: 37190280 DOI: 10.3390/cancers15082351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive primary brain tumor with a poor prognosis following conventional therapeutic interventions. Moreover, the blood-brain barrier (BBB) severely impedes the permeation of chemotherapy drugs, thereby reducing their efficacy. Consequently, it is essential to develop novel GBM treatment methods. A novel kind of pericyte immunotherapy known as chimeric antigen receptor T (CAR-T) cell treatment uses CAR-T cells to target and destroy tumor cells without the aid of the antigen with great specificity and in a manner that is not major histocompatibility complex (MHC)-restricted. It has emerged as one of the most promising therapy techniques with positive clinical outcomes in hematological cancers, particularly leukemia. Due to its efficacy in hematologic cancers, CAR-T cell therapy could potentially treat solid tumors, including GBM. On the other hand, CAR-T cell treatment has not been as therapeutically effective in treating GBM as it has in treating other hematologic malignancies. CAR-T cell treatments for GBM have several challenges. This paper reviewed the use of CAR-T cell therapy in hematologic tumors and the selection of targets, difficulties, and challenges in GBM.
Collapse
Affiliation(s)
- Chaoqun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 310009, China
| | - Yuntao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 310009, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ran Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yonggang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shi Feng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Sheng Qiu
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 310009, China
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, Huzhou 313003, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 310009, China
| |
Collapse
|
15
|
Individualized Multimodal Immunotherapy for Adults with IDH1 Wild-Type GBM: A Single Institute Experience. Cancers (Basel) 2023; 15:cancers15041194. [PMID: 36831536 PMCID: PMC9954396 DOI: 10.3390/cancers15041194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Synergistic activity between maintenance temozolomide (TMZm) and individualized multimodal immunotherapy (IMI) during/after first-line treatment has been suggested to improve the overall survival (OS) of adults with IDH1 wild-type MGMT promoter-unmethylated (unmeth) GBM. We expand the data and include the OS of MGMT promoter-methylated (meth) adults with GBM. Unmeth (10 f, 18 m) and meth (12 f, 10 m) patients treated between 27 May 2015 and 1 January 2022 were analyzed retrospectively. There were no differences in age (median: 48 y) or Karnofsky performance index (median: 80). The IMI consisted of 5-day immunogenic cell death (ICD) therapies during TMZm: Newcastle disease virus (NDV) bolus injections and sessions of modulated electrohyperthermia (mEHT); subsequent active specific immunotherapy: dendritic cell (DC) vaccines plus modulatory immunotherapy; and maintenance ICD therapy. There were no differences in the number of vaccines (median: 2), total number of DCs (median: 25.6 × 106), number of NDV injections (median: 31), and number of mEHT sessions (median: 28) between both groups. The median OS of 28 unmeth patients was 22 m (2y-OS: 39%), confirming previous results. OS of 22 meth patients was significantly better (p = 0.0414) with 38 m (2y-OS: 81%). There were no major treatment-related adverse reactions. The addition of IMI during/after standard of care should be prospectively explored.
Collapse
|
16
|
Raghu ALB, Chen JA, Valdes PA, Essayed WI, Claus E, Arnaout O, Smith TR, Chiocca EA, Peruzzi PP, Bernstock JD. Cerebellar High-Grade Glioma: A Translationally Oriented Review of the Literature. Cancers (Basel) 2022; 15:174. [PMID: 36612169 PMCID: PMC9818238 DOI: 10.3390/cancers15010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
World Health Organization (WHO) grade 4 gliomas of the cerebellum are rare entities whose understanding trails that of their supratentorial counterparts. Like supratentorial high-grade gliomas (sHGG), cerebellar high-grade gliomas (cHGG) preferentially affect males and prognosis is bleak; however, they are more common in a younger population. While current therapy for cerebellar and supratentorial HGG is the same, recent molecular analyses have identified features and subclasses of cerebellar tumors that may merit individualized targeting. One recent series of cHGG included the subclasses of (1) high-grade astrocytoma with piloid features (HGAP, ~31% of tumors); (2) H3K27M diffuse midline glioma (~8%); and (3) isocitrate dehydrogenase (IDH) wildtype glioblastoma (~43%). The latter had an unusually low-frequency of epidermal growth factor receptor (EGFR) and high-frequency of platelet-derived growth factor receptor alpha (PDGFRA) amplification, reflecting a different composition of methylation classes compared to supratentorial IDH-wildtype tumors. These new classifications have begun to reveal insights into the pathogenesis of HGG in the cerebellum and lead toward individualized treatment targeted toward the appropriate subclass of cHGG. Emerging therapeutic strategies include targeting the mitogen-activated protein kinases (MAPK) pathway and PDGFRA, oncolytic virotherapy, and immunotherapy. HGGs of the cerebellum exhibit biological differences compared to sHGG, and improved understanding of their molecular subclasses has the potential to advance treatment.
Collapse
Affiliation(s)
- Ashley L. B. Raghu
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Oxford Functional Neurosurgery Group, Nuffield Departments of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Jason A. Chen
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pablo A. Valdes
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Walid Ibn Essayed
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth Claus
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy R. Smith
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pier Paolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
17
|
Zhang X, Zhao L, Zhang H, Zhang Y, Ju H, Wang X, Ren H, Zhu X, Dong Y. The immunosuppressive microenvironment and immunotherapy in human glioblastoma. Front Immunol 2022; 13:1003651. [PMID: 36466873 PMCID: PMC9712217 DOI: 10.3389/fimmu.2022.1003651] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/01/2022] [Indexed: 08/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant intracranial tumor in adults, characterized by extensive infiltrative growth, high vascularization, and resistance to multiple therapeutic approaches. Among the many factors affecting the therapeutic effect, the immunosuppressive GBM microenvironment that is created by cells and associated molecules via complex mechanisms plays a particularly important role in facilitating evasion of the tumor from the immune response. Accumulating evidence is also revealing a close association of the gut microbiota with the challenges in the treatment of GBM. The gut microbiota establishes a connection with the central nervous system through bidirectional signals of the gut-brain axis, thus affecting the occurrence and development of GBM. In this review, we discuss the key immunosuppressive components in the tumor microenvironment, along with the regulatory mechanism of the gut microbiota involved in immunity and metabolism in the GBM microenvironment. Lastly, we concentrate on the immunotherapeutic strategies currently under investigation, which hold promise to overcome the hurdles of the immunosuppressive tumor microenvironment and improve the therapeutic outcome for patients with GBM.
Collapse
Affiliation(s)
- Xuehua Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Leilei Zhao
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - He Zhang
- Department of Immunology, Qiqihar Medical University, Qiqihar, China
| | - Yurui Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Huanyu Ju
- Department of Immunology, Harbin Medical University, Harbin, China
| | - Xiaoyu Wang
- Department of Neurology, Hongda Hospital, Jinxiang, China
| | - Huan Ren
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiao Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Yucui Dong
- Department of Immunology, Binzhou Medical University, Yantai, China
| |
Collapse
|
18
|
Site-Specific Considerations on Engineered T Cells for Malignant Gliomas. Biomedicines 2022; 10:biomedicines10071738. [PMID: 35885047 PMCID: PMC9312945 DOI: 10.3390/biomedicines10071738] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy has revolutionized cancer treatment. Despite the recent advances in immunotherapeutic approaches for several tumor entities, limited response has been observed in malignant gliomas, including glioblastoma (GBM). Conversely, one of the emerging immunotherapeutic modalities is chimeric antigen receptors (CAR) T cell therapy, which demonstrated promising clinical responses in other solid tumors. Current pre-clinical and interventional clinical studies suggest improved efficacy when CAR-T cells are delivered locoregionally, rather than intravenously. In this review, we summarize possible CAR-T cell administration routes including locoregional therapy, systemic administration with and without focused ultrasound, direct intra-arterial drug delivery and nanoparticle-enhanced delivery in glioma. Moreover, we discuss published as well as ongoing and planned clinical trials involving CAR-T cell therapy in malignant glioma. With increasing neoadjuvant and/or adjuvant combinatorial immunotherapeutic concepts and modalities with specific modes of action for malignant glioma, selection of administration routes becomes increasingly important.
Collapse
|
19
|
Cheng W, Su YL, Hsu HH, Lin YH, Chu LA, Huang WC, Lu YJ, Chiang CS, Hu SH. Rabies Virus Glycoprotein-Mediated Transportation and T Cell Infiltration to Brain Tumor by Magnetoelectric Gold Yarnballs. ACS NANO 2022; 16:4014-4027. [PMID: 35225594 DOI: 10.1021/acsnano.1c09601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
T lymphocyte infiltration with immunotherapy potentially suppresses most devastating brain tumors. However, local immune privilege and tumor heterogeneity usually limit the penetration of immune cells and therapeutic agents into brain tumors, leading to tumor recurrence after treatment. Here, a rabies virus glycoprotein (RVG)-camouflaged gold yarnball (RVG@GY) that can boost the targeting efficiency at a brain tumor via dual hierarchy- and RVG-mediated spinal cord transportation, facilitating the decrease of tumor heterogeneity for T cell infiltration, is developed. Upon magnetoelectric irradiation, the electron current generated on the GYs activates the electrolytic penetration of palbociclib-loaded dendrimer (Den[Pb]) deep into tumors. In addition, the high-density GYs at brain tumors also induces the disruption of cell-cell interactions and T cell infiltration. The integration of the electrolytic effects and T cell infiltration promoted by drug-loaded RVG@GYs deep in the brain tumor elicits sufficient T cell numbers and effectively prolongs the survival rate of mice with orthotopic brain tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei-Chen Huang
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | | | | |
Collapse
|
20
|
The Combined Use of 5-ALA and Chlorin e6 Photosensitizers for Fluorescence-Guided Resection and Photodynamic Therapy under Neurophysiological Control for Recurrent Glioblastoma in the Functional Motor Area after Ineffective Use of 5-ALA: Preliminary Results. Bioengineering (Basel) 2022; 9:bioengineering9030104. [PMID: 35324793 PMCID: PMC8945443 DOI: 10.3390/bioengineering9030104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022] Open
Abstract
The treatment of glial brain tumors is an unresolved problem in neurooncology, and all existing methods (tumor resection, chemotherapy, radiotherapy, radiosurgery, fluorescence diagnostics, photodynamic therapy, etc.) are directed toward increasing progression-free survival for patients. Fluorescence diagnostics and photodynamic therapy are promising methods for achieving gross total resection and additional treatment of residual parts of the tumor. However, sometimes the use of one photosensitizer for photodynamic therapy does not help, and the time until tumor relapse barely increases. This translational case report describes the preliminary results of the first combined use of 5-ALA and chlorin e6 photosensitizers for fluorescence-guided resection and photodynamic therapy of glioblastoma, which allowed us to perform total resection of tumor tissue according to magnetic resonance and computed tomography images, remove additional tissue with increased fluorescence intensity without neurophysiological consequences, and perform additional therapy. Two months after surgery, no recurrent tumor and no contrast uptake in the tumor bed were detected. Additionally, the patient had ischemic changes in the access zone and along the periphery and cystic-glial changes in the left parietal lobe.
Collapse
|
21
|
Yu N, Aboud O. Metabolomics in High Grade Gliomas. RAS ONCOLOGY & THERAPY 2022; 3:17. [PMID: 36643416 PMCID: PMC9839194 DOI: 10.51520/2766-2586-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gliomas are central nervous system (CNS) cancers that are challenging to treat due to their high proliferation and mutation rates. High grade gliomas include grade 3 and grade 4 tumors, which characteristically have a poor prognosis despite advancements in diagnostic methods and therapeutic options. Advances in metabolomics are resulting in more insight as to how cancer modifies the metabolism of the cell and surrounding tissue. Hence, this avenue of research may also emerge as a way to precisely target metabolites unique to gliomas. These biomarkers may provide opportunities for glioma diagnosis, prognosis and future therapeutic intervention. In this review, we harvest the literature that highlights notable biomolecules in high grade gliomas and promising therapeutic targets and interventions.
Collapse
Affiliation(s)
- Nina Yu
- University of California, Davis School of Medicine, Sacramento, CA, United States
| | - Orwa Aboud
- Department of Neurology and Neurological Surgery, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
22
|
Chowdhury S, Bappy MH, Clocchiatti-Tuozzo S, Cheeti S, Chowdhury S, Patel V. Current Advances in Immunotherapy for Glioblastoma Multiforme and Future Prospects. Cureus 2021; 13:e20604. [PMID: 35103180 PMCID: PMC8782638 DOI: 10.7759/cureus.20604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma is the most frequent and malignant type of brain tumor. It has a reputation for being resistant to current treatments, and the prognosis is still bleak. Immunotherapies have transformed the treatment of a variety of cancers, and they provide great hope for glioblastoma, although they have yet to be successful. The justification for immune targeting of glioblastoma and the obstacles that come with treating these immunosuppressive tumors are reviewed in this paper. Cancer vaccines, oncolytic viruses (OVs), checkpoint blockade medications, adoptive cell transfer (ACT), chimeric antigen receptor (CAR) T-cells, and nanomedicine-based immunotherapies are among the novel immune-targeting therapies researched in glioblastoma. Key clinical trial outcomes and current trials for each method are presented from a clinical standpoint. Finally, constraints, whether biological or due to trial design, are discussed, along with solutions for overcoming them. In glioblastoma, proof of efficacy for immunotherapy approaches has yet to be demonstrated, but our rapidly growing understanding of the disease’s biology and immune microenvironment, as well as the emergence of novel promising combinatorial approaches, may allow researchers to finally meet the medical need for patients with glioblastoma multiforme (GBM).
Collapse
|
23
|
Baulu E, Dougé A, Chuvin N, Bay JO, Depil S. [T cell-based immunotherapies in solid tumors]. Bull Cancer 2021; 108:S96-S108. [PMID: 34920813 DOI: 10.1016/j.bulcan.2021.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/08/2022]
Abstract
In solid tumors, adoptive T cell therapies based on ex vivo amplification of antitumor T cell are represented by three main complementary approaches : (i) tumor infiltrating lymphocytes (TILs) which are amplified in vitro before reinjection to the patient, (ii) chimeric antigen receptor (CAR) engineered T cells and (iii) T cell receptor (TCR) engineered T cells. Despite encouraging results, some obstacles remain, such as optimal target selection and tumor microenvironment. In this Review, we discuss pros and cons of these different therapeutic strategies that may open new perspectives in the treatment of solid tumors.
Collapse
Affiliation(s)
- Estelle Baulu
- Centre de recherche en cancérologie de Lyon, 28, rue Laennec, 69008 Lyon, France; ErVaccine Technologies, 28, rue Laennec, 69008 Lyon, France
| | - Aurore Dougé
- CHU Estaing, service d'hématologie, 1, rue Lucie et Raymond Aubrac, 63100 Clermont-Ferrand, France
| | - Nicolas Chuvin
- ErVaccine Technologies, 28, rue Laennec, 69008 Lyon, France
| | - Jacques-Olivier Bay
- CHU Estaing, service d'hématologie, 1, rue Lucie et Raymond Aubrac, 63100 Clermont-Ferrand, France; Faculté de médecine, 28, place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Stéphane Depil
- Centre de recherche en cancérologie de Lyon, 28, rue Laennec, 69008 Lyon, France; ErVaccine Technologies, 28, rue Laennec, 69008 Lyon, France; Centre Léon Bérard, 28, Prom. Léa et Napoléon Bullukian, 69008 Lyon, France; Université Claude-Bernard Lyon 1, 43, boulevard du 11 novembre 1918, 69100 Villeurbanne, France.
| |
Collapse
|
24
|
Jansen JA, Omuro A, Lucca LE. T cell dysfunction in glioblastoma: a barrier and an opportunity for the development of successful immunotherapies. Curr Opin Neurol 2021; 34:827-833. [PMID: 34569985 PMCID: PMC8595795 DOI: 10.1097/wco.0000000000000988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Immunotherapies such as immune checkpoint blockade have revolutionized cancer treatment, but current approaches have failed to improve outcomes in glioblastoma and other brain tumours. T cell dysfunction has emerged as one of the major barriers for the development of central nervous system (CNS)-directed immunotherapy. Here, we explore the unique requirements that T cells must fulfil to ensure immune surveillance in the CNS, and we analyse T cell dysfunction in glioblastoma (GBM) through the prism of CNS-resident immune responses. RECENT FINDINGS Using comprehensive and unbiased techniques such as single-cell RNA sequencing, multiple studies have dissected the transcriptional state of CNS-resident T cells that patrol the homeostatic brain. A similar approach has revealed that in GBM, tumour-infiltrating T cells lack the hallmarks of antigen-driven exhaustion typical of melanoma and other solid tumours, suggesting the need for better presentation of tumour-derived antigens. Consistently, in a mouse model of GBM, increasing lymphatic drainage to the cervical lymph node was sufficient to promote tumour rejection. SUMMARY For the success of future immunotherapy strategies, further work needs to explore the natural history of dysfunction in GBM tumour-infiltrating T cells, establish whether these originate from CNS-resident T cells and how they can be manipulated therapeutically.
Collapse
Affiliation(s)
- Josephina A. Jansen
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, USA
| | | | - Liliana E. Lucca
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, USA
| |
Collapse
|
25
|
Ex Vivo Expanded and Activated Natural Killer Cells Prolong the Overall Survival of Mice with Glioblastoma-like Cell-Derived Tumors. Int J Mol Sci 2021; 22:ijms22189975. [PMID: 34576141 PMCID: PMC8472834 DOI: 10.3390/ijms22189975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the leading malignant intracranial tumor and is associated with a poor prognosis. Highly purified, activated natural killer (NK) cells, designated as genuine induced NK cells (GiNKs), represent a promising immunotherapy for GBM. We evaluated the anti-tumor effect of GiNKs in association with the programmed death 1(PD-1)/PD-ligand 1 (PD-L1) immune checkpoint pathway. We determined the level of PD-1 expression, a receptor known to down-regulate the immune response against malignancy, on GiNKs. PD-L1 expression on glioma cell lines (GBM-like cell line U87MG, and GBM cell line T98G) was also determined. To evaluate the anti-tumor activity of GiNKs in vivo, we used a xenograft model of subcutaneously implanted U87MG cells in immunocompromised NOG mice. The GiNKs expressed very low levels of PD-1. Although PD-L1 was expressed on U87MG and T98G cells, the expression levels were highly variable. Our xenograft model revealed that the retro-orbital administration of GiNKs and interleukin-2 (IL-2) prolonged the survival of NOG mice bearing subcutaneous U87MG-derived tumors. PD-1 blocking antibodies did not have an additive effect with GiNKs for prolonging survival. GiNKs may represent a promising cell-based immunotherapy for patients with GBM and are minimally affected by the PD-1/PD-L1 immune evasion axis in GBM.
Collapse
|
26
|
Sharma RK, Calderon C, Vivas-Mejia PE. Targeting Non-coding RNA for Glioblastoma Therapy: The Challenge of Overcomes the Blood-Brain Barrier. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:678593. [PMID: 35047931 PMCID: PMC8757885 DOI: 10.3389/fmedt.2021.678593] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant form of all primary brain tumors, and it is responsible for around 200,000 deaths each year worldwide. The standard therapy for GBM treatment includes surgical resection followed by temozolomide-based chemotherapy and/or radiotherapy. With this treatment, the median survival rate of GBM patients is only 15 months after its initial diagnosis. Therefore, novel and better treatment modalities for GBM treatment are urgently needed. Mounting evidence indicates that non-coding RNAs (ncRNAs) have critical roles as regulators of gene expression. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are among the most studied ncRNAs in health and disease. Dysregulation of ncRNAs is observed in virtually all tumor types, including GBMs. Several dysregulated miRNAs and lncRNAs have been identified in GBM cell lines and GBM tumor samples. Some of them have been proposed as diagnostic and prognostic markers, and as targets for GBM treatment. Most ncRNA-based therapies use oligonucleotide RNA molecules which are normally of short life in circulation. Nanoparticles (NPs) have been designed to increase the half-life of oligonucleotide RNAs. An additional challenge faced not only by RNA oligonucleotides but for therapies designed for brain-related conditions, is the presence of the blood-brain barrier (BBB). The BBB is the anatomical barrier that protects the brain from undesirable agents. Although some NPs have been derivatized at their surface to cross the BBB, optimal NPs to deliver oligonucleotide RNA into GBM cells in the brain are currently unavailable. In this review, we describe first the current treatments for GBM therapy. Next, we discuss the most relevant miRNAs and lncRNAs suggested as targets for GBM therapy. Then, we compare the current drug delivery systems (nanocarriers/NPs) for RNA oligonucleotide delivery, the challenges faced to send drugs through the BBB, and the strategies to overcome this barrier. Finally, we categorize the critical points where research should be the focus in order to design optimal NPs for drug delivery into the brain; and thus move the Oligonucleotide RNA-based therapies from the bench to the clinical setting.
Collapse
Affiliation(s)
- Rohit K. Sharma
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, United States
| | - Carlos Calderon
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, United States
| | - Pablo E. Vivas-Mejia
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, United States
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, United States
| |
Collapse
|
27
|
Marei HE, Althani A, Afifi N, Hasan A, Caceci T, Pozzoli G, Cenciarelli C. Current progress in chimeric antigen receptor T cell therapy for glioblastoma multiforme. Cancer Med 2021; 10:5019-5030. [PMID: 34145792 PMCID: PMC8335808 DOI: 10.1002/cam4.4064] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest brain tumors with an unfavorable prognosis and overall survival of approximately 20 months following diagnosis. The current treatment for GBM includes surgical resections and chemo‐ and radiotherapeutic modalities, which are not effective. CAR‐T immunotherapy has been proven effective for CD19‐positive blood malignancies, and the application of CAR‐T cell therapy for solid tumors including GBM offers great hope for this aggressive tumor which has a limited response to current treatments. CAR‐T technology depends on the use of patient‐specific T cells genetically engineered to express specific tumor‐associated antigens (TAAs). Interaction of CAR‐T cells with tumor cells triggers the destruction/elimination of these cells by the induction of cytotoxicity and the release of different cytokines. Despite the great promise of CAR‐T cell‐based therapy several challenges exist. These include the heterogeneity of GBM cancer cells, aberrant various signaling pathways involved in tumor progression, antigen escape, the hostile inhibitory GBM microenvironment, T cell dysfunction, blood‐brain barrier, and defective antigen presentation. All need to be addressed before full application at the clinical level can begin. Herein we provide a focused review of the rationale for the use of different types of CAR‐T cells (including FcγRs), the different GBM‐associated antigens, the challenges still facing CAR‐T‐based therapy, and means to overcome such challenges. Finally, we enumerate currently completed and ongoing clinical trials, highlighting the different ways such trials are designed to overcome specific problems. Exploitation of the full potential of CAR‐T cell therapy for GBM depends on their solution.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Asmaa Althani
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Thomas Caceci
- Biomedical Sciences, Virginia Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Giacomo Pozzoli
- Pharmacology Unit, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | | |
Collapse
|
28
|
Carpenter AB, Carpenter AM, Aiken R, Hanft S. Oncolytic virus in gliomas: a review of human clinical investigations. Ann Oncol 2021; 32:968-982. [PMID: 33771666 DOI: 10.1016/j.annonc.2021.03.197] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Gliomas remain one of the more frustrating targets for oncologic therapy. Glioma resistance to conventional therapeutics is a product of their immune-privileged milieu behind the blood-brain barrier, in addition to their suppressive effect on the immune response itself. Taking the lead from the growing success of immunotherapy for systemic cancers, such as lung cancer and melanoma, immunotherapeutics has emerged as a major player in the potential treatment of gliomas, with oncolytic viruses in particular showing significant promise as evidenced by the recent Breakthrough and Fast Tract Designations for PVSRIPO and DNX2401. This review serves as a useful and updated compendium of the completed human clinical investigations for several oncolytic viruses in the treatment of gliomas.
Collapse
Affiliation(s)
- A B Carpenter
- Georgetown University School of Medicine, Washington, USA.
| | - A M Carpenter
- Department of Neurological Surgery, Neurological Institute of New Jersey, Rutgers New Jersey Medical School, Newark, USA
| | - R Aiken
- Gerald J. Glasser Brain Tumor Center, Atlantic Healthcare, Summit, USA
| | - S Hanft
- Department of Neurological Surgery, Westchester Medical Center, New York Medical College, Valhalla, USA
| |
Collapse
|