1
|
Pi JK, Chen XT, Zhang YJ, Chen XM, Wang YC, Xu JY, Zhou JH, Yu SS, Wu SS. Insight of immune checkpoint inhibitor related myocarditis. Int Immunopharmacol 2024; 143:113559. [PMID: 39536487 DOI: 10.1016/j.intimp.2024.113559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
As the understanding of immune-related mechanisms in the development and progression of cancer advances, immunotherapies, notably Immune Checkpoint Inhibitors (ICIs), have become integral in comprehensive cancer treatment strategies. ICIs reactivate T-cell cytotoxicity against tumors by blocking immune suppressive signals on T cells, such as Programmed Death-1 (PD-1) and Cytotoxic T-lymphocyte Antigen-4 (CTLA-4). Despite their beneficial effects, ICIs are associated with immune-related adverse events (irAEs), manifesting as autoimmune side effects across various organ systems. A particularly alarming irAE is life-threatening myocarditis. This rare but severe side effect of ICIs leads to significant long-term cardiac complications, including arrhythmias and heart failure, and has been observed to have a mortality rate of up to 50% in affected patients. This greatly limits the clinical application of ICI-based immunotherapy. In this review, we provide a comprehensive summary of the current knowledge regarding the diagnosis and management of ICI-related myocarditis. We also discuss the utility of preclinical mouse models in understanding and addressing this critical challenge.
Collapse
Affiliation(s)
- Jin-Kui Pi
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xiao-Ting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yan-Jing Zhang
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xue-Mei Chen
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yin-Chan Wang
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jia-Yi Xu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jin-Han Zhou
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Shuai-Shuai Yu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Si-Si Wu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
2
|
Molnár AÁ, Birgés K, Surman A, Merkely B. The Complex Connection Between Myocardial Dysfunction and Cancer Beyond Cardiotoxicity: Shared Risk Factors and Common Molecular Pathways. Int J Mol Sci 2024; 25:13185. [PMID: 39684895 DOI: 10.3390/ijms252313185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiovascular diseases and cancer represent the largest disease burden worldwide. Previously, these two conditions were considered independent, except in terms of cardiotoxicity, which links cancer treatment to subsequent cardiovascular issues. However, recent studies suggest that there are further connections between cancer and heart disease beyond cardiotoxicity. It has been revealed that myocardial dysfunction may promote carcinogenesis, indicating that additional common pathophysiological mechanisms might be involved in the relationship between cardiology and oncology, rather than simply a connection through cardiotoxic effects. These mechanisms may include shared risk factors and common molecular pathways, such as persistent inflammation and neurohormonal activation. This review explores the connection between myocardial dysfunction and cancer, emphasizing their shared risk factors, similar biological mechanisms, and causative factors like cardiotoxicity, along with their clinical implications.
Collapse
Affiliation(s)
| | - Kristóf Birgés
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Adrienn Surman
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| |
Collapse
|
3
|
Zhou B, Qin Q, Fang Y, Liu X, Zhang M, Wang S, Zhong L, Guo R. Exosomes from human bone marrow MSCs alleviate PD-1/PD-L1 inhibitor-induced myocardial injury in melanoma mice by regulating macrophage polarization and pyroptosis. Life Sci 2024; 358:123108. [PMID: 39374773 DOI: 10.1016/j.lfs.2024.123108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Myocarditis, which can be triggered by immune checkpoint inhibitor (ICI) treatment, represents a critical and severe adverse effect observed in cancer therapy. Thus, elucidating the underlying mechanism and developing effective strategies to mitigate its harmful impact is of utmost importance. The objective of this study is to investigate the potential role and regulatory mechanism of exosomes derived from human bone marrow mesenchymal stem cells (hBMSC-Exos) in providing protection against myocardial injury induced by ICIs. We observed that the administration of programmed death 1/programmed death-ligand 1 (PD-1/PD-L1) inhibitor BMS-1 in tumor-bearing mice led to evident cardiac dysfunction and myocardial injury, which were closely associated with M1 macrophage polarization and cardiac pyroptosis. Remarkably, these adverse effects were significantly alleviated through tail-vein injection of hBMSC-Exos. Moreover, either BMS-1 or hBMSC-Exos alone demonstrated the ability to reduce tumor size, while the combination of hBMSC-Exos with BMS-1 treatment not only effectively improved the probability of tumor inhibition but also alleviated cardiac anomalies induced by BMS-1.
Collapse
Affiliation(s)
- Bingqian Zhou
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Qin Qin
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yue Fang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Xiaoyu Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Mengyu Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Shuo Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Li Zhong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
4
|
Li L, Bian L, Kou N, Yuan Y, Zou H. Special immune-related adverse events and subsequent photodynamic therapy in tislelizumab treatment for esophageal cancer: a case report. Front Immunol 2024; 15:1497259. [PMID: 39654898 PMCID: PMC11625816 DOI: 10.3389/fimmu.2024.1497259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
This case report highlights the immune-related adverse events (irAEs) that occurred during the treatment of esophageal cancer with Tislelizumab and discusses management strategies, indicating that photodynamic therapy (PDT) may be an optimal adjunctive treatment option. Following Tislelizumab therapy, the patient demonstrated significant tumor reduction; however, subsequent irAEs related to immunotherapy emerged, including eyelid muscle weakness and myocardial and skeletal muscle injury. Methylprednisolone successfully alleviated these symptoms, with early intervention being crucial for controlling irAEs. The patient then underwent PDT, which not only further helped manage irAEs but also inhibited tumor progression. This case underscores the specific adverse reactions, such as eyelid ptosis, skeletal muscle, and myocardial damage associated with Tislelizumab, and the importance of early corticosteroid intervention. It also emphasizes the significance of PDT as an adjunctive treatment for controlling tumors and alleviating immune-related adverse reactions.
Collapse
Affiliation(s)
- Longzhao Li
- Respiratory Disease Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Integrative Traditional Chinese and Western Medicine, Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lingjie Bian
- Respiratory Disease Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Na Kou
- Respiratory Disease Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Yuan
- Respiratory Disease Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Heng Zou
- Respiratory Disease Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Milutinovic S, Jancic P, Jokic V, Petrovic M, Dumic I, Rodriguez AM, Tanasijevic N, Begosh-Mayne D, Stanojevic D, Escarcega RO, Lopez-Mattei J, Cao X. Pembrolizumab-Associated Cardiotoxicity: A Retrospective Analysis of the FDA Adverse Events Reporting System. Pharmaceuticals (Basel) 2024; 17:1372. [PMID: 39459012 PMCID: PMC11510316 DOI: 10.3390/ph17101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have been successfully used in the previous decade for the treatment of a variety of malignancies. Adverse events (AEs) can cause many symptoms, most notably cardiac. We analyzed the frequency of these adverse events, comparing pembrolizumab and other ICIs. METHODS Using the Food and Drug Administration (FDA) adverse event reporting database (FAERS), we searched for all adverse events of interest reported for every ICI included in this study. After obtaining the data, we conducted a disproportionality analysis using the reporting odds ratio (ROR) and the information component (IC). RESULTS A total of 6719 ICI-related cardiac adverse events of interest were reported in the database. Serious outcomes were reported in 100% of the cases, with 34.3% of the cases ending fatally. Compared with all other medications in the database, pembrolizumab use was more frequently associated with myocarditis, pericardial disease, heart failure, and atrial fibrillation. No difference was found in cardiotoxicity between different ICIs. CONCLUSIONS Although infrequent, cardiac AEs in pembrolizumab use are associated with serious outcomes and high mortality. Prospective studies are needed to further research the connection between ICI use and cardiotoxicity.
Collapse
Affiliation(s)
- Stefan Milutinovic
- Internal Medicine Residency Program at Lee Health, Florida State University College of Medicine, Cape Coral, FL 33909, USA
| | - Predrag Jancic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Vera Jokic
- Montefiore New Rochelle Hospital, New Rochelle, NY 10801, USA
| | - Marija Petrovic
- Cardiology Fellowship Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Igor Dumic
- Department of Hospital Medicine, Mayo Clinic Health System, Eau Claire, WI 54703, USA
| | - Ambar Morales Rodriguez
- Internal Medicine Residency Program at Lee Health, Florida State University College of Medicine, Cape Coral, FL 33909, USA
| | | | - Dustin Begosh-Mayne
- Internal Medicine Residency Program at Lee Health, Florida State University College of Medicine, Cape Coral, FL 33909, USA
| | - Dragana Stanojevic
- Clinic for Cardiology, University Clinical Center Nis, 18000 Nis, Serbia
| | - Ricardo O. Escarcega
- Internal Medicine Residency Program at Lee Health, Florida State University College of Medicine, Cape Coral, FL 33909, USA
- Lee Health Heart Institute, Fort Myers, FL 33908, USA
| | | | - Xiangkun Cao
- Lee Health Heart Institute, Fort Myers, FL 33908, USA
| |
Collapse
|
6
|
Lorenzo-Esteller L, Ramos-Polo R, Pons Riverola A, Morillas H, Berdejo J, Pernas S, Pomares H, Asiain L, Garay A, Martínez Pérez E, Jiménez-Marrero S, Alcoberro L, Nadal E, Gubern-Prieto P, Gual-Capllonch F, Hidalgo E, Enjuanes C, Comin-Colet J, Moliner P. Pericardial Disease in Patients with Cancer: Clinical Insights on Diagnosis and Treatment. Cancers (Basel) 2024; 16:3466. [PMID: 39456560 PMCID: PMC11505731 DOI: 10.3390/cancers16203466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Pericardial disease is increasingly recognized in cancer patients, including acute pericarditis, pericardial effusion, and constrictive pericarditis, often indicating a poor prognosis. Acute pericarditis arises from direct tumor involvement, cancer therapies, and radiotherapy. Immune checkpoint inhibitor (ICI)-related pericarditis, though rare, entails significant mortality risk. Treatment includes NSAIDs, colchicine, and corticosteroids or anti-IL1 drugs in refractory cases. Pericardial effusion is the most frequent manifestation, primarily caused by lung cancer, followed by breast cancer, lymphoma, leukemia, gastrointestinal tumors, and melanoma. Chemotherapy, immunotherapy, and radiotherapy may also cause fluid accumulation in the pericardial space. Symptomatic relief for pericardial effusion may require pericardiocentesis, prolonged catheter drainage, or a pericardial window. Instillation of intrapericardial cytostatic agents may reduce recurrence. Constrictive pericarditis, though less common, often develops from radiotherapy and requires multimodality imaging for diagnosis, with pericardiectomy as the definitive treatment. Primary pericardial tumors are rare, with metastases being more frequent. Patients with cancer and pericardial disease generally have poor survival, emphasizing the need for early detection. A multidisciplinary approach involving hematologists, oncologists, and cardiologists is crucial to tailoring pericardial disease treatment to a patient's clinical status, thereby improving the quality of life and prognosis.
Collapse
Affiliation(s)
- Laia Lorenzo-Esteller
- Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (L.L.-E.); (R.R.-P.); (H.M.)
| | - Raúl Ramos-Polo
- Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (L.L.-E.); (R.R.-P.); (H.M.)
- Cardio-Oncology Unit, Bellvitge University Hospital—Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Bio-Heart Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Alexandra Pons Riverola
- Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (L.L.-E.); (R.R.-P.); (H.M.)
- Cardio-Oncology Unit, Bellvitge University Hospital—Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Bio-Heart Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Herminio Morillas
- Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (L.L.-E.); (R.R.-P.); (H.M.)
- Cardio-Oncology Unit, Bellvitge University Hospital—Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Bio-Heart Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Javier Berdejo
- Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (L.L.-E.); (R.R.-P.); (H.M.)
- Cardio-Oncology Unit, Bellvitge University Hospital—Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Sonia Pernas
- Medical Oncology Department, Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (S.P.)
| | - Helena Pomares
- Clinical Haematology Department, Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Leyre Asiain
- Radiation Oncology Department, Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (L.A.)
| | - Alberto Garay
- Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (L.L.-E.); (R.R.-P.); (H.M.)
- Cardio-Oncology Unit, Bellvitge University Hospital—Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Bio-Heart Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Preclinical and Experimental Research in Thoracic Tumors (PRETT), Oncobell, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Evelyn Martínez Pérez
- Radiation Oncology Department, Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (L.A.)
| | - Santiago Jiménez-Marrero
- Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (L.L.-E.); (R.R.-P.); (H.M.)
- Cardio-Oncology Unit, Bellvitge University Hospital—Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Bio-Heart Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Lidia Alcoberro
- Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (L.L.-E.); (R.R.-P.); (H.M.)
- Bio-Heart Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Ernest Nadal
- Medical Oncology Department, Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (S.P.)
- Preclinical and Experimental Research in Thoracic Tumors (PRETT), Oncobell, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Paula Gubern-Prieto
- Medical Oncology Department, Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (S.P.)
| | | | - Encarna Hidalgo
- Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (L.L.-E.); (R.R.-P.); (H.M.)
- Cardio-Oncology Unit, Bellvitge University Hospital—Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Cristina Enjuanes
- Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (L.L.-E.); (R.R.-P.); (H.M.)
- Bio-Heart Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Josep Comin-Colet
- Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (L.L.-E.); (R.R.-P.); (H.M.)
- Bio-Heart Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto Salud Carlos III, 28029 Madrid, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona (UB), L’Hospitalet de Llobregat, 08036 Barcelona, Spain
| | - Pedro Moliner
- Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (L.L.-E.); (R.R.-P.); (H.M.)
- Cardio-Oncology Unit, Bellvitge University Hospital—Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Bio-Heart Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
7
|
Jeong J, Park S, Heo KN, Park SM, Min S, Ah YM, Han JM, Lee JY. Comprehensive analysis of nationwide anticancer drug-related complications in Korea: incidence, types, and cancer-specific considerations in contemporary oncology. Ther Adv Med Oncol 2024; 16:17588359241272970. [PMID: 39206378 PMCID: PMC11350537 DOI: 10.1177/17588359241272970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Background The rising global incidence of cancer has increased the demand for chemotherapy, which is a crucial treatment modality. Recent advancements in cancer treatment, including targeted agents and immunotherapy, have introduced complications owing to their specific mechanisms. However, comprehensive studies of the combined complications of these approaches are lacking. Objectives This study aimed to comprehensively assess and analyze the overall incidence of anticancer drug-related complications in a nationwide patient cohort, utilizing a customized National Health Insurance Sharing Service database in Korea. Design Retrospective cohort study. Methods We included patients who were prescribed anticancer drugs (excluding endocrine agents) and diagnosed with cancer. For the type of cancer classification, the International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) was used and anticancer drugs were classified based on the Anatomical Therapeutic Chemical code. We classified cancer into 18 types based on the ICD-10 code and delineated cancer-related complications into 12 categories. Complications included hematological, gastrointestinal, infectious, cardiovascular, major bleeding, endocrine, neurotoxic, nephrotoxic, dermatological, pulmonary, musculoskeletal, and hepatotoxic effects. Result We included 294,544 patients diagnosed with cancer and administered anticancer drugs between 2016 and 2018, with follow-up continuing until 2021. We identified 486,929 anticancer drug-related complications, with an incidence of 1843.6 per 1000 person-years (PY). Anemia was the most common complication, with a rate of 763.7 per 1000 PY, followed by febrile neutropenia (295.7) and nausea/vomiting (246.9). Several complications peaked during the first months following the initiation of anticancer drug therapy; however, herpes, skin infection, heart failure, and peripheral neuropathy peaked at 6-12 months. Among major cancers, breast cancer had the lowest overall incidence of complications. Targeted therapies revealed lower complication rates than cytotoxic chemotherapy; however, they also required careful monitoring of rash. Conclusion This study highlights the importance of the proactive management of anticancer drug-related complications for patient care improvement.
Collapse
Affiliation(s)
- Jonghyun Jeong
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Soyoung Park
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Kyu-Nam Heo
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Soh Mee Park
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Department of Pharmacy, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sangil Min
- Department of Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young-Mi Ah
- College of Pharmacy, Yeungnam University, Gyeongsangbuk-do, Republic of Korea
| | - Ji Min Han
- College of Pharmacy, Chungbuk National University, 194-21 Osongsaengmyeong 1-ro, Osong-eup, Cheongju 28160, Republic of Korea
| | - Ju-Yeun Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
8
|
Zavaleta-Monestel E, García-Montero J, Anchía-Alfaro A, Rojas-Chinchilla C, Quesada-Villaseñor R, Arguedas-Chacón S, Barrantes-López M, Molina-Sojo P, Zovi A, Zúñiga-Orlich C. Myocarditis Induced by Immune Checkpoint Inhibitors: An Exploratory Review. Cureus 2024; 16:e67314. [PMID: 39301338 PMCID: PMC11412606 DOI: 10.7759/cureus.67314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
Checkpoints are essential proteins in the immune system that regulate the intensity and duration of immune responses, preventing damage to healthy tissues during the fight against pathogens and abnormal cells. While these mechanisms are crucial in cancer defense, this disease can alter the functionality of these proteins. This is why checkpoint inhibitors have emerged as an important class of drugs to potentiate the antitumor immune response. However, it has been observed that these drugs can trigger adverse effects, among which myocarditis is one of the most prevalent. This article explores the signaling pathways associated with checkpoint inhibitors, their adverse effects, and their impact on the development of myocarditis, as well as potential therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Andrea Zovi
- Hygiene, Food Safety, and Nutrition, Ministry of Health, Rome, ITA
| | | |
Collapse
|
9
|
Pozzessere C, Mazini B, Omoumi P, Jreige M, Noirez L, Digklia A, Fasquelle F, Sempoux C, Dromain C. Immune-Related Adverse Events Induced by Immune Checkpoint Inhibitors and CAR-T Cell Therapy: A Comprehensive Imaging-Based Review. Cancers (Basel) 2024; 16:2585. [PMID: 39061225 PMCID: PMC11274393 DOI: 10.3390/cancers16142585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Immunotherapy has revolutionized oncology care, improving patient outcomes in several cancers. However, these therapies are also associated with typical immune-related adverse events due to the enhanced inflammatory and immune response. These toxicities can arise at any time during treatment but are more frequent within the first few months. Any organ and tissue can be affected, ranging from mild to life-threatening. While some manifestations are common and more often mild, such as dermatitis and colitis, others are rarer and more severe, such as myocarditis. Management depends on the severity, with treatment being held for >grade 2 toxicities. Steroids are used in more severe cases, and immunosuppressive treatment may be considered for non-responsive toxicities, along with specific organ support. A multidisciplinary approach is mandatory for prompt identification and management. The diagnosis is primarily of exclusion. It often relies on imaging features, and, when possible, cytologic and/or pathological analyses are performed for confirmation. In case of clinical suspicion, imaging is required to assess the presence, extent, and features of abnormalities and to evoke and rule out differential diagnoses. This imaging-based review illustrates the diverse system-specific toxicities associated with immune checkpoint inhibitors and chimeric antigen receptor T-cells with a multidisciplinary perspective. Clinical characteristics, imaging features, cytological and histological patterns, as well as the management approach, are presented with insights into radiological tips to distinguish these toxicities from the most important differential diagnoses and mimickers-including tumor progression, pseudoprogression, inflammation, and infection-to guide imaging and clinical specialists in the pathway of diagnosing immune-related adverse events.
Collapse
Affiliation(s)
- Chiara Pozzessere
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Bianca Mazini
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Patrick Omoumi
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Mario Jreige
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Leslie Noirez
- Department of Pulmonology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Antonia Digklia
- Department of Oncology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - François Fasquelle
- Department of Pathology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Christine Sempoux
- Department of Pathology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Clarisse Dromain
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| |
Collapse
|
10
|
Zhao Z, Ma X, Cai Z. The potential role of CD8+ cytotoxic T lymphocytes and one branch connected with tissue-resident memory in non-luminal breast cancer. PeerJ 2024; 12:e17667. [PMID: 39006029 PMCID: PMC11246025 DOI: 10.7717/peerj.17667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024] Open
Abstract
Advances in understanding the pathological mechanisms of breast cancer have resulted in the emergence of novel therapeutic strategies. However, triple-negative breast cancer (TNBC), a molecular subtype of breast cancer with a poor prognosis, lacks classical and general therapeutic targets, hindering the clinical application of several therapies to breast cancer. As insights into the unique immunity and molecular mechanisms of TNBC have become more extensive, immunotherapy has gradually become a valuable complementary approach to classical radiotherapy and chemotherapy. CD8+ cells are significant actors in the tumor immunity cycle; thus, research on TNBC immunotherapy is increasingly focused in this direction. Recently, CD8+ tissue-resident memory (TRM) cells, a subpopulation of CD8+ cells, have been explored in relation to breast cancer and found to seemingly play an undeniably important role in tumor surveillance and lymphocytic infiltration. In this review, we summarize the recent advances in the mechanisms and relative targets of CD8+ T cells, and discuss the features and potential applications of CD8+ TRM cells in non-luminal breast cancer immunotherapy.
Collapse
Affiliation(s)
- Ziqi Zhao
- Department of Breast Cancer, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xinyu Ma
- Department of Breast Cancer, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Zhengang Cai
- Department of Breast Cancer, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
11
|
Xu W, Ye J, Cao Z, Zhao Y, Zhu Y, Li L. Glucocorticoids in lung cancer: Navigating the balance between immunosuppression and therapeutic efficacy. Heliyon 2024; 10:e32357. [PMID: 39022002 PMCID: PMC11252876 DOI: 10.1016/j.heliyon.2024.e32357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Glucocorticoids (GCs), a class of hormones secreted by the adrenal glands, are released into the bloodstream to maintain homeostasis and modulate responses to various stressors. These hormones function by binding to the widely expressed GC receptor (GR), thereby regulating a wide range of pathophysiological processes, especially in metabolism and immunity. The role of GCs in the tumor immune microenvironment (TIME) of lung cancer (LC) has been a focal point of research. As immunosuppressive agents, GCs exert a crucial impact on the occurrence, progression, and treatment of LC. In the TIME of LC, GCs act as a constantly swinging pendulum, simultaneously offering tumor-suppressive properties while diminishing the efficacy of immune-based therapies. The present study reviews the role and mechanisms of GCs in the TIME of LC.
Collapse
Affiliation(s)
| | | | - Zhendong Cao
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| | - Yupei Zhao
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| | - Yimin Zhu
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| | - Lei Li
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| |
Collapse
|
12
|
Liu H, Fu L, Jin S, Ye X, Chen Y, Pu S, Xue Y. Cardiovascular toxicity with CTLA-4 inhibitors in cancer patients: A meta-analysis. CANCER INNOVATION 2024; 3:e116. [PMID: 38947758 PMCID: PMC11212283 DOI: 10.1002/cai2.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 07/02/2024]
Abstract
Background With the emergence of cytotoxic T lymphocyte-associated protein-4 (CTLA-4) inhibitors, the outcomes of patients with malignant tumors have improved significantly. However, the incidence of cardiovascular adverse events has also increased, which can affect tumor treatment. In this study, we evaluated the incidence and severity of adverse cardiovascular events caused by CTLA-4 inhibitors by analyzing reported trials that involved CTLA-4 inhibitor therapy. Methods Randomized clinical trials published in English from January 1, 2013, to November 30, 2022, were searched using the Cochrane Library and PubMed databases. All included trials examined all grade and grades 3-5 cardiac and vascular adverse events. These involved comparisons of CTLA-4 inhibitors to placebo, CTLA-4 inhibitors plus chemotherapy to chemotherapy alone, CTLA-4 inhibitors combined with PD-1/PD-L1 inhibitors to PD-1/PD-L1 inhibitors alone, and CTLA-4 inhibitors plus target agent to PD-1/PD-L1 inhibitors plus target agent. The odds ratio (OR) and corresponding 95% confidence intervals (CIs) were calculated using the Mantel-Haenszel method. Results Overall, 20 trials were included. CTLA-4 inhibitors significantly increased the incidence of all-grade cardiovascular toxicity (OR = 1.33, 95% CI: 1.00-1.75, p = 0.05). The incidence of all-grade cardiovascular toxicity increased in malignant tumor patients who received single-agent CTLA-4 inhibitors (OR = 1.73, 95% CI: 1.13-2.65, p = 0.01), as well as the incidence rate of grades 3-5 cardiovascular adverse events (OR = 2.00, 95% CI: 1.08-3.70, p = 0.03). Compared with the non-CTLA-4 inhibitor group, CTLA-4 inhibitors plus chemotherapy, PD-1/PD-L1 inhibitors, or target agent did not significantly affect the incidence of cardiac and vascular toxicity. The incidence of grades 3-5 cardiac failure, hypertension, pericardial effusion, myocarditis, and atrial fibrillation were much higher among patients exposed to CTLA-4 inhibitor, but the data were not statistically significant. Conclusion Our findings suggest that the incidence rate of all cardiovascular toxicity and severe cardiovascular toxicity increased in patients who were administered CTLA-4 inhibitors. In addition, the risk of serious cardiovascular toxic events was independent of the type of adverse event. From these results, physicians should assess the benefits and risks of CTLA-4 inhibitors when treating malignancies.
Collapse
Affiliation(s)
- Huiyi Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongChina
| | - Lu Fu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongChina
| | - Shuyu Jin
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xingdong Ye
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongChina
| | - Yanlin Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongChina
| | - Sijia Pu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongChina
- School of MedicineSouth China University of TechnologyGuangzhouGuangdongChina
| | - Yumei Xue
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongChina
| |
Collapse
|
13
|
Mudra SE, Rayes DL, Agrawal A, Kumar AK, Li JZ, Njus M, McGowan K, Kalam KA, Charalampous C, Schleicher M, Majid M, Syed A, Yesilyaprak A, Klein AL. Immune checkpoint inhibitors and pericardial disease: a systematic review. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2024; 10:29. [PMID: 38760863 PMCID: PMC11100143 DOI: 10.1186/s40959-024-00234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024]
Abstract
INTRODUCTION Despite the growing use of immune checkpoint inhibitors (ICI) in cancer treatment, data regarding ICI-associated pericardial disease are primarily derived from case reports and case series. ICI related pericardial disease can be difficult to diagnose and is associated with significant morbidity. We conducted a systematic review to further characterize the epidemiology, clinical presentation, and outcomes of this patient population. METHODS A search of four databases resulted in 31 studies meeting inclusion criteria. Patients > 18 years old who presented with ICI mediated pericardial disease were included. Intervention was medical + surgical therapy and outcomes were development of cardiac tamponade, morbidity, and mortality. RESULTS Thirty- eight patients across 31 cases were included. Patients were majority male (72%) with a median age of 63. Common symptoms included dyspnea (59%) and chest pain (32%), with 41% presenting with cardiac tamponade. Lung cancer (81%) was the most prevalent, and nivolumab (61%) and pembrolizumab (34%) were the most used ICIs. Pericardiocentesis was performed in 68% of patients, and 92% experienced symptom improvement upon ICI cessation. Overall mortality was 16%. DISCUSSION This study provides the most comprehensive analysis of ICI-mediated pericardial disease to date. Patients affected were most commonly male with lung cancer treated with either Nivolumab or Pembrolizumab. Diagnosis may be challenging in the setting of occult presentation with normal EKG and physical exam as well as delayed onset from therapy initiation. ICI-associated pericardial disease demonstrates high morbidity and mortality, as evidenced by a majority of patients requiring pericardiocentesis.
Collapse
Affiliation(s)
- Sarah E Mudra
- Department of Internal Medicine, MedStar Georgetown University Hospital, MedStar Health, Washington, DC, USA
| | - Danny L Rayes
- Department of Internal Medicine, MedStar Georgetown University Hospital, MedStar Health, Washington, DC, USA
| | - Ankit Agrawal
- Center for the Diagnosis and Treatment of Pericardial Diseases, Section of Cardiovascular Imaging, Department of Cardiovascular Medicine, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, 9500 Euclid Ave., Desk J1-5, Cleveland, OH, 44195, USA
| | - Ashwin K Kumar
- Department of Internal Medicine, MedStar Georgetown University Hospital, MedStar Health, Washington, DC, USA
- Center for the Diagnosis and Treatment of Pericardial Diseases, Section of Cardiovascular Imaging, Department of Cardiovascular Medicine, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, 9500 Euclid Ave., Desk J1-5, Cleveland, OH, 44195, USA
| | - Jason Z Li
- Department of Internal Medicine, MedStar Georgetown University Hospital, MedStar Health, Washington, DC, USA
| | - Meredith Njus
- Department of Internal Medicine, MedStar Georgetown University Hospital, MedStar Health, Washington, DC, USA
| | - Kevin McGowan
- Department of Internal Medicine, MedStar Georgetown University Hospital, MedStar Health, Washington, DC, USA
| | - Kazi A Kalam
- Department of Internal Medicine, MedStar Georgetown University Hospital, MedStar Health, Washington, DC, USA
| | - Charalompos Charalampous
- Department of Internal Medicine, MedStar Georgetown University Hospital, MedStar Health, Washington, DC, USA
| | - Mary Schleicher
- Floyd D. Loop Memorial Library, Cleveland Clinic, Cleveland, OH, USA
| | - Muhammad Majid
- Center for the Diagnosis and Treatment of Pericardial Diseases, Section of Cardiovascular Imaging, Department of Cardiovascular Medicine, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, 9500 Euclid Ave., Desk J1-5, Cleveland, OH, 44195, USA
| | - Alvena Syed
- Center for the Diagnosis and Treatment of Pericardial Diseases, Section of Cardiovascular Imaging, Department of Cardiovascular Medicine, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, 9500 Euclid Ave., Desk J1-5, Cleveland, OH, 44195, USA
| | - Abdullah Yesilyaprak
- Center for the Diagnosis and Treatment of Pericardial Diseases, Section of Cardiovascular Imaging, Department of Cardiovascular Medicine, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, 9500 Euclid Ave., Desk J1-5, Cleveland, OH, 44195, USA
| | - Allan L Klein
- Center for the Diagnosis and Treatment of Pericardial Diseases, Section of Cardiovascular Imaging, Department of Cardiovascular Medicine, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, 9500 Euclid Ave., Desk J1-5, Cleveland, OH, 44195, USA.
| |
Collapse
|
14
|
Jamison K, Medepalli LC, Ye S. Isolated Pericardial Effusion Without Associated Myocarditis in a Small-Cell Lung Cancer Patient Undergoing Atezolizumab Therapy. Cureus 2024; 16:e60184. [PMID: 38868282 PMCID: PMC11167685 DOI: 10.7759/cureus.60184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) are a form of immunotherapy increasingly utilized in cancer therapies. While offering promise in malignancy treatment, ICIs, including atezolizumab, can elicit immune-related adverse events (irAEs) such as cardiotoxicity. We present the case of a 67-year-old male with stage IV metastatic small-cell lung cancer undergoing carboplatin, etoposide, and atezolizumab therapy, who developed pericardial tamponade two months into treatment. Initially presenting with hypoxia on day three of his third treatment cycle, he was admitted due to multifocal pneumonia and subsequently diagnosed with pericardial tamponade stemming from a sizable pericardial effusion. Pericardiocentesis was performed, effectively resolving the tamponade. Infectious etiology was ruled out. Notably, there was no associated myocarditis, as evidenced by negative cardiac markers and magnetic resonance imaging (MRI) findings, and cytologic analysis of the pericardial fluid did not reveal malignant cells, indicating an isolated immunologic etiology for the pericardial effusion. Following successful management, including oxygen support and a prednisone taper, chemotherapy without immunotherapy was resumed after a one-week delay. This rare case underscores the significance of promptly utilizing multimodality imaging with timely cardiology intervention, a prompt pericardial fluid analysis in diagnosing cardiac irAEs, and management leading to improved patient outcomes.
Collapse
Affiliation(s)
- Kiara Jamison
- Internal Medicine, Northside Hospital Gwinnett, Lawrenceville, USA
| | - Lalitha C Medepalli
- Cardiology/Cardiooncology, Northside Cardiovascular Institute (NCVI) Northside Hospital, Atlanta, USA
| | - Star Ye
- Oncology, Georgia Cancer Specialists (Affiliated With Northside Hospital Cancer Institute), Canton, USA
| |
Collapse
|
15
|
Brown SR, Vomhof-DeKrey EE. Current Immunotherapy Treatments of Primary Breast Cancer Subtypes. Biomedicines 2024; 12:895. [PMID: 38672249 PMCID: PMC11048522 DOI: 10.3390/biomedicines12040895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Breast cancer receives the most funding when compared to any other cancer type, according to a global study conducted by The Lancet. Nevertheless, this malignancy remains the most diagnosed cancer among women and relies heavily on a neoadjuvant treatment regimen of chemotherapy and targeted therapy. After standard treatment, 25-30% of breast cancer patients still develop disease recurrence and must undergo cytoreductive debulking surgery followed by intensive chemotherapy. An array of targeted therapies are currently being utilized and developed to alleviate negative side effects, eradicate cancer growth, and diminish disease recurrence. Immunotherapy is a promising cancer therapy that upregulates one's immune system to stimulate a therapeutic effect and is utilized for cancer management among other ailments such as immunodeficiencies, hypersensitivity reactions, autoimmune diseases, inflammatory disorders, tissue and organ transplantation, and infectious diseases. This review highlights the five primary subtypes of breast cancer, provides a brief history of immunotherapy, evaluates the current landscape of treating breast cancer with immunotherapy, analyzes selected ongoing or recently completed immunotherapy clinical trials for hormone receptor-positive, HER2-enriched, and triple-negative breast cancer, and examines future trends for the treatment of breast cancer with immunotherapeutic techniques. This review provides a formal summary categorized by breast cancer subtype rather than types of immunotherapeutic treatment.
Collapse
Affiliation(s)
- Savannah R. Brown
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA;
| | - Emilie E. Vomhof-DeKrey
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA;
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
16
|
Casagrande S, Sopetto GB, Bertalot G, Bortolotti R, Racanelli V, Caffo O, Giometto B, Berti A, Veccia A. Immune-Related Adverse Events Due to Cancer Immunotherapy: Immune Mechanisms and Clinical Manifestations. Cancers (Basel) 2024; 16:1440. [PMID: 38611115 PMCID: PMC11011060 DOI: 10.3390/cancers16071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The landscape of cancer treatment has undergone a significant transformation with the introduction of Immune Checkpoint Inhibitors (ICIs). Patients undergoing these treatments often report prolonged clinical and radiological responses, albeit with a potential risk of developing immune-related adverse events (irAEs). Here, we reviewed and discussed the mechanisms of action of ICIs and their pivotal role in regulating the immune system to enhance the anti-tumor immune response. We scrutinized the intricate pathogenic mechanisms responsible for irAEs, arising from the evasion of self-tolerance checkpoints due to drug-induced immune modulation. We also summarized the main clinical manifestations due to irAEs categorized by organ types, detailing their incidence and associated risk factors. The occurrence of irAEs is more frequent when ICIs are combined; with neurological, cardiovascular, hematological, and rheumatic irAEs more commonly linked to PD1/PD-L1 inhibitors and cutaneous and gastrointestinal irAEs more prevalent with CTLA4 inhibitors. Due to the often-nonspecific signs and symptoms, the diagnosis of irAEs (especially for those rare ones) can be challenging. The differential with primary autoimmune disorders becomes sometimes intricate, given the clinical and pathophysiological similarities. In conclusion, considering the escalating use of ICIs, this area of research necessitates additional clinical studies and practical insights, especially the development of biomarkers for predicting immune toxicities. In addition, there is a need for heightened education for both clinicians and patients to enhance understanding and awareness.
Collapse
Affiliation(s)
- Silvia Casagrande
- Unit of Neurology, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari-APSS, 38122 Trento, Italy; (S.C.); (B.G.)
| | - Giulia Boscato Sopetto
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122 Trento, Italy; (G.B.S.); (G.B.); (V.R.)
| | - Giovanni Bertalot
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122 Trento, Italy; (G.B.S.); (G.B.); (V.R.)
- Center for Medical Sciences (CISMed), University of Trento, 38122 Trento, Italy
- Multizonal Unit of Pathology, APSS, 38122 Trento, Italy
| | - Roberto Bortolotti
- Unit of Rheumatology, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy;
| | - Vito Racanelli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122 Trento, Italy; (G.B.S.); (G.B.); (V.R.)
- Center for Medical Sciences (CISMed), University of Trento, 38122 Trento, Italy
- Unit of Internal Medicine, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy
| | - Orazio Caffo
- Unit of Oncology, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy; (O.C.); (A.V.)
| | - Bruno Giometto
- Unit of Neurology, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari-APSS, 38122 Trento, Italy; (S.C.); (B.G.)
- Center for Medical Sciences (CISMed), University of Trento, 38122 Trento, Italy
- Department of Psychology and Cognitive Sciences (DIPSCO), University of Trento, 38122 Trento, Italy
| | - Alvise Berti
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122 Trento, Italy; (G.B.S.); (G.B.); (V.R.)
- Center for Medical Sciences (CISMed), University of Trento, 38122 Trento, Italy
- Unit of Rheumatology, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy;
| | - Antonello Veccia
- Unit of Oncology, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy; (O.C.); (A.V.)
| |
Collapse
|
17
|
Zheng Y, Liu Y, Chen Z, Zhang Y, Qi Z, Wu N, Zhao Z, Tse G, Wang Y, Hu H, Niu Y, Liu T. Cardiovascular disease burden in patients with urological cancers: The new discipline of uro-cardio-oncology. CANCER INNOVATION 2024; 3:e108. [PMID: 38946935 PMCID: PMC11212304 DOI: 10.1002/cai2.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 07/02/2024]
Abstract
Cancer remains a major cause of mortality worldwide, and urological cancers are the most common cancers among men. Several therapeutic agents have been used to treat urological cancer, leading to improved survival for patients. However, this has been accompanied by an increase in the frequency of survivors with cardiovascular complications caused by anticancer medications. Here, we propose the novel discipline of uro-cardio-oncology, an evolving subspecialty focused on the complex interactions between cardiovascular disease and urological cancer. In this comprehensive review, we discuss the various cardiovascular toxicities induced by different classes of antineoplastic agents used to treat urological cancers, including androgen deprivation therapy, vascular endothelial growth factor receptor tyrosine kinase inhibitors, immune checkpoint inhibitors, and chemotherapeutics. In addition, we discuss possible mechanisms underlying the cardiovascular toxicity associated with anticancer therapy and outline strategies for the surveillance, diagnosis, and effective management of cardiovascular complications. Finally, we provide an analysis of future perspectives in this emerging specialty, identifying areas in need of further research.
Collapse
Affiliation(s)
- Yi Zheng
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Ying Liu
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Ziliang Chen
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Yunpeng Zhang
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Zuo Qi
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Ning Wu
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Zhiqiang Zhao
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Gary Tse
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
- School of Nursing and Health StudiesHong Kong Metropolitan UniversityHong KongChina
| | - Yong Wang
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Hailong Hu
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Yuanjie Niu
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Tong Liu
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| |
Collapse
|
18
|
Efentakis P, Choustoulaki A, Kwiatkowski G, Varela A, Kostopoulos IV, Tsekenis G, Ntanasis-Stathopoulos I, Georgoulis A, Vorgias CE, Gakiopoulou H, Briasoulis A, Davos CH, Kostomitsopoulos N, Tsitsilonis O, Dimopoulos MA, Terpos E, Chłopicki S, Gavriatopoulou M, Andreadou I. Early microvascular coronary endothelial dysfunction precedes pembrolizumab-induced cardiotoxicity. Preventive role of high dose of atorvastatin. Basic Res Cardiol 2024:10.1007/s00395-024-01046-0. [PMID: 38520533 DOI: 10.1007/s00395-024-01046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024]
Abstract
Immune checkpoint inhibitors (ICIs) exhibit remarkable antitumor activity and immune-related cardiotoxicity of unknown pathomechanism. The aim of the study was to investigate the ICI class-dependent cardiotoxicity in vitro and pembrolizumab's (Pem's) cardiotoxicity in vivo, seeking for translational prevention means. Cytotoxicity was investigated in primary cardiomyocytes and splenocytes, incubated with ipilimumab, Pem and avelumab. Pem's cross-reactivity was assessed by circular dichroism (CD) on biotechnologically produced human and murine PD-1 and in silico. C57BL6/J male mice received IgG4 or Pem for 2 and 5 weeks. Echocardiography, histology, and molecular analyses were performed. Coronary blood flow velocity mapping and cardiac magnetic resonance imaging were conducted at 2 weeks. Human EA.hy926 endothelial cells were incubated with Pem-conditioned media from human mononuclear cells, in presence and absence of statins and viability and molecular signaling were assessed. Atorvastatin (20 mg/kg, daily) was administered in vivo, as prophylaxis. Only Pem exerted immune-related cytotoxicity in vitro. Pem's cross-reactivity with the murine PD-1 was confirmed by CD and docking. In vivo, Pem initiated coronary endothelial and diastolic dysfunction at 2 weeks and systolic dysfunction at 5 weeks. At 2 weeks, Pem induced ICAM-1 and iNOS expression and intracardiac leukocyte infiltration. At 5 weeks, Pem exacerbated endothelial activation and triggered cardiac inflammation. Pem led to immune-related cytotoxicity in EA.hy926 cells, which was prevented by atorvastatin. Atorvastatin mitigated functional deficits, by inhibiting endothelial dysfunction in vivo. We established for the first time an in vivo model of Pem-induced cardiotoxicity. Coronary endothelial dysfunction precedes Pem-induced cardiotoxicity, whereas atorvastatin emerges as a novel prophylactic therapy.
Collapse
Affiliation(s)
- Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Angeliki Choustoulaki
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Grzegorz Kwiatkowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
| | - Aimilia Varela
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ioannis V Kostopoulos
- Flow Cytometry Unit, Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - George Tsekenis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Georgoulis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Constantinos E Vorgias
- Department of Biochemistry & Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Harikleia Gakiopoulou
- Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Briasoulis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Ourania Tsitsilonis
- Flow Cytometry Unit, Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Stefan Chłopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
- Medical College, Jagiellonian University, Krakow, Poland
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece.
| |
Collapse
|
19
|
Vakilpour A, Lefebvre B, Lai C, Scherrer-Crosbie M. Heartbreaker: Detection and prevention of cardiotoxicity in hematological malignancies. Blood Rev 2024; 64:101166. [PMID: 38182490 DOI: 10.1016/j.blre.2023.101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
Cancer survivors are at significant risk of cardiovascular (CV) morbidity and mortality; patients with hematologic malignancies have a higher rate of death due to heart failure compared to all other cancer subtypes. The majority of conventional hematologic cancer treatments is associated with increased risk of acute and long-term CV toxicity. The incidence of cancer therapy induced CV toxicity depends on the combination of patient characteristics and on the type, dose, and duration of the therapy. Early diagnosis of CV toxicity, appropriate referral, more specific cardiac monitoring follow-up and timely interventions in target patients can decrease the risk of CV adverse events, the interruption of oncological therapy, and improve the patient's prognosis. Herein, we summarize the CV effects of conventional treatments used in hematologic malignancies with a focus on definitions and incidence of the most common CV toxicities, guideline recommended early detection approaches, and preventive strategies before and during cancer treatments.
Collapse
Affiliation(s)
- Azin Vakilpour
- Division of Cardiovascular Diseases, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| | - Bénédicte Lefebvre
- Division of Cardiovascular Diseases, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; The Thalheimer Center for Cardio-oncology, Division of Cardiology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Catherine Lai
- Division of Hematology-Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Marielle Scherrer-Crosbie
- Division of Cardiovascular Diseases, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; The Thalheimer Center for Cardio-oncology, Division of Cardiology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
He Y, Yu H, Dai S, He M, Ma L, Xu Z, Luo F, Wang L. Immune checkpoint inhibitors break whose heart? Perspectives from cardio-immuno-oncology. Genes Dis 2024; 11:807-818. [PMID: 37692505 PMCID: PMC10491874 DOI: 10.1016/j.gendis.2023.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/12/2023] [Indexed: 03/30/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are monoclonal antibody antagonists, which can block cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed death-1/ligand-1 (PD-1/PD-L1) pathways, and other molecules exploited by tumor cells to evade T cell-mediated immune response. ICIs have transformed the treatment landscape for various cancers due to their amazing efficacy. Many anti-tumor therapies, including targeted therapy, radiotherapy, and chemotherapy, combine ICIs to make the treatment more effective. However, the off-target immune activation caused by ICIs may lead to a broad spectrum of immune-related adverse events (irAEs) affecting multiple organ systems. Among irAEs, cardiotoxicity induced by ICIs, uncommon but fatal, has greatly offset survival benefits from ICIs, which is heartbreaking for both patients and clinicians. Consequently, such cardiotoxicity requires special vigilance, and it has become a common challenge both for patients and clinicians. This article reviewed the clinical manifestations and influence of cardiotoxicity from the view of patients and clinicians, elaborated on the underlying mechanisms in conjunction with animal studies, and then attempted to propose management strategies from a cardio-immuno-oncology multidisciplinary perspective.
Collapse
Affiliation(s)
- Yingying He
- Oncology Department, Deyang People's Hospital, Deyang, Sichuan 618000, China
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Hui Yu
- Cardiovascular Department, Mianyang Central Hospital, Mianyang, Sichuan 621000, China
| | - Shuang Dai
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Miao He
- Oncology Department, Deyang People's Hospital, Deyang, Sichuan 618000, China
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Ling Ma
- Department of Rheumatology and Immunology, Deyang People's Hospital, Deyang, Sichuan 618000, China
| | - Zihan Xu
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Feng Luo
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Li Wang
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| |
Collapse
|
21
|
Kong Y, Wang X, Qie R. Immunotherapy-associated cardiovascular toxicities: insights from preclinical and clinical studies. Front Oncol 2024; 14:1347140. [PMID: 38482205 PMCID: PMC10932998 DOI: 10.3389/fonc.2024.1347140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/12/2024] [Indexed: 11/02/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have become a widely accepted and effective treatment for various types of solid tumors. Recent studies suggest that cardiovascular immune-related adverse events (irAEs) specifically have an incidence rate ranging from 1.14% to more than 5%. Myocarditis is the most common observed cardiovascular irAE. Others include arrhythmias, pericardial diseases, vasculitis, and a condition resembling takotsubo cardiomyopathy. Programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) pathway, cytotoxic T-lymphocyte antigen-4 (CTLA-4) pathway, and the recently discovered lymphocyte-activation gene 3 (LAG-3) pathway, play a critical role in boosting the body's natural immune response against cancer cells. While ICIs offer significant benefits in terms of augmenting immune function, they can also give rise to unwanted inflammatory side effects known as irAEs. The occurrence of irAEs can vary in severity, ranging from mild to severe, and can impact the overall clinical efficacy of these agents. This review aims to summarize the underlying mechanisms of cardiovascular irAE from both preclinical and clinical studies for a better understanding of cardiovascular irAE in clinical application.
Collapse
Affiliation(s)
- Youqian Kong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoyu Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rui Qie
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
22
|
Du J, Sudlow LC, Biswas H, Mitchell JD, Mollah S, Berezin MY. Identification Drug Targets for Oxaliplatin-Induced Cardiotoxicity without Affecting Cancer Treatment through Inter Variability Cross-Correlation Analysis (IVCCA). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.11.579390. [PMID: 38405766 PMCID: PMC10888841 DOI: 10.1101/2024.02.11.579390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The successful treatment of side effects of chemotherapy faces two major limitations: the need to avoid interfering with pathways essential for the cancer-destroying effects of the chemotherapy drug, and the need to avoid helping tumor progression through cancer promoting cellular pathways. To address these questions and identify new pathways and targets that satisfy these limitations, we have developed the bioinformatics tool Inter Variability Cross-Correlation Analysis (IVCCA). This tool calculates the cross-correlation of differentially expressed genes, analyzes their clusters, and compares them across a vast number of known pathways to identify the most relevant target(s). To demonstrate the utility of IVCCA, we applied this platform to RNA-seq data obtained from the hearts of the animal models with oxaliplatin-induced CTX. RNA-seq of the heart tissue from oxaliplatin treated mice identified 1744 differentially expressed genes with False Discovery Rate (FDR) less than 0.05 and fold change above 1.5 across nine samples. We compared the results against traditional gene enrichment analysis methods, revealing that IVCCA identified additional pathways potentially involved in CTX beyond those detected by conventional approaches. The newly identified pathways such as energy metabolism and several others represent promising target for therapeutic intervention against CTX, while preserving the efficacy of the chemotherapy treatment and avoiding tumor proliferation. Targeting these pathways is expected to mitigate the damaging effects of chemotherapy on cardiac tissues and improve patient outcomes by reducing the incidence of heart failure and other cardiovascular complications, ultimately enabling patients to complete their full course of chemotherapy with improved quality of life and survival rates.
Collapse
Affiliation(s)
- Junwei Du
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
- Institute of Materials Science & Engineering, Washington University, St. Louis, MO 63130, USA
| | - Leland C. Sudlow
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Hridoy Biswas
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Joshua D. Mitchell
- Cardio-Oncology Center of Excellence, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamim Mollah
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Mikhail Y. Berezin
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
- Institute of Materials Science & Engineering, Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
23
|
Javaid A, Bennett C, Rao A, Spain L. Rare Immune-Related Adverse Events (irAEs): Approach to Diagnosis and Management. Pharmaceut Med 2024; 38:25-38. [PMID: 38194017 PMCID: PMC10824871 DOI: 10.1007/s40290-023-00508-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2023] [Indexed: 01/10/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionised the treatment landscape across many solid organ malignancies and form part of routine clinical practice in many tumours. As indications for monotherapy, doublet therapy and combination approaches with chemotherapy and targeted agents expand, clinicians must be aware of the wide range of possible immune-related adverse events (irAEs). Common toxicities, including rash, colitis, hepatitis and pneumonitis are well described in the literature, and have established diagnostic and management algorithms. Rarer toxicities, often with an incidence of less than 1%, are less defined. These syndromes can be poorly recognised, may take on a fulminant course and do not have established or evidence-based diagnostic and management strategies. As such, patients may experience increased morbidity, mortality and poorer outcomes, related both to these irAEs as well as how the treatment of these may affect the management of their underlying malignancy. In this review, we aim to explore the incidence, potential biomarkers, pathogenesis, diagnostic work-up and clinical sequelae of a selection of uncommon irAEs, with a focus on myocarditis, neurological and haematologic syndromes. Further prospective research is required to accurately define the incidence and pathogenesis of these conditions, with the aim of increasing clinician awareness of rare irAEs and to assist with a more personalised and mechanism-based approach to these syndromes.
Collapse
Affiliation(s)
- Anadil Javaid
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Catherine Bennett
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Aparna Rao
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Lavinia Spain
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
24
|
Frascaro F, Bianchi N, Sanguettoli F, Marchini F, Meossi S, Zanarelli L, Tonet E, Serenelli M, Guardigli G, Campo G, Calabrò L, Pavasini R. Immune Checkpoint Inhibitors-Associated Myocarditis: Diagnosis, Treatment and Current Status on Rechallenge. J Clin Med 2023; 12:7737. [PMID: 38137806 PMCID: PMC10744238 DOI: 10.3390/jcm12247737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/02/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Immune checkpoint molecules like cytotoxic T-lymphocyte antigen 4 (CTLA-4), programmed cell death 1 (PD-1) or its ligand, programmed cell death ligand 1 (PD-L1), play a critical role in regulating the immune response, and immune checkpoint inhibitors (ICIs) targeting these checkpoints have shown clinical efficacy in cancer treatment; however, their use is associated with immune-related adverse events (irAEs), including cardiac complications. The prevalence of cardiac irAEs, particularly myocarditis, is relatively low, but they can become a severe and potentially life-threatening condition, usually occurring shortly after initiating ICI treatment; moreover, diagnosing ICI-related myocarditis can be challenging. Diagnostic tools include serum cardiac biomarkers, electrocardiography (ECG), echocardiography, cardiac magnetic resonance (CMR) and endomyocardial biopsy (EMB). The treatment of ICI-induced myocarditis involves high-dose corticosteroids, which have been shown to reduce the risk of major adverse cardiac events (MACE). In refractory cases, second-line immunosuppressive drugs may be considered, although their effectiveness is based on limited data. The mortality rates of ICI-induced myocarditis, particularly in severe cases, are high (38-46%). Therapy rechallenge after myocarditis is associated with a risk of recurrence and severe complications. The decision to rechallenge should be made on a case-by-case basis, involving a multidisciplinary team of cardiologists and oncologists. Further research and guidance are needed to optimize the management of cancer patients who have experienced such complications, evaluating the risks and benefits of therapy rechallenge. The purpose of this review is to summarize the available evidence on cardiovascular complications from ICI therapy, with a particular focus on myocarditis and, specifically, the rechallenge of immunotherapy after a cardiac adverse event.
Collapse
Affiliation(s)
- Federica Frascaro
- UO Cardiologia, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Ferrara, Italy; (F.F.); (N.B.); (F.S.); (F.M.); (S.M.); (L.Z.); (E.T.); (M.S.); (G.G.); (G.C.)
| | - Nicola Bianchi
- UO Cardiologia, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Ferrara, Italy; (F.F.); (N.B.); (F.S.); (F.M.); (S.M.); (L.Z.); (E.T.); (M.S.); (G.G.); (G.C.)
| | - Federico Sanguettoli
- UO Cardiologia, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Ferrara, Italy; (F.F.); (N.B.); (F.S.); (F.M.); (S.M.); (L.Z.); (E.T.); (M.S.); (G.G.); (G.C.)
| | - Federico Marchini
- UO Cardiologia, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Ferrara, Italy; (F.F.); (N.B.); (F.S.); (F.M.); (S.M.); (L.Z.); (E.T.); (M.S.); (G.G.); (G.C.)
| | - Sofia Meossi
- UO Cardiologia, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Ferrara, Italy; (F.F.); (N.B.); (F.S.); (F.M.); (S.M.); (L.Z.); (E.T.); (M.S.); (G.G.); (G.C.)
| | - Luca Zanarelli
- UO Cardiologia, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Ferrara, Italy; (F.F.); (N.B.); (F.S.); (F.M.); (S.M.); (L.Z.); (E.T.); (M.S.); (G.G.); (G.C.)
| | - Elisabetta Tonet
- UO Cardiologia, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Ferrara, Italy; (F.F.); (N.B.); (F.S.); (F.M.); (S.M.); (L.Z.); (E.T.); (M.S.); (G.G.); (G.C.)
| | - Matteo Serenelli
- UO Cardiologia, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Ferrara, Italy; (F.F.); (N.B.); (F.S.); (F.M.); (S.M.); (L.Z.); (E.T.); (M.S.); (G.G.); (G.C.)
| | - Gabriele Guardigli
- UO Cardiologia, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Ferrara, Italy; (F.F.); (N.B.); (F.S.); (F.M.); (S.M.); (L.Z.); (E.T.); (M.S.); (G.G.); (G.C.)
| | - Gianluca Campo
- UO Cardiologia, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Ferrara, Italy; (F.F.); (N.B.); (F.S.); (F.M.); (S.M.); (L.Z.); (E.T.); (M.S.); (G.G.); (G.C.)
| | - Luana Calabrò
- Dipartimento di Medicina Translazionale e per la Romagna, Univerity of Ferrara, 44121 Ferrara, Italy;
- UO Medical Oncology, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Ferrara, Italy
| | - Rita Pavasini
- UO Cardiologia, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Ferrara, Italy; (F.F.); (N.B.); (F.S.); (F.M.); (S.M.); (L.Z.); (E.T.); (M.S.); (G.G.); (G.C.)
| |
Collapse
|
25
|
Green CE, Chacon J, Godinich BM, Hock R, Kiesewetter M, Raynor M, Marwaha K, Maharaj S, Holland N. The Heart of the Matter: Immune Checkpoint Inhibitors and Immune-Related Adverse Events on the Cardiovascular System. Cancers (Basel) 2023; 15:5707. [PMID: 38136253 PMCID: PMC10742007 DOI: 10.3390/cancers15245707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer remains a prominent global cause of mortality, second only to cardiovascular disease. The past decades have witnessed substantial advancements in anti-cancer therapies, resulting in improved outcomes. Among these advancements, immunotherapy has emerged as a promising breakthrough, leveraging the immune system to target and eliminate cancer cells. Despite the remarkable potential of immunotherapy, concerns have arisen regarding associations with adverse cardiovascular events. This review examines the complex interplay between immunotherapy and cardiovascular toxicity and provides an overview of immunotherapy mechanisms, clinical perspectives, and potential biomarkers for adverse events, while delving into the intricate immune responses and evasion mechanisms displayed by cancer cells. The focus extends to the role of immune checkpoint inhibitors in cancer therapy, including CTLA-4, PD-1, and PD-L1 targeting antibodies. This review underscores the multifaceted challenges of managing immunotherapy-related cardiovascular toxicity. Risk factors for immune-related adverse events and major adverse cardiac events are explored, encompassing pharmacological, treatment-related, autoimmune, cardiovascular, tumor-related, social, genetic, and immune-related factors. The review also advocates for enhanced medical education and risk assessment tools to identify high-risk patients for preventive measures. Baseline cardiovascular evaluations, potential prophylactic strategies, and monitoring of emerging toxicity symptoms are discussed, along with the potential of adjunct anti-inflammatory therapies.
Collapse
Affiliation(s)
- Chase E. Green
- Department of Medical Education, Paul L. Foster School of Medicine, Texas Tech Health Sciences Center El Paso, 5001 El Paso Ave., El Paso, TX 79905, USA
| | - Jessica Chacon
- Department of Medical Education, Paul L. Foster School of Medicine, Texas Tech Health Sciences Center El Paso, 5001 El Paso Ave., El Paso, TX 79905, USA
| | - Brandon M. Godinich
- Department of Medical Education, Paul L. Foster School of Medicine, Texas Tech Health Sciences Center El Paso, 5001 El Paso Ave., El Paso, TX 79905, USA
| | - Rivers Hock
- Department of Medical Education, Paul L. Foster School of Medicine, Texas Tech Health Sciences Center El Paso, 5001 El Paso Ave., El Paso, TX 79905, USA
| | - Maria Kiesewetter
- Department of Medical Education, Paul L. Foster School of Medicine, Texas Tech Health Sciences Center El Paso, 5001 El Paso Ave., El Paso, TX 79905, USA
| | - Mark Raynor
- Department of Medical Education, Paul L. Foster School of Medicine, Texas Tech Health Sciences Center El Paso, 5001 El Paso Ave., El Paso, TX 79905, USA
| | - Komal Marwaha
- Department of Medical Education, Paul L. Foster School of Medicine, Texas Tech Health Sciences Center El Paso, 5001 El Paso Ave., El Paso, TX 79905, USA
| | - Satish Maharaj
- Department of Internal Medicine, Division of Hematology/Oncology, Paul L. Foster School of Medicine, Texas Tech Health Sciences Center El Paso, 4800 Alberta Ave., El Paso, TX 79905, USA
| | - Nathan Holland
- Department of Medical Education, Paul L. Foster School of Medicine, Texas Tech Health Sciences Center El Paso, 5001 El Paso Ave., El Paso, TX 79905, USA
| |
Collapse
|
26
|
Mitchell JD, Laurie M, Xia Q, Dreyfus B, Jain N, Jain A, Lane D, Lenihan DJ. Risk profiles and incidence of cardiovascular events across different cancer types. ESMO Open 2023; 8:101830. [PMID: 37979325 PMCID: PMC10774883 DOI: 10.1016/j.esmoop.2023.101830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/04/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Cancer survivors are at increased risk for cardiovascular (CV) disease, although additional data are needed to better understand the incidence of CV events across different malignancies. This study sought to characterize the incidence of major adverse CV events [myocardial infarction, stroke, unstable angina (MACE), or heart failure (HF)] across multiple cancer types after cancer diagnosis. PATIENTS AND METHODS Patients were identified from a USA-based administrative claims database who had index cancer diagnoses of breast, lung, prostate, melanoma, myeloma, kidney, colorectal, leukemia, or lymphoma between 2011 and 2019, with continuous enrollment for ≥12 months before diagnosis. Baseline CV risk factors and incidence rates of CV events post-index were identified for each cancer. Multivariable Cox hazards models assessed the cumulative incidence of MACE, accounting for baseline risk factors. RESULTS Among 839 934 patients across nine cancer types, CV risk factors were prevalent. The cumulative incidence of MACE was highest in lung cancer and myeloma, and lowest in breast cancer, prostate cancer, and melanoma. MACE cumulative incidence for lung cancer was 26% by 4 years (2.7-fold higher relative to breast cancer). The incidence of stroke was especially pronounced in lung cancer, while HF was highest in myeloma and lung cancer. CONCLUSIONS CV events were especially increased following certain cancer diagnoses, even after accounting for baseline risk factors. Understanding the variable patient characteristics and associated CV events across different cancers can help target appropriate CV risk factor modification and develop strategies to minimize adverse CV events and improve patient outcomes.
Collapse
Affiliation(s)
- J D Mitchell
- Cardio-Oncology Center of Excellence, Washington University in St. Louis, St. Louis, USA; International Cardio-Oncology Society, Tampa, USA.
| | - M Laurie
- Bristol Myers Squibb, Lawrenceville, USA
| | - Q Xia
- Bristol Myers Squibb, Lawrenceville, USA
| | - B Dreyfus
- Bristol Myers Squibb, Lawrenceville, USA
| | - N Jain
- Mu Sigma, Northbrook, USA
| | - A Jain
- Mu Sigma, Northbrook, USA
| | - D Lane
- Bristol Myers Squibb, Lawrenceville, USA
| | - D J Lenihan
- International Cardio-Oncology Society, Tampa, USA; Cape Cardiology Group, Saint Francis Healthcare, Cape Girardeau, USA
| |
Collapse
|
27
|
Shao J, Liu C, Wang J. Advances in research on molecular markers in immune checkpoint inhibitor-associated myocarditis. CANCER INNOVATION 2023; 2:439-447. [PMID: 38125765 PMCID: PMC10730003 DOI: 10.1002/cai2.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 12/23/2023]
Abstract
Immune checkpoint inhibitors (ICIs) play a crucial role in the immunotherapy of malignant tumors, preventing immune evasion by tumor cells and activating autoimmune cells to eliminate the tumor. Despite their proven effectiveness in antitumor therapy, potential immune-related adverse effects must be recognized, particularly ICI-associated myocarditis (ICIAM). ICIAM is the most lethal form of organ immunotoxicity, with a significant impact on short-term mortality. However, ICIAM is predominantly asymptomatic or mildly nonspecific. It is difficult to diagnose, especially due to the lack of unique molecular markers. This article aims to provide a comprehensive overview of the progress made in identifying molecular markers for ICIAM.
Collapse
Affiliation(s)
- Jun Shao
- Department of General MedicineFirst Medical Center of PLA General HospitalBeijingChina
| | - Chuanbin Liu
- Western Medical Branch of PLA General HospitalBeijingChina
| | - Jing Wang
- Department of General MedicineFirst Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
28
|
Joseph GJ, Johnson DB, Johnson RW. Immune checkpoint inhibitors in bone metastasis: Clinical challenges, toxicities, and mechanisms. J Bone Oncol 2023; 43:100505. [PMID: 37842554 PMCID: PMC10568292 DOI: 10.1016/j.jbo.2023.100505] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the field of anti-cancer therapy over the last decade; they provide durable clinical responses against tumors by inhibiting immune checkpoint proteins that canonically regulate the T cell-mediated immune response. Despite their success in many primary tumors and soft tissue metastases, ICIs function poorly in patients with bone metastases, and these patients do not have the same survival benefit as patients with the same primary tumor type (e.g., non-small cell lung cancer [NSCLC], urothelial, renal cell carcinoma [RCC], etc.) that has not metastasized to the bone. Additionally, immune-related adverse events including rheumatologic and musculoskeletal toxicities, bone loss, and increased fracture risk develop after treatment with ICIs. There are few preclinical studies that investigate the interplay of the immune system in bone metastases; however, the current literature suggests a role for CD8+ T cells and myeloid cell subsets in bone homeostasis. As such, this review focuses on findings from the clinical and pre-clinical studies that have investigated immune checkpoint blockade in the bone metastatic setting and highlights the need for more comprehensive investigations into the relationship between immune cell subsets, ICIs, and the bone-tumor microenvironment.
Collapse
Affiliation(s)
- Gwenyth J. Joseph
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Douglas B. Johnson
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachelle W. Johnson
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
29
|
Paluri RK, Pulipati Y, Regalla DKR. Immune Checkpoint Inhibitors and Their Cardiovascular Adverse Effects. Oncol Rev 2023; 17:11456. [PMID: 38045806 PMCID: PMC10691592 DOI: 10.3389/or.2023.11456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have reshaped and have become a well-established treatment modality for multiple advanced-stage malignancies. ICIs block the immune system regulatory checkpoints, namely CTLA-4 and PD-1/PDL1, which provokes excess immune response against self-antigens. Immune modulation with ICIs can result in diverse immune-related adverse events targeting organ systems. Several cases of ICI-related cardiotoxicity were reported, while the actual incidence was likely underestimated due to heterogeneous clinical presentation. These include, but are not limited to, myocarditis, pericarditis, atherosclerosis, and arrhythmia. EKG, Troponin, Echocardiogram (TTE), and Cardiac MRI (CMRI) are indispensable diagnostic tools to aid in the management of cardiac adverse effects. Herein, we review the ICI-mediated cardiovascular adverse events, diagnosis, treatment strategies, and reintroduction of ICIs post-cardiotoxicity.
Collapse
Affiliation(s)
- Ravi Kumar Paluri
- Department of Hematology-Oncology, Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| | - Yochitha Pulipati
- Department of Internal Medicine, Allegheny General Hospital, Pittsburgh, PA, United States
| | | |
Collapse
|
30
|
Patel M, Hudson O, Han J, Kondapalli L, Arora G, Hawi R, Andrikopoulou E, Estes C, Johnson AM, Lenneman C. Update on Immunotherapy Cardiotoxicity: Checkpoint Inhibitors, CAR T, and Beyond. Curr Treat Options Oncol 2023; 24:1489-1503. [PMID: 37624557 DOI: 10.1007/s11864-023-01130-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 08/26/2023]
Abstract
OPINION STATEMENT Immunotherapy is an innovative approach to cancer treatment that involves using the body's immune system to fight cancer. The landscape of immunotherapy is constantly evolving, as new therapies are developed and refined. Some of the most promising approaches in immunotherapy include immune checkpoint inhibitors (ICIs): these drugs target proteins on the surface of T-cells that inhibit their ability to attack cancer cells. By blocking these proteins, checkpoint inhibitors allow T-cells to recognize and destroy cancer cells more effectively. CAR T-cell therapy: this therapy involves genetically modifying a patient's own T-cells to recognize and attack cancer cells. CAR T-cell therapy exhibits favorable response in many patients with refractory hematological cancers with growing clinical trials in solid tumors. Immune system modulators: these drugs enhance the immune system's ability to fight cancer by stimulating the production of immune cells or inhibiting the activity of immune-suppressing cells. While immunotherapy has shown great promise in the treatment of cancer, it can also pose significant cardiac side effects. Some immunotherapy drugs like ICIs can cause myocarditis, which can lead to chest pain, shortness of breath, and heart failure. Other cardiac side effects of ICIs include arrhythmias, pericarditis, vasculitis, and accelerated atherosclerosis. It is important for patients receiving immunotherapy to be monitored closely for these side effects, as prompt treatment can help prevent serious complications. Patients should also report any symptoms to their healthcare providers right away, so that appropriate action can be taken. CAR T-cell therapy can also illicit an exaggerated immune response creating cytokine release syndrome (CRS) that may precipitate cardiovascular events: arrhythmias, myocardial infarction, and heart failure. Overall, while immune modulating therapy is a promising and expanding approach to cancer treatment, it is important to weigh the potential benefits against the risks and side effects, especially in patients with high risk for cardiovascular complications.
Collapse
Affiliation(s)
- Murti Patel
- University of Alabama at Birmingham (UAB) Heersink School of Medicine, Birmingham, AL, USA
| | - Olivia Hudson
- University of Alabama at Birmingham (UAB) Heersink School of Medicine, Birmingham, AL, USA
| | - Jingnan Han
- University of Alabama at Birmingham (UAB) Heersink School of Medicine, Birmingham, AL, USA
| | - Lavanya Kondapalli
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Garima Arora
- University of Alabama at Birmingham (UAB) Heersink School of Medicine, Birmingham, AL, USA
| | - Riem Hawi
- University of Alabama at Birmingham (UAB) Heersink School of Medicine, Birmingham, AL, USA
| | | | - Courtney Estes
- University of Alabama at Birmingham (UAB) Heersink School of Medicine, Birmingham, AL, USA
| | - Abigail M Johnson
- University of Alabama at Birmingham (UAB) Heersink School of Medicine, Birmingham, AL, USA
| | - Carrie Lenneman
- University of Alabama at Birmingham (UAB) Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
31
|
He W, Zhou L, Xu K, Li H, Wang JJ, Chen C, Wang D. Immunopathogenesis and immunomodulatory therapy for myocarditis. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2112-2137. [PMID: 37002488 PMCID: PMC10066028 DOI: 10.1007/s11427-022-2273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/16/2023] [Indexed: 04/03/2023]
Abstract
Myocarditis is an inflammatory cardiac disease characterized by the destruction of myocardial cells, infiltration of interstitial inflammatory cells, and fibrosis, and is becoming a major public health concern. The aetiology of myocarditis continues to broaden as new pathogens and drugs emerge. The relationship between immune checkpoint inhibitors, severe acute respiratory syndrome coronavirus 2, vaccines against coronavirus disease-2019, and myocarditis has attracted increased attention. Immunopathological processes play an important role in the different phases of myocarditis, affecting disease occurrence, development, and prognosis. Excessive immune activation can induce severe myocardial injury and lead to fulminant myocarditis, whereas chronic inflammation can lead to cardiac remodelling and inflammatory dilated cardiomyopathy. The use of immunosuppressive treatments, particularly cytotoxic agents, for myocarditis, remains controversial. While reasonable and effective immunomodulatory therapy is the general trend. This review focuses on the current understanding of the aetiology and immunopathogenesis of myocarditis and offers new perspectives on immunomodulatory therapies.
Collapse
Affiliation(s)
- Wu He
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Ling Zhou
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Ke Xu
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Huihui Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - James Jiqi Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| | - DaoWen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|
32
|
Toribio-García I, Olivares-Hernández A, Miramontes-González JP, Domínguez LP, Martín García A, Eiros Bachiller R, Figuero-Pérez L, Garijo Martínez M, Roldán Ruiz J, Bellido Hernández L, Fonseca-Sánchez E, Luis Sánchez P, del Barco-Morillo E. Cardiotoxicity Secondary to Immune Checkpoint Inhibitors in the Elderly: Safety in Real-World Data. Cancers (Basel) 2023; 15:4293. [PMID: 37686569 PMCID: PMC10486692 DOI: 10.3390/cancers15174293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/04/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
INTRODUCTION Immunotherapy represents a key pillar of cancer treatments, with high response rates and long survival. Its use is increasing, mainly at the expense of the geriatric population due to the ageing of this population. However, despite its benefit, its safety in certain areas such as cardiotoxicity is largely unknown. The aim of this study is to assess the safety of immunotherapy in elderly patients using real-world data. METHODS This is an ambispective study of patients ≥ 70 years old with solid tumours who were treated with immunotherapy at the University Hospital of Salamanca. Cardiotoxicity was assessed using the CTCAEv5.0 criteria. RESULTS In total, 195 patients were included (76.9% male and 23.1% female), with a mean age of 75 years [70-93]. The percentage of patients with cardiotoxicity was 1.54%; 1.35% of patients with previous heart disease were diagnosed with cardiotoxicity, and 1.65% of those without previous heart disease were diagnosed with cardiotoxicity. The median time from the initiation of treatment until the cardiac event was 45 days [14-96]. The most frequent toxicity was myocarditis in 66.7% of patients, followed by arrhythmias in 33.3% of patients. CONCLUSIONS Immunotherapy is shown to be a safe treatment in elderly cancer patients in terms of cardiotoxicity. The event rate shows no difference between patients with or without cardiac comorbidity.
Collapse
Affiliation(s)
| | - Alejandro Olivares-Hernández
- Department of Medical Oncology, University Hospital of Salamanca, 37007 Salamanca, Spain; (L.P.D.); (L.F.-P.); (M.G.M.); (J.R.R.); (L.B.H.); (E.F.-S.)
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.G.); (R.E.B.); (P.L.S.)
| | - José Pablo Miramontes-González
- Department of Internal Medicine, University Hospital Rio Hortega, 47012 Valladolid, Spain;
- Department of Medicine, University of Valladolid, 45005 Valladolid, Spain
| | - Luis Posado Domínguez
- Department of Medical Oncology, University Hospital of Salamanca, 37007 Salamanca, Spain; (L.P.D.); (L.F.-P.); (M.G.M.); (J.R.R.); (L.B.H.); (E.F.-S.)
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.G.); (R.E.B.); (P.L.S.)
| | - Ana Martín García
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.G.); (R.E.B.); (P.L.S.)
- Department of Cardiology, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Rocío Eiros Bachiller
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.G.); (R.E.B.); (P.L.S.)
- Department of Cardiology, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Luis Figuero-Pérez
- Department of Medical Oncology, University Hospital of Salamanca, 37007 Salamanca, Spain; (L.P.D.); (L.F.-P.); (M.G.M.); (J.R.R.); (L.B.H.); (E.F.-S.)
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.G.); (R.E.B.); (P.L.S.)
| | - María Garijo Martínez
- Department of Medical Oncology, University Hospital of Salamanca, 37007 Salamanca, Spain; (L.P.D.); (L.F.-P.); (M.G.M.); (J.R.R.); (L.B.H.); (E.F.-S.)
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.G.); (R.E.B.); (P.L.S.)
| | - Jonnathan Roldán Ruiz
- Department of Medical Oncology, University Hospital of Salamanca, 37007 Salamanca, Spain; (L.P.D.); (L.F.-P.); (M.G.M.); (J.R.R.); (L.B.H.); (E.F.-S.)
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.G.); (R.E.B.); (P.L.S.)
| | - Lorena Bellido Hernández
- Department of Medical Oncology, University Hospital of Salamanca, 37007 Salamanca, Spain; (L.P.D.); (L.F.-P.); (M.G.M.); (J.R.R.); (L.B.H.); (E.F.-S.)
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.G.); (R.E.B.); (P.L.S.)
- Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Emilio Fonseca-Sánchez
- Department of Medical Oncology, University Hospital of Salamanca, 37007 Salamanca, Spain; (L.P.D.); (L.F.-P.); (M.G.M.); (J.R.R.); (L.B.H.); (E.F.-S.)
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.G.); (R.E.B.); (P.L.S.)
- Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Pedro Luis Sánchez
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.G.); (R.E.B.); (P.L.S.)
- Department of Cardiology, University Hospital of Salamanca, 37007 Salamanca, Spain
- Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Edel del Barco-Morillo
- Department of Medical Oncology, University Hospital of Salamanca, 37007 Salamanca, Spain; (L.P.D.); (L.F.-P.); (M.G.M.); (J.R.R.); (L.B.H.); (E.F.-S.)
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.G.); (R.E.B.); (P.L.S.)
- Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
33
|
Sun Q, Hong Z, Zhang C, Wang L, Han Z, Ma D. Immune checkpoint therapy for solid tumours: clinical dilemmas and future trends. Signal Transduct Target Ther 2023; 8:320. [PMID: 37635168 PMCID: PMC10460796 DOI: 10.1038/s41392-023-01522-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/11/2023] [Accepted: 05/28/2023] [Indexed: 08/29/2023] Open
Abstract
Immune-checkpoint inhibitors (ICBs), in addition to targeting CTLA-4, PD-1, and PD-L1, novel targeting LAG-3 drugs have also been approved in clinical application. With the widespread use of the drug, we must deeply analyze the dilemma of the agents and seek a breakthrough in the treatment prospect. Over the past decades, these agents have demonstrated dramatic efficacy, especially in patients with melanoma and non-small cell lung cancer (NSCLC). Nonetheless, in the field of a broad concept of solid tumours, non-specific indications, inseparable immune response and side effects, unconfirmed progressive disease, and complex regulatory networks of immune resistance are four barriers that limit its widespread application. Fortunately, the successful clinical trials of novel ICB agents and combination therapies, the advent of the era of oncolytic virus gene editing, and the breakthrough of the technical barriers of mRNA vaccines and nano-delivery systems have made remarkable breakthroughs currently. In this review, we enumerate the mechanisms of each immune checkpoint targets, associations between ICB with tumour mutation burden, key immune regulatory or resistance signalling pathways, the specific clinical evidence of the efficacy of classical targets and new targets among different tumour types and put forward dialectical thoughts on drug safety. Finally, we discuss the importance of accurate triage of ICB based on recent advances in predictive biomarkers and diagnostic testing techniques.
Collapse
Affiliation(s)
- Qian Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Cong Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Liangliang Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
34
|
Tang W, Chen J, Ji T, Cong X. TIGIT, a novel immune checkpoint therapy for melanoma. Cell Death Dis 2023; 14:466. [PMID: 37495610 PMCID: PMC10372028 DOI: 10.1038/s41419-023-05961-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
Melanoma is the most aggressive and deadliest type of skin cancer. In the last 10 years, immune checkpoint blockades (ICBs) including PD-1/PD-L1 and CTLA-4 inhibitor has been shown to be effective against melanoma. PD-1/PD-L1 and CTLA-4 inhibitors have shown varying degrees of drug resistance in the treatment of melanoma patients. Furthermore, the clinical benefits of ICBs are also accompanied by severe immune toxicity. Therefore, there is an urgent need to develop new immune checkpoint inhibitors to optimize melanoma therapy and reduce cytotoxicity. T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain (TIGIT) is thought to activate inhibitory receptors in T cells, natural killer (NK) cells, and regulatory T cells (Tregs), and has become a promising target for immunotherapy. Studies have found that TIGIT can be detected in different stages of melanoma, which is closely related to the occurrence, development, and prognosis of melanoma. This review mainly describes the immunosuppressive mechanism of TIGIT and its role in antitumor immunity of melanoma, so as to provide new ideas and schemes for the clinical treatment of melanoma with targeted TIGIT.
Collapse
Affiliation(s)
- Wei Tang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning Province, China
| | - Jun Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning Province, China
| | - Tianlong Ji
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, 110000, China.
| | - Xiufeng Cong
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning Province, China.
| |
Collapse
|
35
|
Cobarro L, Valbuena-López S, Contreras C, Ugueto C, Ruiz-Gutiérrez I, Peña-López J, Ruiz-Giménez L, López-Fernández T. Immune Checkpoint Inhibitor-Related Stress Cardiomyopathy: Differential Diagnosis and Key Role of Cardiac Imaging. JACC Case Rep 2023; 16:101881. [PMID: 37396332 PMCID: PMC10313486 DOI: 10.1016/j.jaccas.2023.101881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 07/04/2023]
Abstract
A 76-year-old man with stage IV urothelial carcinoma who was receiving atezolizumab presented with dyspnea, elevated cardiac biomarkers, new negative T waves, and left ventricular apical akinesia. Coronary angiography results were normal. Immune checkpoint inhibitor-related myocarditis was suspected, and high-dose corticosteroid treatment was started. Cardiac magnetic resonance showed apical edema, suggesting stress cardiomyopathy. (Level of Difficulty: Beginner.).
Collapse
Affiliation(s)
- Lucía Cobarro
- Department of Cardiology, La Paz University Hospital, Madrid, Spain
| | | | | | - Clara Ugueto
- Department of Cardiology, La Paz University Hospital, Madrid, Spain
| | | | - Jesús Peña-López
- Department of Oncology, La Paz University Hospital, Madrid, Spain
| | | | - Teresa López-Fernández
- Department of Cardiology, La Paz University Hospital, Madrid, Spain
- Cardio-Oncology Unit, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
36
|
Wu Y, Xu Y, Xu L. Drug therapy for myocarditis induced by immune checkpoint inhibitors. Front Pharmacol 2023; 14:1161243. [PMID: 37305530 PMCID: PMC10248045 DOI: 10.3389/fphar.2023.1161243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/05/2023] [Indexed: 06/13/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs), including cytotoxic T-lymphocyte antigen 4 (CTLA-4), programmed cell death 1 (PD-1), and its ligand 1 (PD-L1), have improved the survival in multiple types of cancers; however, ICIs may cause cardiovascular toxicity. Although rare, ICI-mediated cardiotoxicity is an extremely serious complication with a relatively high mortality. In this review, we discuss the underlying mechanism and clinical manifestations of cardiovascular toxicity induced by ICIs. According to previous studies, multiple signaling pathways are involved in myocarditis induced by ICIs. Further, we summarize the clinical trials of drugs for the treatment of ICI-associated myocarditis. Although these drugs have shown the beneficial effects of alleviating cardiac function and reducing mortality rates, their efficacy is not optimal. Finally, we discuss the therapeutic potential of some novel compounds as well as the underlying mechanisms of their action.
Collapse
Affiliation(s)
- Yihao Wu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Linhao Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
37
|
Zhang X, Gan Y, Zhu H, Liu Z, Yao X, Cheng C, Liu Z, Su C, Zou J. Role of mitochondrial metabolism in immune checkpoint inhibitors-related myocarditis. Front Cardiovasc Med 2023; 10:1112222. [PMID: 36760573 PMCID: PMC9902768 DOI: 10.3389/fcvm.2023.1112222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Background Immune checkpoint inhibitor-related myocarditis is the deadliest complication of immunotherapy. However, the underlying pathophysiological mechanisms of its occurrence and development remain unclear. Due to the long-term lack of effective early diagnosis and treatment options, it is of great significance to understand the pathophysiological mechanism of immune checkpoint inhibitor-related myocarditis. Methods Tissue samples from three patients with immune checkpoint inhibitor-related myocarditis and three control tissue samples were collected for protein analysis. Differentially expressed proteins were screened out using quantitative proteomics technology based on TMT markers. Protein-protein interaction (PPI) and Gene Ontology (GO) functional enrichment analyses of cross-factors were subsequently performed. Combined with the PD-L1 subcellular organelle- level protein interaction network, we searched for hub proteins involved in immune checkpoint inhibitor-related myocarditis and explored potential drug sensitivity and disease correlation. Results A total of 306 differentially expressed proteins were identified in immune checkpoint inhibitor-related myocarditis. Enrichment analysis showed that the differentially expressed proteins were closely related to mitochondrial metabolism. By analyzing mitochondria-related proteins and PD-L1-related proteins, we found four hub proteins, mammalian target of rapamycin (mTOR), Glycogen synthase kinase 3β (GSK3β), Protein tyrosine phosphatase non-receptor type 11 (PTPN11), and Mitofusin 2 (MFN2), indicating that they are closely related to immune checkpoint inhibitor-related myocarditis. Finally, we explored potential drugs for the treatment of immune checkpoint inhibitor-related myocarditis. Conclusion Mitochondrial metabolism is involved in the process of immune checkpoint inhibitor-related myocarditis, and we identified four hub proteins, which may become new biomarkers for the early diagnosis and treatment of immune checkpoint inhibitor-related myocarditis.
Collapse
|
38
|
Hegazy M, Ghaleb S, Das BB. Diagnosis and Management of Cancer Treatment-Related Cardiac Dysfunction and Heart Failure in Children. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10010149. [PMID: 36670699 PMCID: PMC9856743 DOI: 10.3390/children10010149] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
It is disheartening for parents to discover that their children have long-term cardiac dysfunction after being cured of life-threatening childhood cancers. As the number of childhood cancer survivors increases, early and late oncology-therapy-related cardiovascular complications continues to rise. It is essential to understand that cardiotoxicity in childhood cancer survivors is persistent and progressive. A child's cancer experience extends throughout his lifetime, and ongoing care for long-term survivors is recognized as an essential part of the cancer care continuum. Initially, there was a lack of recognition of late cardiotoxicities related to cancer therapy. About 38 years ago, in 1984, pioneers like Dr. Lipshultz and others published anecdotal case reports of late cardiotoxicities in children and adolescents exposed to chemotherapy, including some who ended up with heart transplantation. At that time, cardiac tests for cancer survivors were denied by insurance companies because they did not meet appropriate use criteria. Since then, cardio-oncology has been an emerging field of cardiology that focuses on the early detection of cancer therapy-related cardiac dysfunction occurring during and after oncological treatment. The passionate pursuit of many healthcare professionals to make life better for childhood cancer survivors led to more than 10,000 peer-reviewed publications in the last 40 years. We synthesized the existing evidence-based practice and described our experiences in this review to share our current method of surveillance and management of cardiac dysfunction related to cancer therapy. This review aims to discuss the pathological basis of cancer therapy-related cardiac dysfunction and heart failure, how to stratify patients prone to cardiotoxicity by identifying modifiable risk factors, early detection of cardiac dysfunction, and prevention and management of heart failure during and after cancer therapy in children. We emphasize serial longitudinal follow-ups of childhood cancer survivors and targeted intervention for high-risk patients. We describe our experience with the new paradigm of cardio-oncology care, and collaboration between cardiologist and oncologist is needed to maximize cancer survival while minimizing late cardiotoxicity.
Collapse
Affiliation(s)
- Mohamed Hegazy
- University of Mississippi Medical Center Program, Jackson, MS 39216, USA
| | - Stephanie Ghaleb
- Division of Pediatric Cardiology, Department of Pediatrics, Children’s of Mississippi Heart Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bibhuti B Das
- Division of Pediatric Cardiology, Department of Pediatrics, McLane Children’s Baylor Scott and White Medical Center, Baylor College of Medicine-Temple, Temple, TX 76502, USA
- Correspondence: ; Tel.: +1-254-935-4980
| |
Collapse
|
39
|
Son C, Moey MYY, Walker PR, Naqash AR, Peach MS, Ju AW. Cardiac toxicity in patients with lung cancer receiving thoracic radiotherapy and immunotherapy. Front Oncol 2023; 12:1025455. [PMID: 36698405 PMCID: PMC9868592 DOI: 10.3389/fonc.2022.1025455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) are used to treat locally-advanced and metastatic lung cancer, which can lead to severe immunogenic-related cardiotoxicities. We assessed the risk of cardiotoxicity in ICI-treated lung cancer patients with or without cardiac radiation from thoracic radiotherapy. Methods Retrospective data was collected on Stage III-IV lung cancer patients who received ICIs between 2015 and 2018. All cardiotoxicities associated with ICI were assessed in correlation with the timing of radiotherapy (RT) in relation to ICI, and the mean RT heart dose. The rate of cardiac events in relation to RT timing and heart dose was compared using multiple logistic regression including the Framingham risk score and steroid use prior to ICI therapy. Results Of 194 ICI-treated patients evaluated, 55.2% (n=107/194) patients had received thoracic RT at a median dose of 60.4 Gy (range, 15-75). Cardiotoxicities such as non-ST elevated myocardial infarction and new onset supraventricular tachycardias were observed in 13 (12.2%) of those who had thoracic RT versus 9 (10.3%) who did not (p=0.87). 38 patients who received RT concurrently with ICI did not develop any cardiotoxicity whereas 14.1% (n=22/156) of those who did not receive concurrent RT developed cardiotoxicities (univariate, p=0.030; multivariate, p=0.055). There were no significant differences in the mean heart RT dose, Framingham risk score, and steroid treatment between patients that received concurrent RT with ICI versus non-concurrent RT/ICI. Conclusion ICI-related cardiotoxicities were not significantly associated with patients who received concurrent thoracic radiotherapy in this retrospective review. Further validation of prospective studies is needed to confirm these results.
Collapse
Affiliation(s)
- Christine Son
- Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Melissa Y. Y. Moey
- Department of Cardiovascular Sciences at Vidant Medical Center/East Carolina University, Greenville, NC, United States
| | - Paul R. Walker
- Department of Hematology and Oncology at East Carolina University, Greenville, NC, United States
| | - Abdul R. Naqash
- Department of Hematology and Oncology at East Carolina University, Greenville, NC, United States,Medical Oncology/TSET Phase 1 Program OU Health Stephenson Cancer Center at the University of Oklahoma, Oklahoma City, OK, United States
| | - Matthew Sean Peach
- Department of Radiation and Oncology at East Carolina University, Greenville, NC, United States
| | - Andrew W. Ju
- Department of Radiation and Oncology at East Carolina University, Greenville, NC, United States,*Correspondence: Andrew W. Ju,
| |
Collapse
|
40
|
Berz AM, Boughdad S, Vietti-Violi N, Digklia A, Dromain C, Dunet V, Duran R. Imaging assessment of toxicity related to immune checkpoint inhibitors. Front Immunol 2023; 14:1133207. [PMID: 36911692 PMCID: PMC9995973 DOI: 10.3389/fimmu.2023.1133207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
In recent years, a wide range of cancer immunotherapies have been developed and have become increasingly important in cancer treatment across multiple oncologic diseases. In particular, immune checkpoint inhibitors (ICIs) offer promising options to improve patient outcomes. However, a major limitation of these treatments consists in the development of immune-related adverse events (irAEs) occurring in potentially any organ system and affecting up to 76% of the patients. The most frequent toxicities involve the skin, gastrointestinal tract, and endocrine system. Although mostly manageable, potentially life-threatening events, particularly due to neuro-, cardiac, and pulmonary toxicity, occur in up to 30% and 55% of the patients treated with ICI-monotherapy or -combination therapy, respectively. Imaging, in particular computed tomography (CT), magnetic resonance imaging (MRI), and 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (18F-FDG-PET/CT), plays an important role in the detection and characterization of these irAEs. In some patients, irAEs can even be detected on imaging before the onset of clinical symptoms. In this context, it is particularly important to distinguish irAEs from true disease progression and specific immunotherapy related response patterns, such as pseudoprogression. In addition, there are irAEs which might be easily confused with other pathologies such as infection or metastasis. However, many imaging findings, such as in immune-related pneumonitis, are nonspecific. Thus, accurate diagnosis may be delayed underling the importance for adequate imaging features characterization in the appropriate clinical setting in order to provide timely and efficient patient management. 18F-FDG-PET/CT and radiomics have demonstrated to reliably detect these toxicities and potentially have predictive value for identifying patients at risk of developing irAEs. The purpose of this article is to provide a review of the main immunotherapy-related toxicities and discuss their characteristics on imaging.
Collapse
Affiliation(s)
- Antonia M Berz
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Sarah Boughdad
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Naïk Vietti-Violi
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Antonia Digklia
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Clarisse Dromain
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vincent Dunet
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Rafael Duran
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
41
|
Zagami P, Nicolò E, Corti C, Valenza C, Curigliano G. New Concepts in Cardio-Oncology. Cancer Treat Res 2023; 188:303-341. [PMID: 38175351 DOI: 10.1007/978-3-031-33602-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cancer and cardiovascular disease are the two major causes of morbidity and mortality in worldwide. Discovering new therapeutic agents for the management of breast cancer (BC) has increased the numbers of cancer survivors but with the risk of cardiovascular adverse events (CV-AEs). All drugs can potentially damage the cardiovascular system, with different types of clinical manifestations from ischemic myocardial disease to vasculitis, thrombosis or pericarditis. An early detection of CV-AEs guarantees an earlier treatment, which is associated with better outcomes. Cardio-oncology field enlarged its studies to improve prevention, monitoring and treatment of all cardiotoxic manifestations related to old or modern oncological agents. A multidisciplinary approach with a close partnership between oncologists and cardiologists is essential for an optimal management and therapeutic decision-making. The aim of this chapter is to review all types of cardiotoxic manifestations related to novel and old agents approved for treatment of BC patients including chemotherapy, anti-HER2 agents, cyclin-dependent kinase 4/6 inhibitors, PolyADP-ribose polymerase (PARP) inhibitors, antiangiogenic drugs and immunotherapy. We also focused our discussion on prevention, monitoring, treatment, and management of CV-AEs.
Collapse
Affiliation(s)
- Paola Zagami
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Hematology, University of Milano, Milan, Italy.
| | - Eleonora Nicolò
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milano, Milan, Italy
| | - Chiara Corti
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milano, Milan, Italy
| | - Carmine Valenza
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milano, Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milano, Milan, Italy
| |
Collapse
|
42
|
Airò G, Maffezzoli M, Lazzarin A, Bianconcini M, Greco A, Buti S, Leonetti A. Takotsubo syndrome in a patient with metastatic renal cell carcinoma treated with pembrolizumab plus axitinib. Immunotherapy 2022; 14:1297-1305. [DOI: 10.2217/imt-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We report the case of a patient with metastatic renal cell carcinoma who developed Takotsubo syndrome (TTS) 6 days after starting pembrolizumab plus axitinib as first-line treatment. Coronary angiogram was negative for obstructive coronary artery disease and echocardiogram revealed a depressed left ventricular ejection fraction with apical akinesis. Axitinib was discontinued and myocardial contractile function fully recovered 23 days after the initial presentation. The treatment was safely resumed and granted a partial response of disease. A literature review regarding TTS in patients receiving VEGFR tyrosine kinase inhibitors and/or immune checkpoint inhibitors was performed. TTS is reported as a rare adverse event and the possible causal relationship between TTS and antineoplastic therapy is still unclear. Further research is warranted to better understand cardiotoxicity mechanisms and their management.
Collapse
Affiliation(s)
- Giulia Airò
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
| | - Michele Maffezzoli
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
| | | | | | - Alessandro Greco
- Cardiology Unit, University Hospital of Parma, Parma, 43126, Italy
| | - Sebastiano Buti
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine & Surgery, University of Parma, Parma, 43126, Italy
| | - Alessandro Leonetti
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine & Surgery, University of Parma, Parma, 43126, Italy
| |
Collapse
|
43
|
Efentakis P, Andreadou I, Iliodromitis KE, Triposkiadis F, Ferdinandy P, Schulz R, Iliodromitis EK. Myocardial Protection and Current Cancer Therapy: Two Opposite Targets with Inevitable Cost. Int J Mol Sci 2022; 23:14121. [PMID: 36430599 PMCID: PMC9696420 DOI: 10.3390/ijms232214121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Myocardial protection against ischemia/reperfusion injury (IRI) is mediated by various ligands, activating different cellular signaling cascades. These include classical cytosolic mediators such as cyclic-GMP (c-GMP), various kinases such as Phosphatydilinositol-3- (PI3K), Protein Kinase B (Akt), Mitogen-Activated-Protein- (MAPK) and AMP-activated (AMPK) kinases, transcription factors such as signal transducer and activator of transcription 3 (STAT3) and bioactive molecules such as vascular endothelial growth factor (VEGF). Most of the aforementioned signaling molecules constitute targets of anticancer therapy; as they are also involved in carcinogenesis, most of the current anti-neoplastic drugs lead to concomitant weakening or even complete abrogation of myocardial cell tolerance to ischemic or oxidative stress. Furthermore, many anti-neoplastic drugs may directly induce cardiotoxicity via their pharmacological effects, or indirectly via their cardiovascular side effects. The combination of direct drug cardiotoxicity, indirect cardiovascular side effects and neutralization of the cardioprotective defense mechanisms of the heart by prolonged cancer treatment may induce long-term ventricular dysfunction, or even clinically manifested heart failure. We present a narrative review of three therapeutic interventions, namely VEGF, proteasome and Immune Checkpoint inhibitors, having opposing effects on the same intracellular signal cascades thereby affecting the heart. Moreover, we herein comment on the current guidelines for managing cardiotoxicity in the clinical setting and on the role of cardiovascular confounders in cardiotoxicity.
Collapse
Affiliation(s)
- Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | | | | | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, 35390 Giessen, Germany
| | | |
Collapse
|
44
|
Chen R, Zhou M, Zhu F. Immune Checkpoint Inhibitors Related to Cardiotoxicity. J Cardiovasc Dev Dis 2022; 9:jcdd9110378. [PMID: 36354777 PMCID: PMC9697232 DOI: 10.3390/jcdd9110378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have now emerged as a mainstay of treatment for various cancers. Along with development of ICIs, immune-related adverse effects (irAEs) have aroused wide attention. The cardiac irAE, one of the rare but potentially fatal effects, have been reported recently. However, the clinical comprehension of cardiac irAEs remains limited and guidelines are inadequate for cardio-oncologists to tackle the problem. In this review, we have summarized current classifications of, manifestations of, potential mechanisms of, and treatment for ICI-related myocardial injury in order to provide some clues for the understanding of cardiac irAEs in clinical work.
Collapse
Affiliation(s)
- Ru Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Min Zhou
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Respiratory Diseases, National Ministry of Health of the People’s Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan 430022, China
- Correspondence: (M.Z.); (F.Z.)
| | - Feng Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (M.Z.); (F.Z.)
| |
Collapse
|
45
|
Zito C, Manganaro R, Ciappina G, Spagnolo CC, Racanelli V, Santarpia M, Silvestris N, Carerj S. Cardiotoxicity Induced by Immune Checkpoint Inhibitors: What a Cardio-Oncology Team Should Know and Do. Cancers (Basel) 2022; 14:cancers14215403. [PMID: 36358830 PMCID: PMC9653561 DOI: 10.3390/cancers14215403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the therapeutic scenario for several malignancies. However, they can be responsible for immune-related adverse events (irAEs), involving several organs, with a pooled incidence ranging between 54% and 76%. The frequency of cardiovascular system involvement is <1%. Among the cardiovascular irAEs, myocarditis is the most common and the most dangerous but other, less common manifestations of ICI-related cardiotoxicity include pericardial disease, arrhythmias, Takotsubo-like syndrome, and acute myocardial infarction, all of which remain poorly explored. Both oncologists and cardiologists, as well as the patients, should be aware of the possible occurrence of one or more of these complications, which in some cases are fatal, in order to implement effective strategies of cardiac surveillance. In this review, we summarize the latest studies and recommendations on the pathogenesis, clinical manifestation, diagnosis, and management of ICI-related cardiotoxicity in order to realize a complete and updated overview on the main aspects of ICI-related cardiotoxicity, from surveillance to diagnosis to management, useful for both oncologists and cardiologists in their clinical practice. In particular, in the first part of the review, we realize a description of the pathogenetic mechanisms and risk factors of the main cardiovascular irAEs. Then, we focus on the management of ICI-related cardiotoxicity by analyzing five main points: (1) identifying and evaluating the type and severity of the cardiotoxicity; (2) deciding whether to withhold ICI therapy; (3) initiating steroid and immunosuppressive therapy; (4) starting conventional cardiac treatment; and (5) restarting ICI therapy. Finally, we discuss the existing evidence on surveillance for ICI-related cardiotoxicity and propose a surveillance strategy for both short- and long-term cardiotoxicity, according to the most recent guidelines.
Collapse
Affiliation(s)
- Concetta Zito
- Cardiology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Roberta Manganaro
- Cardiology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Giuliana Ciappina
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy
| | - Calogera Claudia Spagnolo
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy
| | - Vito Racanelli
- Department of Interdisciplinary Medicine, Medical School, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy
- Correspondence:
| | - Scipione Carerj
- Cardiology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
46
|
Ye Y, Li Y, Zhang S, Han G. Teriprizumab-induced myocarditis in a patient with cholangiocarcinoma: a case report. J Int Med Res 2022; 50:3000605221133259. [PMID: 36300305 PMCID: PMC9620143 DOI: 10.1177/03000605221133259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
With the extensive use of immune checkpoint inhibitors (ICI) in advanced-stage
cancers, immune-related adverse events (irAEs) have been noted in various
systems. While most irAEs are reversible and manageable, cardiac toxicities are
rare but life-threatening, with high mortality rates. We present a case of a
71-year-old man with cholangiocarcinoma who developed myocarditis related to
ICIs 29 days after the first infusion of teriprizumab combined with
albumin-bound paclitaxel and gemcitabine. He was initially asymptomatic after
admission but with substantial elevations of troponin I and myocardial enzymes.
Sixteen hours after admission, he developed palpitations, dizziness, and
syncope. Electrocardiography confirmed third-degree atrioventricular block and
frequent ventricular premature contractions for which he received high-dose
corticosteroids and a permanent pacemaker. The patient survived and permanently
discontinued immunotherapy. Early identification and intervention are the keys
to improving the prognosis of immune myocarditis.
Collapse
Affiliation(s)
| | | | | | - Gaohua Han
- Gaohua Han, Department of Oncology, Taizhou
People's Hospital, 399 Hailing South Road, Hailing District, Taizhou, Jiangsu
225300, P. R. China.
| |
Collapse
|
47
|
Chen Y, Huang A, Yang Q, Yu J, Li G. Case report: A successful re-challenge report of GLS-010 (Zimberelimab), a novel fully humanized mAb to PD-1, in a case of recurrent endometrial cancer. Front Immunol 2022; 13:987345. [PMID: 36275726 PMCID: PMC9582132 DOI: 10.3389/fimmu.2022.987345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
With the widespread use of immune checkpoint inhibitors (ICI), there is growing concern about reports of immune-related adverse events (irAE). In clinical practice, patients who experience severe toxicities by ICI-based therapies would require utmost caution in resuming ICI therapy because of the potential risk of serious irAEs caused by the reintroduction of immunotherapy. In this study, we report a case of recurrent endometrial cancer patient with PD-L1 positive as well as dMMR suffering from immunotherapy-associated myocarditis after first-line treatment with ICI combined with a multi-targeted anti-angiogenic agent. After symptomatic treatment, the patient was in complete remission from treatment toxicities. Subsequently, through MDT discussions, we selected a new PD-1 agent, zimberelimab, for rechallenge therapy, and the patient achieved a sustained disease remission without any treatment-related toxicities. To date, the manner and timing of the ICI re-challenge has been a subject of iterative deliberation. We believe that our experience could shed some light on ICI rechallenge therapy, and we look forward to more literatures to refine the ICI rechallenge scenarios.
Collapse
Affiliation(s)
- Yeshan Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ai Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Guiling Li, ; Jing Yu,
| | - Guiling Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Guiling Li, ; Jing Yu,
| |
Collapse
|
48
|
Zhang S, Xu X, Li Z, Yi T, Ma J, Zhang Y, Li Y. Analysis and Validation of Differentially Expressed Ferroptosis-Related Genes in Regorafenib-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2513263. [PMID: 36204517 PMCID: PMC9530921 DOI: 10.1155/2022/2513263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
Abstract
Background Although tyrosine kinase inhibitors (TKIs) constitute a type of anticancer drugs, the underlying mechanisms of TKI-associated cardiotoxicity remain largely unknown. Ferroptosis is a regulated cell death form that implicated in several tumors' biological processes. Our objective was to probe into the differential expression of ferroptosis-related genes in regorafenib-induced cardiotoxicity through multiple bioinformatics analysis and validation. Methods and Materials Four adult human cardiomyocyte cell lines treated with regorafenib were profiled using Gene Expression Omnibus (GEO) (GSE146096). Differentially expressed genes (DEGs) were identified using DESeq2 in R (V.3.6.3). Then, Gene Ontology (GO) Enrichment Analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis, and Gene Set Enrichment Analysis (GSEA) were used to explore DEGs' bioinformatics functions and enriched pathways. We intersected DEGs with 259 ferroptosis-related genes from the FerrDb database. Finally, the mRNA levels of differentially expressed ferroptosis-related genes (DEFRGs) were validated in regorafenib-cultured cardiomyocytes to anticipate the link between DEFRGs and cardiotoxicity. Results 747,1127,773 and 969 DEGs were screened out in adult human cardiomyocyte lines A, B, D, and E, respectively. The mechanism by which REG promotes cardiotoxicity associated with ferroptosis may be regulated by PI3K-Akt, TGF-beta, and MAPK. GSEA demonstrated that REG can promote cardiotoxicity by suppressing genes and pathways encoding extracellular matrix and related proteins, oxidative phosphorylation, or ATF-2 transcription factor network. After overlapping DEGs with ferroptosis-related genes, we got seven DEFRGs and found that ATF3, MT1G, and PLIN2 were upregulated and DDIT4 was downregulated. The ROC curve demonstrated that these genes predict regorafenib-induced cardiotoxicity well. Conclusion We identified four DEFRGs which may become potential predictors and participate in the regorafenib-induced cardiotoxicity. Our findings provide possibility that targeting these ferroptosis-related genes may be an alternative for clinical prevention and therapy of regorafenib-related cardiotoxicity.
Collapse
Affiliation(s)
- Siyuan Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Xueming Xu
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Zhangyi Li
- Department of Biochemistry and Life Sciences, Faculty of Arts and Sciences, Queen's University, Kingston, Ontario, Canada 91761
| | - Tian Yi
- Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Jingyu Ma
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Yan Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Yilan Li
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150000, China
| |
Collapse
|
49
|
Quagliariello V, Passariello M, Di Mauro A, Cipullo C, Paccone A, Barbieri A, Palma G, Luciano A, Buccolo S, Bisceglia I, Canale ML, Gallucci G, Inno A, De Lorenzo C, Maurea N. Immune checkpoint inhibitor therapy increases systemic SDF-1, cardiac DAMPs Fibronectin-EDA, S100/Calgranulin, galectine-3, and NLRP3-MyD88-chemokine pathways. Front Cardiovasc Med 2022; 9:930797. [PMID: 36158826 PMCID: PMC9505026 DOI: 10.3389/fcvm.2022.930797] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) have significantly changed the oncology clinic in recent years, improving survival expectations in cancer patients. ICI therapy have a broad spectrum of side effects from endocrinopathies to cardiovascular diseases. In this study, pro-inflammatory and pro-fibrotic effects of short-term ICIs therapy in preclinical models were analyzed. Methods Firstly, in a human in vitro model, human cardiomyocytes co-cultured with hPBMC were exposed to ICIs (with CTLA-4 or PD-1 blocking agents, at 200 nM) for 72 h. After treatment, production of DAMPs and 12 cytokines were analyzed in the supernatant through colorimetric and enzymatic assays. C57/Bl6 mice were treated with CTLA-4 or PD-1 blocking agents (15 mg/kg) for 10 days. Before (T0), after three days (T3) and after treatments (T10), ejection fraction, fractional shortening, radial and longitudinal strain were calculated by using bidimensional echocardiography (Vevo 2100, Fujfilm). Fibrosis, necrosis, hypertrophy and vascular NF-kB expression were analyzed through Immunohistochemistry. Myocardial expression of DAMPs (S100- Calgranulin, Fibronectin and Galectine-3), MyD88, NLRP3 and twelve cytokines have been analyzed. Systemic levels of SDF-1, IL-1β, and IL-6 were analyzed before, during and after ICIs therapy. Results Radial and longitudinal strain were decreased after 10 days of ICIs therapy. Histological analysis of NF-kB expression shows that short-term anti-CTLA-4 or anti-PD-1 treatment increased vascular and myocardial inflammation. No myocardial hypertrophy was seen with the exception of the pembrolizumab group. Myocardial fibrosis and expression of galectin-3, pro-collagen 1-α and MMP-9 were increased after treatment with all ICIs. Both anti-CTLA-4 or anti-PD-1 treatments increased the expression of DAMPs, NLRP3 inflammasome and MyD88 and induced both in vitro and in vivo the secretion of IL-1β, TNF-α and IL-6. Systemic levels of SDF-1, IL-1β and IL-6 were increased during and after treatment with ICIs. Conclusions Short therapy with PD-1 and CTLA-4 blocking agents increases vascular expression of NF-kB, systemic SDF-1, IL-1β, IL-6 levels and myocardial NLRP3, MyD88 and DAMPs expression in preclinical models. A pro-inflammatory cytokine storm was induced in myocardial tissues and in cultured cardiac cells after ICIs therapy. The overall picture of the study suggests new putative biomarkers of ICIs-mediated systemic and myocardial damages potentially useful in clinical cardioncology.
Collapse
Affiliation(s)
- Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)- Fondazione G. Pascale, Naples, Italy,*Correspondence: Vincenzo Quagliariello
| | - Margherita Passariello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy,Ceinge-Biotecnologie Avanzate s.c.a.r.l., Naples, Italy
| | - Annabella Di Mauro
- Pathology Unit, Istituto Nazionale Tumori- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)- Fondazione G. Pascale, Naples, Italy
| | - Ciro Cipullo
- Pathology Unit, Istituto Nazionale Tumori- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)- Fondazione G. Pascale, Naples, Italy
| | - Andrea Paccone
- Division of Cardiology, Istituto Nazionale Tumori- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)- Fondazione G. Pascale, Naples, Italy
| | - Antonio Barbieri
- Animal Facility, Istituto Nazionale Tumori- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)- Fondazione G. Pascale, Naples, Italy
| | - Giuseppe Palma
- Animal Facility, Istituto Nazionale Tumori- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)- Fondazione G. Pascale, Naples, Italy
| | - Antonio Luciano
- Animal Facility, Istituto Nazionale Tumori- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)- Fondazione G. Pascale, Naples, Italy
| | - Simona Buccolo
- Division of Cardiology, Istituto Nazionale Tumori- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)- Fondazione G. Pascale, Naples, Italy
| | - Irma Bisceglia
- Servizi Cardiologici Integrati, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| | - Maria Laura Canale
- U.O.C. Cardiologia, Ospedale Versilia, Lido di Camaiore (LU), Camaiore, Italy
| | - Giuseppina Gallucci
- Cardiologia, Centro di Riferimento Oncologico della Basilicata (CROB) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rionero in Vulture, Italy
| | - Alessandro Inno
- Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Sacro Cuore Don Calabria, Negrar, Italy
| | - Claudia De Lorenzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy,Ceinge-Biotecnologie Avanzate s.c.a.r.l., Naples, Italy
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)- Fondazione G. Pascale, Naples, Italy,Nicola Maurea
| |
Collapse
|
50
|
Edwards KJ, Chang B, Babazada H, Lohith K, Park DH, Farwell MD, Sellmyer MA. Using CD69 PET Imaging to Monitor Immunotherapy-Induced Immune Activation. Cancer Immunol Res 2022; 10:1084-1094. [PMID: 35862229 PMCID: PMC10026840 DOI: 10.1158/2326-6066.cir-21-0874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/13/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
ABSTRACT Immune checkpoint inhibitors (ICI) have been effective in treating a subset of refractory solid tumors, but only a small percentage of treated patients benefit from these therapies. Thus, there is a clinical need for reliable tools that allow for the early assessment of response to ICIs, as well as a preclinical need for imaging tools that aid in the future development and understanding of immunotherapies. Here we demonstrate that CD69, a canonical early-activation marker expressed on a variety of activated immune cells, including cytotoxic T cells and natural killer (NK) cells, is a promising biomarker for the early assessment of response to immunotherapies. We have developed a PET probe by radiolabeling a highly specific CD69 mAb, H1.2F3, with Zirconium-89 (89Zr), [89Zr]-deferoxamine (DFO)-H1.2F3. [89Zr]-DFO-H1.2F3 detected changes in CD69 expression on primary mouse T cells in vitro and detected activated immune cells in a syngeneic tumor immunotherapy model. In vitro uptake studies with [89Zr]-DFO-H1.2F3 showed a 15-fold increase in CD69 expression for activated primary mouse T cells, relative to untreated resting T cells. In vivo PET imaging showed that tumors of ICI-responsive mice had greater uptake than the tumors of nonresponsive and untreated mice. Ex vivo biodistribution, autoradiography, and IHC analyses supported the PET imaging findings. These data suggest that the CD69 PET imaging approach detects CD69 expression with sufficient sensitivity to quantify immune cell activation in a syngeneic mouse immunotherapy model and could allow for the prediction of therapeutic immune responses to novel immunotherapies.
Collapse
Affiliation(s)
- Kimberly J Edwards
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bryan Chang
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hasan Babazada
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Katheryn Lohith
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel H Park
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael D Farwell
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark A Sellmyer
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia
| |
Collapse
|