1
|
Chawathe A, Ahire V, Luthra K, Patil B, Garkhal K, Sharma N. Analytical and drug delivery strategies for short peptides: From manufacturing to market. Anal Biochem 2024; 696:115699. [PMID: 39461693 DOI: 10.1016/j.ab.2024.115699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
In recent times, biopharmaceuticals have gained attention because of their tremendous potential to benefit millions of patients globally by treating widespread diseases such as cancer, diabetes and many rare diseases. Short peptides (SP), also termed as oligopeptides, are one such class of biopharmaceuticals, that are majorly involved in efficient functioning of biological systems. Peptide chains that are 2-20 amino acids long are considered as oligopeptides by researchers and are some of the functionally vital compounds with widespread applications including self-assembly material for drug delivery, targeting ligands for precise/specific targeting and other biological uses. Using functionalised biomacromolecules such as short chained peptides, helps in improving pharmacokinetic properties and biodistribution profile of the drug. Apart from this, functionalised SP are being employed as cell penetrating peptides and prodrug to specifically and selectively target tumor sites. In order to minimize any unwanted interaction and adverse effects, the stability and safety of SP should be ensured throughout its development from manufacturing to market. Formulation development and characterization strategies of these potential molecules are described in the following review along with various applications and details of marketed formulations.
Collapse
Affiliation(s)
- Ashwini Chawathe
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Vishal Ahire
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Kshitiz Luthra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Bhumika Patil
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Kalpna Garkhal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India.
| | - Nitish Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
2
|
Dai K, Geng Z, Zhang W, Wei X, Wang J, Nie G, Liu C. Biomaterial design for regenerating aged bone: materiobiological advances and paradigmatic shifts. Natl Sci Rev 2024; 11:nwae076. [PMID: 38577669 PMCID: PMC10989671 DOI: 10.1093/nsr/nwae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/04/2024] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
China's aging demographic poses a challenge for treating prevalent bone diseases impacting life quality. As bone regeneration capacity diminishes with age due to cellular dysfunction and inflammation, advanced biomaterials-based approaches offer hope for aged bone regeneration. This review synthesizes materiobiology principles, focusing on biomaterials that target specific biological functions to restore tissue integrity. It covers strategies for stem cell manipulation, regulation of the inflammatory microenvironment, blood vessel regeneration, intervention in bone anabolism and catabolism, and nerve regulation. The review also explores molecular and cellular mechanisms underlying aged bone regeneration and proposes a database-driven design process for future biomaterial development. These insights may also guide therapies for other age-related conditions, contributing to the pursuit of 'healthy aging'.
Collapse
Affiliation(s)
- Kai Dai
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology; Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Wenchao Zhang
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology; Shanghai 200237, China
| | - Xue Wei
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology; Shanghai 200237, China
| | - Jing Wang
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology; Shanghai 200237, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changsheng Liu
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology; Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Xu H, Wang W, Liu X, Huang W, Zhu C, Xu Y, Yang H, Bai J, Geng D. Targeting strategies for bone diseases: signaling pathways and clinical studies. Signal Transduct Target Ther 2023; 8:202. [PMID: 37198232 DOI: 10.1038/s41392-023-01467-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023] Open
Abstract
Since the proposal of Paul Ehrlich's magic bullet concept over 100 years ago, tremendous advances have occurred in targeted therapy. From the initial selective antibody, antitoxin to targeted drug delivery that emerged in the past decades, more precise therapeutic efficacy is realized in specific pathological sites of clinical diseases. As a highly pyknotic mineralized tissue with lessened blood flow, bone is characterized by a complex remodeling and homeostatic regulation mechanism, which makes drug therapy for skeletal diseases more challenging than other tissues. Bone-targeted therapy has been considered a promising therapeutic approach for handling such drawbacks. With the deepening understanding of bone biology, improvements in some established bone-targeted drugs and novel therapeutic targets for drugs and deliveries have emerged on the horizon. In this review, we provide a panoramic summary of recent advances in therapeutic strategies based on bone targeting. We highlight targeting strategies based on bone structure and remodeling biology. For bone-targeted therapeutic agents, in addition to improvements of the classic denosumab, romosozumab, and PTH1R ligands, potential regulation of the remodeling process targeting other key membrane expressions, cellular crosstalk, and gene expression, of all bone cells has been exploited. For bone-targeted drug delivery, different delivery strategies targeting bone matrix, bone marrow, and specific bone cells are summarized with a comparison between different targeting ligands. Ultimately, this review will summarize recent advances in the clinical translation of bone-targeted therapies and provide a perspective on the challenges for the application of bone-targeted therapy in the clinic and future trends in this area.
Collapse
Affiliation(s)
- Hao Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Wentao Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Xin Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
4
|
Yoon SH, Meyer MB, Arevalo C, Tekguc M, Zhang C, Wang JS, Castro Andrade CD, Strauss K, Sato T, Benkusky NA, Lee SM, Berdeaux R, Foretz M, Sundberg TB, Xavier RJ, Adelmann CH, Brooks DJ, Anselmo A, Sadreyev RI, Rosales IA, Fisher DE, Gupta N, Morizane R, Greka A, Pike JW, Mannstadt M, Wein MN. A parathyroid hormone/salt-inducible kinase signaling axis controls renal vitamin D activation and organismal calcium homeostasis. J Clin Invest 2023; 133:e163627. [PMID: 36862513 PMCID: PMC10145948 DOI: 10.1172/jci163627] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
The renal actions of parathyroid hormone (PTH) promote 1,25-vitamin D generation; however, the signaling mechanisms that control PTH-dependent vitamin D activation remain unknown. Here, we demonstrated that salt-inducible kinases (SIKs) orchestrated renal 1,25-vitamin D production downstream of PTH signaling. PTH inhibited SIK cellular activity by cAMP-dependent PKA phosphorylation. Whole-tissue and single-cell transcriptomics demonstrated that both PTH and pharmacologic SIK inhibitors regulated a vitamin D gene module in the proximal tubule. SIK inhibitors increased 1,25-vitamin D production and renal Cyp27b1 mRNA expression in mice and in human embryonic stem cell-derived kidney organoids. Global- and kidney-specific Sik2/Sik3 mutant mice showed Cyp27b1 upregulation, elevated serum 1,25-vitamin D, and PTH-independent hypercalcemia. The SIK substrate CRTC2 showed PTH and SIK inhibitor-inducible binding to key Cyp27b1 regulatory enhancers in the kidney, which were also required for SIK inhibitors to increase Cyp27b1 in vivo. Finally, in a podocyte injury model of chronic kidney disease-mineral bone disorder (CKD-MBD), SIK inhibitor treatment stimulated renal Cyp27b1 expression and 1,25-vitamin D production. Together, these results demonstrated a PTH/SIK/CRTC signaling axis in the kidney that controls Cyp27b1 expression and 1,25-vitamin D synthesis. These findings indicate that SIK inhibitors might be helpful for stimulation of 1,25-vitamin D production in CKD-MBD.
Collapse
Affiliation(s)
- Sung-Hee Yoon
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark B. Meyer
- Department of Nutritional Sciences, University of Wisconsin — Madison, Madison, Wisconsin, USA
| | - Carlos Arevalo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Murat Tekguc
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chengcheng Zhang
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jialiang S. Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Katelyn Strauss
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tadatoshi Sato
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nancy A. Benkusky
- Department of Nutritional Sciences, University of Wisconsin — Madison, Madison, Wisconsin, USA
| | - Seong Min Lee
- Department of Nutritional Sciences, University of Wisconsin — Madison, Madison, Wisconsin, USA
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Marc Foretz
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | | | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Daniel J. Brooks
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Ruslan I. Sadreyev
- Department of Molecular Biology, and
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivy A. Rosales
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David E. Fisher
- Cutaneous Biology Research Center, Department of Dermatology
| | - Navin Gupta
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ryuji Morizane
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Anna Greka
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - J. Wesley Pike
- Department of Biochemistry, University of Wisconsin — Madison, Madison, Wisconsin, USA
| | - Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Marc N. Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Hexapeptide decorated β-cyclodextrin delivery system for targeted therapy of bone infection. J Control Release 2023; 353:337-349. [PMID: 36462641 DOI: 10.1016/j.jconrel.2022.11.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Successfully treating bone infections is a major orthopedic challenge. Clinically, oral, intravenous, or intramuscular injections of drugs are usually used for direct or complementary treatment. However, once the drug enters the system, it circulates throughout the body, leading to an insufficient local dose and limiting the therapeutic effect because of the lack of targeting in the drug system. In this study, β-cyclodextrin, modified with poly (ethylene glycol) [PEG] and aspartic acid hexapeptide (Asp6-β-CD), was used to specifically target the hydroxyapatite (HA) component of the bone. It was then loaded with norfloxacin (NFX) to treat bone infections. The antibacterial ability of NFX was enhanced by loading it into Asp6-β-CD, because the solubility of Asp6-β-CD@NFX increased significantly. Moreover, Asp6-β-CD could target bone tissue in nude mice and showed significantly enhanced accumulation (10 times) than the unmodified β-CD. In addition, in a rat model of osteomyelitis, Asp6-β-CD@NFX targeted HA well and exerted its antibacterial activity, which reduced inflammation and promoted bone tissue repair. This study indicates that the Asp6-β-CD based drug delivery system can efficiently target bone tissue to enable potential applications for treating bone-related diseases.
Collapse
|
6
|
Ruan L, Su M, Qin X, Ruan Q, Lang W, Wu M, Chen Y, Lv Q. Progress in the application of sustained-release drug microspheres in tissue engineering. Mater Today Bio 2022; 16:100394. [PMID: 36042853 PMCID: PMC9420381 DOI: 10.1016/j.mtbio.2022.100394] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 01/22/2023] Open
Abstract
Sustained-release drug-loaded microspheres provide a long-acting sustained release, with targeted and other effects. There are many types of sustained-release drug microspheres and various preparation methods, and they are easy to operate. For these reasons, they have attracted widespread interest and are widely used in tissue engineering and other fields. In this paper, we provide a systematic review of the application of sustained-release drug microspheres in tissue engineering. First, we introduce this new type of drug delivery system (sustained-release drug carriers), describe the types of sustained-release drug microspheres, and summarize the characteristics of different microspheres. Second, we summarize the preparation methods of sustained-release drug microspheres and summarize the materials required for preparing microspheres. Third, various applications of sustained-release drug microspheres in tissue engineering are summarized. Finally, we summarize the shortcomings and discuss future prospects in the development of sustained-release drug microspheres. The purpose of this paper was to provide a further systematic understanding of the application of sustained-release drug microspheres in tissue engineering for the personnel engaged in related fields and to provide inspiration and new ideas for studies in related fields.
Collapse
Affiliation(s)
- Lian Ruan
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Mengrong Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Xinyun Qin
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Qingting Ruan
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Wen Lang
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Minhui Wu
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Yujie Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, 537000, China
| |
Collapse
|
7
|
Low SA, Nielsen JJ, Coakley CM, Thomas M, Mbachu EU, Chen CL, Jones-Hall Y, Tremblay MI, Hicks JR, Low PS. An engineered dual function peptide to repair fractured bones. J Control Release 2022; 350:688-697. [PMID: 36030992 PMCID: PMC9897200 DOI: 10.1016/j.jconrel.2022.06.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 02/08/2023]
Abstract
Targeted drug delivery, often referred to as "smart" drug delivery, is a process whereby a therapeutic drug is delivered to specific parts of the body in a manner that increases its concentration at the desired sites relative to others. This approach is poised to revolutionize medicine as exemplified by the recent FDA approval of Cytalux (FDA approves pioneering drug for ovarian cancer surgery - Purdue University News) which is a folate-receptor targeted intraoperative near infrared (NIR) imaging agent that was developed in our laboratories. Fracture-associated morbidities and mortality affect a significant portion of world population. United states, Canada and Europe alone spent $48 billion in treating osteoporosis related fractures although this number doesn't count the economic burden due to loss in productivity. It is estimated that by 2050 ca 21 million hip fractures would occur globally which will be leading cause of premature death and disability. Despite the need for improvement in the treatment for fracture repair, methods for treating fractures have changed little in recent decades. Systemic delivery of fracture-homing bone anabolics holds great promise as a therapeutic strategy in this regard. Here we report the design of a fracture-targeted peptide comprised of a payload that binds and activates the parathyroid hormone receptor (PTHR1) and is linked to a targeting ligand comprised of 20 D-glutamic acids (D-Glu20) that directs accumulation of the payload specifically at fracture sites. This targeted delivery results in reduction of fracture healing times to <1/2 while creating repaired bones that are >2-fold stronger than saline-treated controls in mice. Moreover, this hydroxyapatite-targeted peptide can be administered without detectable toxicity to healthy tissues or modification of healthy bones in dogs. Additionally, since similar results are obtained upon treatment of osteoporotic and diabetic fractures in mice, and pain resolution is simultaneously accelerated by this approach, we conclude that this fracture-targeted anabolic peptide displays significant potential to revolutionize the treatment of bone fractures.
Collapse
Affiliation(s)
- Stewart A Low
- Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA.
| | - Jeffery J Nielsen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | | | - Mini Thomas
- Novosteo Inc., 1281 Win Hentschel Blvd, West Lafayette, IN 47906, USA
| | - Ephraim U Mbachu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Christopher L Chen
- College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Yava Jones-Hall
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Madeleine I Tremblay
- Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Jonathan R Hicks
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Philip S Low
- Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
8
|
Liu J, Su C, Chen Y, Tian S, Lu C, Huang W, Lv Q. Current Understanding of the Applications of Photocrosslinked Hydrogels in Biomedical Engineering. Gels 2022; 8:gels8040216. [PMID: 35448118 PMCID: PMC9026461 DOI: 10.3390/gels8040216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Hydrogel materials have great application value in biomedical engineering. Among them, photocrosslinked hydrogels have attracted much attention due to their variety and simple convenient preparation methods. Here, we provide a systematic review of the biomedical-engineering applications of photocrosslinked hydrogels. First, we introduce the types of photocrosslinked hydrogel monomers, and the methods for preparation of photocrosslinked hydrogels with different morphologies are summarized. Subsequently, various biomedical applications of photocrosslinked hydrogels are reviewed. Finally, some shortcomings and development directions for photocrosslinked hydrogels are considered and proposed. This paper is designed to give researchers in related fields a systematic understanding of photocrosslinked hydrogels and provide inspiration to seek new development directions for studies of photocrosslinked hydrogels or related materials.
Collapse
Affiliation(s)
- Juan Liu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Chunyu Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Yutong Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Shujing Tian
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Chunxiu Lu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Wei Huang
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
- Correspondence: (W.H.); (Q.L.)
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China
- Correspondence: (W.H.); (Q.L.)
| |
Collapse
|
9
|
Song J, Cui N, Mao X, Huang Q, Lee ES, Jiang H. Sorption Studies of Tetracycline Antibiotics on Hydroxyapatite (001) Surface-A First-Principles Insight. MATERIALS 2022; 15:ma15030797. [PMID: 35160743 PMCID: PMC8836700 DOI: 10.3390/ma15030797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 12/28/2022]
Abstract
Owing to the limitations of traditional systemic drug delivery in the treatment of bone diseases with side effects on normal cells, the selection of materials with high affinities for bones, as targeting ligands to modify drug carriers, has become an important research topic. Tetracyclines (TCs) have an adsorption effect on hydroxyapatite (HAp). Thus, they can be used as bone-targeting ligands and combined with drug carriers. In this study, density functional theory is used to analyze the interaction mechanism of TC, oxytetracycline (OTC), chlortetracycline, and HAp. We calculate the electrostatic potential (ESP) and molecular orbitals to predict the possible binding sites of TCs on the HAp surface. The adsorption energy is used to compare the affinities of the three TCs to HAp. An independent gradient model analysis is performed to study the weak interaction between TCs and HAp. The coordination bond between TCs and the HAp surface is evaluated by conducting a charge density difference analysis. The results show that OTC has the highest affinity to HAp because the introduction of hydroxyl groups change the adsorption configuration of OTC. Thus, OTC adsorbed on HAp in a broken-line shape exposes more binding sites. This study provides a theoretical basis for TCs as bone-targeting ligands in treating bone diseases and in improving the safety of treatment by selecting different bone-targeting ligands.
Collapse
Affiliation(s)
- Jiaming Song
- The Conversationalist Club, School of Stomatology, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai’an 271016, China; (J.S.); (N.C.); (X.M.); (Q.H.)
| | - Naiyu Cui
- The Conversationalist Club, School of Stomatology, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai’an 271016, China; (J.S.); (N.C.); (X.M.); (Q.H.)
| | - Xuran Mao
- The Conversationalist Club, School of Stomatology, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai’an 271016, China; (J.S.); (N.C.); (X.M.); (Q.H.)
| | - Qixuan Huang
- The Conversationalist Club, School of Stomatology, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai’an 271016, China; (J.S.); (N.C.); (X.M.); (Q.H.)
| | - Eui-Seok Lee
- Department of Oral and Maxillofacial Surgery, Graduate School of Clinical Dentistry, Korea University, Seoul 08308, Korea
- Correspondence: (E.-S.L.); (H.J.)
| | - Hengbo Jiang
- The Conversationalist Club, School of Stomatology, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai’an 271016, China; (J.S.); (N.C.); (X.M.); (Q.H.)
- Correspondence: (E.-S.L.); (H.J.)
| |
Collapse
|
10
|
Minhua T, Dashan W, Xinyan S, Xiao Y, Xiaojing L, Baodong Z. Preparation and characterization of scutellarin loaded on ultradeformable nano-liposomes scutellarin EDTMP (S-UNL-E) and in vitro study of its osteogenesis. Bioengineered 2022; 13:1013-1024. [PMID: 34974800 PMCID: PMC8805926 DOI: 10.1080/21655979.2021.2016095] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The present research aimed to elucidate a convenient, safe and economic approach to induce the growth of endogenous bone tissue and bone regeneration. S-UNL-E was prepared using reverse-phase evaporation, and scutellarin encapsulation was subsequently compared. Meanwhile, the optimal preparation scheme was developed using an orthogonal method, and the particle size was determined using laser light scattering. In osteoblasts cultured in vitro, methyl thiazolyl tetrazolium (MTT), alkaline phosphatase (ALP) staining and alizarin red staining were used to detect the osteogenic effects of S-UNL-E. The results indicated that the optimal process conditions for S-UNL-E included mass ratios of phospholipid-cholesterol, phospholipid-breviscapine, phospholipid-sodium cholate, and phospholipid-stearamide were 2:1, 15:1, 7:1 and 7:1, respectively, and the mass of ethylenediamine tetramethylphosphonic acid (EDTMP) was 30 mg. The average particle size of S-UNL-E was 156.67 ± 1.76 nm, and Zeta potential was −28.77 ± 0.66 mv. S-UNL-E substantially increased the expression of ALP osteoblasts, elevated the content of osteocalcin protein and promoted the formation of mineralized nodules. Cells in the S-UNL-E group were densely distributed with integrated cell structure, and the actin filaments were clear and obvious. The findings demonstrated that S-UNL-E greatly promoted the differentiation and maturation of osteoblasts, and S-UNL-E (2.5 × 108) produced the most favorable effect in differentiation promotion. In conclusion, the present study successfully constructed an S-UNL-E material characterized by high encapsulation and high stability, which could effectively promote osteogenic differentiation and bone formation.
Collapse
Affiliation(s)
- Teng Minhua
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Wang Dashan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Shi Xinyan
- Party and Administration Office, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuan Xiao
- School of Stomatology, Qingdao University, Qingdao, China.,Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Xiaojing
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Zhao Baodong
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Yao C, Zhu M, Han X, Xu Q, Dai M, Nie T, Liu X. A Bone-Targeting Enoxacin Delivery System to Eradicate Staphylococcus Aureus-Related Implantation Infections and Bone Loss. Front Bioeng Biotechnol 2021; 9:749910. [PMID: 34869262 PMCID: PMC8635194 DOI: 10.3389/fbioe.2021.749910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Post-operative infections in orthopaedic implants are severe complications that require urgent solutions. Although conventional antibiotics limit bacterial biofilm formation, they ignore the bone loss caused by osteoclast formation during post-operative orthopaedic implant-related infections. Fortunately, enoxacin exerts both antibacterial and osteoclast inhibitory effects, playing a role in limiting infection and preventing bone loss. However, enoxacin lacks specificity in bone tissue and low bioavailability-related adverse effects, which hinders translational practice. Here, we developed a nanosystem (Eno@MSN-D) based on enoxacin (Eno)-loaded mesoporous silica nanoparticles (MSN), decorated with the eight repeating sequences of aspartate (D-Asp8), and coated with polyethylene glycol The release results suggested that Eno@MSN-D exhibits a high sensitivity to acidic environment. Moreover, this Eno@MSN-D delivery nanosystem exhibited both antibacterial and anti-osteoclast properties in vitro. The cytotoxicity assay revealed no cytotoxicity at the low concentration (20 μg/ml) and Eno@MSN-D inhibited RANKL-induced osteoclast differentiation. Importantly, Eno@MSN-D allowed the targeted release of enoxacin in infected bone tissue. Bone morphometric analysis and histopathology assays demonstrated that Eno@MSN-D has antibacterial and antiosteoclastic effects in vivo, thereby preventing implant-related infections and bone loss. Overall, our study highlights the significance of novel biomaterials that offer new alternatives to treat and prevent orthopaedic Staphylococcus aureus-related implantation infections and bone loss.
Collapse
Affiliation(s)
- Cong Yao
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Meisong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Xiuguo Han
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiang Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Min Dai
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Tao Nie
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Xuqiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| |
Collapse
|
12
|
Guo Y, Liu Y, Shi C, Wu T, Cui Y, Wang S, Liu P, Feng X, He Y, Fu D. Remote-controllable bone-targeted delivery of estradiol for the treatment of ovariectomy-induced osteoporosis in rats. J Nanobiotechnology 2021; 19:248. [PMID: 34407835 PMCID: PMC8371851 DOI: 10.1186/s12951-021-00976-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Osteoporosis (OP) is a systemic skeletal disease marked by bone mass reduction and bone tissue destruction. Hormone replacement therapy is an effective treatment for post-menopausal OP, but estrogen has poor tissue selectivity and severe side effects. RESULTS In this study, we constructed a poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs)-based drug delivery system to co-load 17β estradiol (E2) and iron oxide (Fe3O4) together, modified with alendronate (AL) to achieve bone targeting and realize a magnetically remote-controllable drug release. The NPs were fabricated through the emulsion solvent diffusion method. The particle size was approximately 200 nm while the encapsulation efficiency of E2 was 58.34 ± 9.21%. The NPs were found to be spherical with a homogenous distribution of particle size. The NPs showed good stability, good biocompatibility, high encapsulation ability of E2 and excellent magnetic properties. The NPs could be effectively taken up by Raw 264.7 cells and were effective in enriching drugs in bone tissue. The co-loaded NPs exposed to an external magnetic field ameliorated OVX-induced bone loss through increased BV/TV, decreased Tb.N and Tb.Sp, improved bone strength, increased PINP and OC, and downregulated CTX and TRAP-5b. The haematological index and histopathological analyses displayed the NPs had less side effects on non-skeletal tissues. CONCLUSIONS This study presented a remote-controlled release system based on bone-targeted multifunctional NPs and a new potential approach to bone-targeted therapy of OP.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongwei Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongzhi Cui
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Siyuan Wang
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Liu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu He
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dehao Fu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Jenjob R, Nguyen HP, Kim MK, Jiang Y, Kim JJ, Yang SG. Bisphosphonate-Conjugated Photo-Crosslinking Polyanionic Hyaluronic Acid Microbeads for Controlled BMP2 Delivery and Enhanced Bone Formation Efficacy. Biomacromolecules 2021; 22:4138-4145. [PMID: 34347453 DOI: 10.1021/acs.biomac.1c00610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we designed bisphosphonate-conjugated polyanionic hyaluronic acid (HA) microbeads (MBs) for the controlled delivery of bone morphogenetic protein 2 (BMP2). MBs were prepared via the photo-crosslinking of bisphosphonate (alendronate)-conjugated methacrylated HA (Alen-MHA). The polyanionic Alen-MHA MBs actively absorbed cationic BMP2 up to 91.0% of the loading efficacy and displayed a sustained release of BMP2 for 10 days. BMP2/Alen-MHA MBs induced osteogenic-related genes in cellular experiments and showed the highly increased bone formation efficacy in thigh muscle injection and rat spinal fusion animal models. Thus, BMP2/Alen-MHA MBs provide a promising opportunity to improve the delivery efficiency of BMP2.
Collapse
Affiliation(s)
- Ratchapol Jenjob
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, South Korea
| | - Hong-Phuong Nguyen
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, South Korea.,Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| | - Min-Kyoung Kim
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, South Korea
| | - Yixin Jiang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, South Korea.,Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon 22332, South Korea
| | - Jung Joo Kim
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, South Korea
| | - Su-Geun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, South Korea.,Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon 22332, South Korea
| |
Collapse
|
14
|
Mesenchymal Stem Cells, Bioactive Factors, and Scaffolds in Bone Repair: From Research Perspectives to Clinical Practice. Cells 2021; 10:cells10081925. [PMID: 34440694 PMCID: PMC8392210 DOI: 10.3390/cells10081925] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell-based therapies are promising tools for bone tissue regeneration. However, tracking cells and maintaining them in the site of injury is difficult. A potential solution is to seed the cells onto a biocompatible scaffold. Construct development in bone tissue engineering is a complex step-by-step process with many variables to be optimized, such as stem cell source, osteogenic molecular factors, scaffold design, and an appropriate in vivo animal model. In this review, an MSC-based tissue engineering approach for bone repair is reported. Firstly, MSC role in bone formation and regeneration is detailed. Secondly, MSC-based bone tissue biomaterial design is analyzed from a research perspective. Finally, examples of animal preclinical and human clinical trials involving MSCs and scaffolds in bone repair are presented.
Collapse
|
15
|
Gresham RC, Bahney CS, Leach JK. Growth factor delivery using extracellular matrix-mimicking substrates for musculoskeletal tissue engineering and repair. Bioact Mater 2021; 6:1945-1956. [PMID: 33426369 PMCID: PMC7773685 DOI: 10.1016/j.bioactmat.2020.12.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Therapeutic approaches for musculoskeletal tissue regeneration commonly employ growth factors (GFs) to influence neighboring cells and promote migration, proliferation, or differentiation. Despite promising results in preclinical models, the use of inductive biomacromolecules has achieved limited success in translation to the clinic. The field has yet to sufficiently overcome substantial hurdles such as poor spatiotemporal control and supraphysiological dosages, which commonly result in detrimental side effects. Physiological presentation and retention of biomacromolecules is regulated by the extracellular matrix (ECM), which acts as a reservoir for GFs via electrostatic interactions. Advances in the manipulation of extracellular proteins, decellularized tissues, and synthetic ECM-mimetic applications across a range of biomaterials have increased the ability to direct the presentation of GFs. Successful application of biomaterial technologies utilizing ECM mimetics increases tissue regeneration without the reliance on supraphysiological doses of inductive biomacromolecules. This review describes recent strategies to manage GF presentation using ECM-mimetic substrates for the regeneration of bone, cartilage, and muscle.
Collapse
Affiliation(s)
| | - Chelsea S. Bahney
- Steadman Phillippon Research Institute, Vail, CO, USA
- UCSF Orthopaedic Trauma Institute, San Francisco, CA, USA
| | - J. Kent Leach
- UC Davis, Department of Biomedical Engineering, Davis, CA, USA
- UC Davis Health, Department of Orthopaedic Surgery, Davis, CA, USA
| |
Collapse
|
16
|
Nielsen JJ, Low SA, Ramseier NT, Hadap RV, Young NA, Wang M, Low PS. Analysis of the bone fracture targeting properties of osteotropic ligands. J Control Release 2021; 329:570-584. [PMID: 33031877 DOI: 10.1016/j.jconrel.2020.09.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Although more than 18,000,000 fractures occur each year in the US, methods to promote fracture healing still rely primarily on fracture stabilization, with use of bone anabolic agents to accelerate fracture repair limited to rare occasions when the agent can be applied to the fracture surface. Because management of broken bones could be improved if bone anabolic agents could be continuously applied to a fracture over the entire course of the healing process, we undertook to identify strategies that would allow selective concentration of bone anabolic agents on a fracture surface following systemic administration. Moreover, because hydroxyapatite is uniquely exposed on a broken bone, we searched for molecules that would bind with high affinity and specificity for hydroxyapatite. We envisioned that by conjugating such osteotropic ligands to a bone anabolic agent, we could acquire the ability to continuously stimulate fracture healing. RESULTS Although bisphosphonates and tetracyclines were capable of localizing small amounts of peptidic payloads to fracture surfaces 2-fold over healthy bone, their specificities and capacities for drug delivery were significantly inferior to subsequent other ligands, and were therefore considered no further. In contrast, short oligopeptides of acidic amino acids were found to localize a peptide payload to a bone fracture 91.9 times more than the control untargeted peptide payload. Furthermore acidic oligopeptides were observed to be capable of targeting all classes of peptides, including hydrophobic, neutral, cationic, anionic, short oligopeptides, and long polypeptides. We further found that highly specific bone fracture targeting of multiple peptidic cargoes can be achieved by subcutaneous injection of the construct. CONCLUSIONS Using similar constructs, we anticipate that healing of bone fractures in humans that have relied on immobilization alone can be greately enhanced by continuous stimulation of bone growth using systemic administration of fracture-targeted bone anabolic agents.
Collapse
Affiliation(s)
- Jeffery J Nielsen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States of America
| | - Stewart A Low
- Department of Chemistry, Purdue University, West Lafayette, IN, United States of America
| | - Neal T Ramseier
- Department of Chemistry, Purdue University, West Lafayette, IN, United States of America
| | - Rahul V Hadap
- Department of Chemistry, Purdue University, West Lafayette, IN, United States of America
| | - Nicholas A Young
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States of America
| | - Mingding Wang
- Department of Chemistry, Purdue University, West Lafayette, IN, United States of America
| | - Philip S Low
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States of America; Department of Chemistry, Purdue University, West Lafayette, IN, United States of America.
| |
Collapse
|