1
|
Meir J, Huang L, Mahmood S, Whiteson H, Cohen S, Aronow WS. The vascular complications of diabetes: a review of their management, pathogenesis, and prevention. Expert Rev Endocrinol Metab 2024; 19:11-20. [PMID: 37947481 DOI: 10.1080/17446651.2023.2279533] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION This review highlights the pathogenesis of both microvascular and macrovascular complications of diabetes and how these mechanisms influence both the management and preventative strategies of these complications. The cumulative data shown in this review suggest hyperglycemic and blood pressure control remain central to this intricate process. AREAS COVERED We reviewed the literature including retrospective, prospective trials as well as meta-analysis, and post hoc analysis of randomized trials on microvascular andmacrovascular complications. EXPERT OPINION Further research is needed to explore the ideal intervention targets and preventative strategies needed to prevent macrovascular complications. Furthermore, as the data for trials looking at microvascular complications lengthen more long-term data will further elucidate the role that the duration of diabetes has on these complications. Additionally, trials looking to maximize hyperglycemic control with multiple agents in diabetes, such as metformin, SGL2isand GLP-1 receptor agonists are currently in process, which will have implications for rates of microvascular as well as macrovascular complications.
Collapse
Affiliation(s)
- Juliet Meir
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, USA
| | - Lillian Huang
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, USA
| | - Sumaita Mahmood
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, USA
| | - Harris Whiteson
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, USA
| | - Scott Cohen
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, USA
| | - Wilbert S Aronow
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, USA
| |
Collapse
|
2
|
Busa P, Kuthati Y, Huang N, Wong CS. New Advances on Pathophysiology of Diabetes Neuropathy and Pain Management: Potential Role of Melatonin and DPP-4 Inhibitors. Front Pharmacol 2022; 13:864088. [PMID: 35496279 PMCID: PMC9039240 DOI: 10.3389/fphar.2022.864088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Pre-diabetes and diabetes are growing threats to the modern world. Diabetes mellitus (DM) is associated with comorbidities such as hypertension (83.40%), obesity (90.49%), and dyslipidemia (93.43%), creating a substantial burden on patients and society. Reductive and oxidative (Redox) stress level imbalance and inflammation play an important role in DM progression. Various therapeutics have been investigated to treat these neuronal complications. Melatonin and dipeptidyl peptidase IV inhibitors (DPP-4i) are known to possess powerful antioxidant and anti-inflammatory properties and have garnered significant attention in the recent years. In this present review article, we have reviewed the recently published reports on the therapeutic efficiency of melatonin and DPP-4i in the treatment of DM. We summarized the efficacy of melatonin and DPP-4i in DM and associated complications of diabetic neuropathy (DNP) and neuropathic pain. Furthermore, we discussed the mechanisms of action and their efficacy in the alleviation of oxidative stress in DM.
Collapse
Affiliation(s)
- Prabhakar Busa
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Niancih Huang
- Department of Anesthesiology, Tri-Service General Hospital, Taipei, Taiwan
- Grauate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
- Department of Anesthesiology, Tri-Service General Hospital, Taipei, Taiwan
- Grauate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
3
|
Karle PP, Dhawale SC, Navghare VV. Amelioration of diabetes and its complications by Manilkara zapota (L) P. Royen fruit peel extract and its fractions in alloxan and STZ-NA induced diabetes in Wistar rats. J Diabetes Metab Disord 2022; 21:493-510. [PMID: 35673482 PMCID: PMC9167411 DOI: 10.1007/s40200-022-01000-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/31/2022] [Indexed: 02/06/2023]
Abstract
Purpose This study aims to evaluate the effects of Manilkara zapota (L) P. Royen fruit peel extract (EMZFP) and its fractions in ameliorating diabetes and its complications in alloxan and STZ-NA induced diabetes in Wistar rats. Methods Antidiabetic effects of EMZFP were assessed in alloxan (150 mg kg-1) induced diabetes in differently grouped rats (n=6). Diabetic rats were treated with EMZFP 150, 300, and 600 mg kg-1 while, glimepiride (0.09 mg kg-1) was used as a reference standard. Treated animals were assessed for various biological parameters i.e. blood glucose, serum lipids, nephroprotective markers, cardiovascular risk indices, liver glycogen, neuropathy, body weight, and histopathology of kidneys. However, for evaluating antidiabetic effects of fractions (chloroform, acetone, ethyl acetate, and remaining ethanol fraction) of EMZFP, diabetes was induced by streptozotocin (60 mg kg-1)-nicotinamide (120 mg kg-1/ml) in differently grouped male rats (n=6). Diabetic rats were treated with EMZFP fractions 200 mg kg-1 however; glibenclamide (10 mg kg-1) was a reference standard and evaluated for blood glucose, serum lipids, cardiovascular risk indices, and diabetic neuropathy. Results EMZFP 300 and 600 mg kg-1/day demonstrated significant antihyperglycemic effects with augmentation in glycogen content, perfection in serum lipid profile, cardiovascular risk indices, body weight enhancement, nephroprotective effects, beneficial in peripheral neuropathy, and histopathological evidence of reversal of glomerulosclerosis. EMZFP-Et and EMZFP-EA fractions depicted a significant improvement in blood glucose, serum lipid profile, cardiovascular risk indices, and peripheral neuropathy. Conclusion EMZFP and its Et and EA fractions ameliorated diabetes and its complications by improving glycemic control and associated biochemical alteration. Highlights • Manilkara Zapota (L.) P. Royen fruit peel 70% ethanolic extract exert antidiabetic effects• EMZFP significantly ameliorated diabetic biochemical parameters and its complications.• EMZFP-Et and EMZFP-EA fractions exert potential antihyperglycemic, hypolipidemic effects and significantly improved cardiovascular risk indices, and peripheral neuropathy.• Studied MZFP can be used as promising natural herbal source of antidiabetic principles.
Collapse
Affiliation(s)
- Pravin P. Karle
- grid.412747.30000 0000 8673 788XDepartment of Pharmacology, School of Pharmacy, S.R.T.M. University, Nanded, 431606 MS India
| | - Shashikant C. Dhawale
- grid.412747.30000 0000 8673 788XDepartment of Pharmacology, School of Pharmacy, S.R.T.M. University, Nanded, 431606 MS India
| | - Vijay V. Navghare
- grid.412747.30000 0000 8673 788XDepartment of Pharmacology, School of Pharmacy, S.R.T.M. University, Nanded, 431606 MS India
| |
Collapse
|
4
|
Role of miRNAs in diabetic neuropathy: mechanisms and possible interventions. Mol Neurobiol 2022; 59:1836-1849. [PMID: 35023058 DOI: 10.1007/s12035-021-02662-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
Accelerating cases of diabetes worldwide have given rise to higher incidences of diabetic complications. MiRNAs, a much-explored class of non-coding RNAs, play a significant role in the pathogenesis of diabetes mellitus by affecting insulin release, β-cell proliferation, and dysfunction. Besides, disrupted miRNAs contribute to various complications, diabetic retinopathy, nephropathy, and neuropathy as well as severe conditions like diabetic foot. MiRNAs regulate various processes involved in diabetic complications like angiogenesis, vascularization, inflammations, and various signaling pathways like PI3K, MAPK, SMAD, and NF-KB signaling pathways. Diabetic neuropathy is the most common diabetic complication, characterized mainly by pain and numbness, especially in the legs and feet. MiRNAs implicated in diabetic neuropathy include mir-9, mir-106a, mir-146a, mir-182, miR-23a and b, miR-34a, and miR-503. The diabetic foot is the most common diabetic neuropathy, often leading to amputations. Mir-203, miR-23c, miR-145, miR-29b and c, miR-126, miR-23a and b, miR-503, and miR-34a are associated with diabetic foot. This review has been compiled to summarize miRNA involved in initiation, progression, and miRNAs affecting various signaling pathways involved in diabetic neuropathy including the diabetic foot. Besides, potential applications of miRNAs as biomarkers and therapeutic targets in this microvascular complication will also be discussed.
Collapse
|
5
|
Yorek M. Treatment for Diabetic Peripheral Neuropathy: What have we Learned from Animal Models? Curr Diabetes Rev 2022; 18:e040521193121. [PMID: 33949936 PMCID: PMC8965779 DOI: 10.2174/1573399817666210504101609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/07/2021] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Animal models have been widely used to investigate the etiology and potential treatments for diabetic peripheral neuropathy. What we have learned from these studies and the extent to which this information has been adapted for the human condition will be the subject of this review article. METHODS A comprehensive search of the PubMed database was performed, and relevant articles on the topic were included in this review. RESULTS Extensive study of diabetic animal models has shown that the etiology of diabetic peripheral neuropathy is complex, with multiple mechanisms affecting neurons, Schwann cells, and the microvasculature, which contribute to the phenotypic nature of this most common complication of diabetes. Moreover, animal studies have demonstrated that the mechanisms related to peripheral neuropathy occurring in type 1 and type 2 diabetes are likely different, with hyperglycemia being the primary factor for neuropathology in type 1 diabetes, which contributes to a lesser extent in type 2 diabetes, whereas insulin resistance, hyperlipidemia, and other factors may have a greater role. Two of the earliest mechanisms described from animal studies as a cause for diabetic peripheral neuropathy were the activation of the aldose reductase pathway and increased non-enzymatic glycation. However, continuing research has identified numerous other potential factors that may contribute to diabetic peripheral neuropathy, including oxidative and inflammatory stress, dysregulation of protein kinase C and hexosamine pathways, and decreased neurotrophic support. In addition, recent studies have demonstrated that peripheral neuropathy-like symptoms are present in animal models, representing pre-diabetes in the absence of hyperglycemia. CONCLUSION This complexity complicates the successful treatment of diabetic peripheral neuropathy, and results in the poor outcome of translating successful treatments from animal studies to human clinical trials.
Collapse
Affiliation(s)
- Mark Yorek
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242 USA
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA, 52246 USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52242 USA
| |
Collapse
|
6
|
Arora K, Tomar PC, Mohan V. Diabetic neuropathy: an insight on the transition from synthetic drugs to herbal therapies. J Diabetes Metab Disord 2021; 20:1773-1784. [PMID: 34900824 PMCID: PMC8630252 DOI: 10.1007/s40200-021-00830-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
The global pandemic of prediabetes and diabetes has led to a severe corresponding complication of these disorders. Neuropathy is one of the most prevalent complication of diabetes is, affecting blood supply of the peripheral nervous system that may eventually results into loss of sensations, injuries, diabetic foot and death. The utmost identified risk of diabetic neuropathy is uncontrolled high blood glucose levels. However, aging, body mass index (BMI), oxidative stress, inflammation, increased HbA1c levels and blood pressure are among the other key factors involved in the upsurge of this disease. The so far treatment to deal with diabetic neuropathy is controlling metabolic glucose levels. Apart from this, drugs like reactive oxygen species (ROS) inhibitors, aldose reductase inhibitors, PKC inhibitors, Serotonin-norepinephrine reuptake inhibitors (SNRIs), anticonvulsants, N-methyl-D-aspartate receptor (NMDAR) antagonists, are the other prescribed medications. However, the related side-effects (hallucinations, drowsiness, memory deficits), cost, poor pharmacokinetics and drug resistance brought the trust of patients down and thus herbal renaissance is occurring all over the word as the people have shifted their intentions from synthetic drugs to herbal remedies. Medicinal plants have widely been utilized as herbal remedies against number of ailments in Indian medicinal history. Their bioactive components are very much potent to handle different chronic disorders and complications with lesser-known side effects. Therefore, the current article mainly concludes the etiology and pathophysiology of diabetic neuropathy. Furthermore, it also highlights the important roles of medicinal plants and their naturally occurring bioactive compounds in addressing this disease.
Collapse
Affiliation(s)
- Komal Arora
- Department of Life Sciences, Neurosciences, Gurugram University, Gurugram, India
| | - Pushpa C. Tomar
- Department of Biotechnology, Faculty of Engineering & Technology, Manav Rachna International Institute of Research & Studies, Haryana 121004 Faridabad, India
| | - Vandana Mohan
- Department of Life Sciences, Neurosciences, Gurugram University, Gurugram, India
| |
Collapse
|
7
|
Srivastava R, Tripathi L, Swain SR, Singh J. Neuroprotective validation of pectin in T2DM-induced allodynia and hyperalgesia in diabetic peripheral neuropathic pain. Arch Physiol Biochem 2021:1-12. [PMID: 33618606 DOI: 10.1080/13813455.2021.1884725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AIM To validate neuroprotective effect of pectin against neuropathic pain in diabetic rodents. MATERIAL AND METHOD Pectin was isolated and characterised from different sources to validate its neuroprotective effect against T2DM associated neuropathic pain. The antioxidant activity of pectins was done by the DPPH method. Type-2 diabetes mellitus (T2DM) was induced in Wistar albino rats by high-fat diet and high-fat emulsion feeding for 2 weeks followed by a single i.p. of Sterptozotocin in 3rd week. The animals were grouped as positive control and Citrus sinensis (L.) Osbeck peel pectin (CSL-OP) as test group and treated for the next 4 weeks. Body weight and blood glucose were measured up to 8 weeks; however, behavioural assessment was done at the end of 5th to 8th week. RESULT CSL-OP restored the reduced body weight and elevated blood glucose with increased pain threshold and improved walking performance. CONCLUSION CSL-OP prevented progression of early diabetic neuropathy with anti-oxidant activity.
Collapse
Affiliation(s)
- Rajnish Srivastava
- Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad, India
| | | | - Sudhansu Ranjan Swain
- Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad, India
| | - Jagan Singh
- Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad, India
| |
Collapse
|
8
|
Corneal confocal microscopy detects small nerve fibre damage in patients with painful diabetic neuropathy. Sci Rep 2020; 10:3371. [PMID: 32099076 PMCID: PMC7042367 DOI: 10.1038/s41598-020-60422-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/11/2020] [Indexed: 12/28/2022] Open
Abstract
Neuropathic pain is believed to arise from damage to nociceptive C fibres in diabetic neuropathy (DN). We have utilised corneal confocal microscopy (CCM) to quantify the severity of small nerve fibre damage in relation to the severity of neuropathic pain and quality of life (QoL) in patients with and without painful DN. 30 controls and patients with painful (n = 78) and painless (n = 62) DN underwent assessment of large and small nerve fibre function, CCM, neuropathic symptoms (small fibre neuropathy symptom inventory questionnaire, neuropathic pain scale) and QoL (SF-36, pre-R-ODS and hospital anxiety and depression scale). Patients with painful compared to painless DN, had comparable neurophysiology and vibration perception, but lower corneal nerve fibre density (20.1 ± 0.87 vs. 24.13 ± 0.91, P = 0.005), branch density (44.4 ± 3.31 vs. 57.74 ± 3.98, P = 0.03), length (19.61 ± 0.81 vs. 22.77 ± 0.83, P = 0.01), inferior whorl length (18.03 ± 1.46 vs. 25.1 ± 1.95, P = 0.005) and cold sensation threshold (21.35 ± 0.99 vs. 26.08 ± 0.5, P < 0.0001) and higher warm sensation threshold (43.7 ± 0.49 vs. 41.37 ± 0.51, P = 0.004) indicative of small fibre damage. There was a significant association between all CCM parameters and the severity of painful neuropathic symptoms, depression score and QoL. CCM identifies small nerve fibre loss, which correlates with the severity of neuropathic symptoms and reduced QoL in patients with painful diabetic neuropathy.
Collapse
|
9
|
Glycaemic Control and Vascular Complications in Diabetes Mellitus Type 2. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1307:129-152. [PMID: 32266607 DOI: 10.1007/5584_2020_514] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is constantly increasing worldwide. Vascular complications are the most common in the setting of long-standing disease, claiming the greatest burden in terms of morbidity and mortality. Glucotoxicity is involved in vascular damage through different metabolic pathways, such as production of advanced glycation end-products, activation of protein kinase C, polyol pathway activation and production of reactive oxygen species. Vascular complications can be classified according to the calibre of the vessels involved as microvascular (such as diabetic retinopathy, nephropathy and neuropathy) or macrovascular (such as cerebrovascular, coronary and peripheral artery disease). Previous studies showed that the severity of vascular complications depends on duration and degree of hyperglycaemia and, as consequence, early trials were designed to prove that intensive glucose control could reduce the number of vascular events. Unfortunately, results were not as satisfactory as expected. Trials showed good results in reducing incidence of microvascular complications but coronary heart diseases, strokes and peripheral artery diseases were not affected despite optimal glycemia control. In 2008, after the demonstration that rosiglitazone increases cardiovascular risk, FDA demanded stricter rules for marketing glucose-lowering drugs, marking the beginning of cardiovascular outcome trials, whose function is to demonstrate the cardiovascular safety of anti-diabetic drugs. The introduction of new molecules led to a change in diabetes treatment, as some new glucose-lowering drugs showed not only to be safe but also to ensure cardiovascular benefit to diabetic patients. Empaglifozin, a sodium-glucose cotransporter 2 inhibitor, was the first molecule to show impressing results, followed on by glucagon-like peptide 1 receptor agonists, such as liraglutide. A combination of anti-atherogenic effects and hemodynamic improvements are likely explanations of the observed reduction in cardiovascular events and mortality. These evidences have opened a completely new era in the field of glucose-lowering drugs and of diabetes treatment in particular with respect to vascular complications.
Collapse
|
10
|
Marmoy OR, Furlong PL, Moore CEG. Upper and lower limb motor axons demonstrate differential excitability and accommodation to strong hyperpolarizing currents during induced hyperthermia. J Neurophysiol 2019; 121:2061-2070. [PMID: 30917073 DOI: 10.1152/jn.00464.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Length-dependent peripheral neuropathy typically involves the insidious onset of sensory loss in the lower limbs before later progressing proximally. Recent evidence proposes hyperpolarization-activated cyclic nucleotide-gated (HCN) channels as dysfunctional in rodent models of peripheral neuropathy, and therefore differential expression of HCN channels in the lower limbs was hypothesized as a pathophysiological mechanism accounting for the pattern of symptomatology within this study. We studied six healthy participants, using motor axon excitability including strong and long [-70% and -100% hyperpolarizing threshold electrotonus (TEh)] hyperpolarizing currents to preferably study HCN channel function from the median and tibial nerves from high (40%) and low (20%) threshold. This was recorded at normothermia (~32°C) and then repeated during hyperthermia (~40°C) as an artificial hyperpolarizing axon stress. Significant differences between recovery cycle, superexcitability, accommodation to small depolarizing currents, and alterations in late stages of the inward-rectifying currents of strongest (-70% and -100% TEh) currents were observed in the lower limbs during hyperthermia. We demonstrate differences in late IH current flow, which implies higher expression of HCN channel isoforms. The findings also indicate their potential inference in the symptomatology of length-dependent peripheral neuropathies and may be a unique target for minimizing symptomatology and pathogenesis in acquired disease. NEW & NOTEWORTHY This study demonstrates nerve excitability differences between the upper and lower limbs during hyperthermia, an experimentally induced axonal stress. The findings indicate that there is differential expression of slow hyperpolarization-activated cyclic nucleotide-gated (HCN) channel isoforms between the upper and lower limbs, which was demonstrated through strong, long hyperpolarizing currents during hyperthermia. Such mechanisms may underlie postural control but render the lower limbs susceptible to dysfunction in disease states.
Collapse
Affiliation(s)
- Oliver R Marmoy
- Department of Clinical Neurophysiology, Portsmouth Hospitals NHS Trust, Portsmouth , United Kingdom.,Aston University , Birmingham , United Kingdom
| | | | - Christopher E G Moore
- Department of Clinical Neurophysiology, Portsmouth Hospitals NHS Trust, Portsmouth , United Kingdom
| |
Collapse
|
11
|
Rondón LJ, Farges MC, Davin N, Sion B, Privat AM, Vasson MP, Eschalier A, Courteix C. l-Arginine supplementation prevents allodynia and hyperalgesia in painful diabetic neuropathic rats by normalizing plasma nitric oxide concentration and increasing plasma agmatine concentration. Eur J Nutr 2017; 57:2353-2363. [PMID: 28725942 DOI: 10.1007/s00394-017-1508-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/11/2017] [Indexed: 11/30/2022]
|
12
|
Abstract
Over the last several decades, the global incidence and prevalence of diabetes mellitus has increased significantly. The raised incidence rate is projected to continue as greater numbers of persons adopt a Western lifestyle and diet. Patients with diabetes mellitus are at heightened risk of both adverse microvascular and cardiovascular events. Moreover, once cardiovascular disease develops, diabetes mellitus exacerbates progression and worsens outcomes. The medical management of patients with diabetes mellitus mandates comprehensive risk factor modification and antiplatelet therapy. Recent clinical trials of new medical therapies continue to inform the care of patients with diabetes mellitus to reduce both cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Joshua A Beckman
- From the Department of Medicine, Section of Vascular Medicine, Cardiovascular Division, Vanderbilt University School of Medicine, Nashville, TN (J.A.B.); and Department of Medicine, Heart and Vascular Center, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH (M.A.C.).
| | - Mark A Creager
- From the Department of Medicine, Section of Vascular Medicine, Cardiovascular Division, Vanderbilt University School of Medicine, Nashville, TN (J.A.B.); and Department of Medicine, Heart and Vascular Center, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH (M.A.C.)
| |
Collapse
|
13
|
Javed S, Petropoulos IN, Alam U, Malik RA. Treatment of painful diabetic neuropathy. Ther Adv Chronic Dis 2015; 6:15-28. [PMID: 25553239 DOI: 10.1177/2040622314552071] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Painful diabetic neuropathy (PDN) is a debilitating consequence of diabetes that may be present in as many as one in five patients with diabetes. The objective assessment of PDN is difficult, making it challenging to diagnose and assess in both clinical practice and clinical trials. No single treatment exists to prevent or reverse neuropathic changes or to provide total pain relief. Treatment of PDN is based on three major approaches: intensive glycaemic control and risk factor management, treatments based on pathogenetic mechanisms, and symptomatic pain management. Clinical guidelines recommend pain relief in PDN through the use of antidepressants such as amitriptyline and duloxetine, the γ-aminobutyric acid analogues gabapentin and pregabalin, opioids and topical agents such as capsaicin. Of these medications, duloxetine and pregabalin were approved by the US Food and Drug Administration (FDA) in 2004 and tapentadol extended release was approved in 2012 for the treatment of PDN. Proposed pathogenetic treatments include α-lipoic acid (stems reactive oxygen species formation), benfotiamine (prevents vascular damage in diabetes) and aldose-reductase inhibitors (reduces flux through the polyol pathway). There is a growing need for studies to evaluate the most potent drugs or combinations for the management of PDN to maximize pain relief and improve quality of life. A number of agents are potential candidates for future use in PDN therapy, including Nav 1.7 antagonists, N-type calcium channel blockers, NGF antibodies and angiotensin II type 2 receptor antagonists.
Collapse
Affiliation(s)
- Saad Javed
- Centre for Endocrinology and Diabetes, University of Manchester, Core Technology Facility (3rd floor), 46 Grafton Street, Manchester, M13 9NT, UK
| | - Ioannis N Petropoulos
- School of Medicine, Institute of Human Development, Centre for Endocrinology and Diabetes, Manchester, UK
| | - Uazman Alam
- School of Medicine, Institute of Human Development, Centre for Endocrinology and Diabetes, and Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Rayaz A Malik
- School of Medicine, Institute of Human Development, Centre for Endocrinology and Diabetes, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK, and Weill Cornell Medical College, Qatar
| |
Collapse
|
14
|
Desai B, Freeman E, Huang E, Hung A, Knapp E, Breunig IM, McPherson ML, Shaya FT. Clinical value of tapentadol extended-release in painful diabetic peripheral neuropathy. Expert Rev Clin Pharmacol 2014; 7:203-9. [PMID: 24524594 DOI: 10.1586/17512433.2014.889562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Painful diabetic peripheral neuropathy is difficult to treat, partially because the underlying mechanism of pain is not fully understood. Various treatment guidelines recommend first-line agents, such as α2-δ ligands, serotonin-norepinephrine reuptake inhibitors, and tricyclic antidepressants but combination therapy of alternative agents including opiates is often warranted. Tapentadol extended-release has a novel dual mechanism of action; it is both a mu-opioid receptor agonist and a norephinephrine reuptake inhibitor. It has been in the spotlight since it was FDA-approved specifically for the treatment of painful diabetic peripheral neuropathy in 2012. Previous reviews of tapentadol have focused on chronic pain. The purpose of this review article is to assess the efficacy and safety of tapentadol extended-release in adult populations with painful diabetic peripheral neuropathy and provide guidance for formulary decisions.
Collapse
Affiliation(s)
- Bansri Desai
- University of Maryland School of Pharmacy, 300 West Lombard St, Apt 413, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Nadig PD, Revankar RR, Dethe SM, Narayanswamy SB, Aliyar MA. Effect of Tinospora cordifolia on experimental diabetic neuropathy. Indian J Pharmacol 2013; 44:580-3. [PMID: 23112417 PMCID: PMC3480788 DOI: 10.4103/0253-7613.100380] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 05/17/2012] [Accepted: 07/03/2012] [Indexed: 11/18/2022] Open
Abstract
Objectives: To evaluate the effect of aqueous extract of stem of Tinospora cordifolia (TC) on hyperalgesia in streptozotocin induced diabetic rats and in- vitro aldose reductase inhibition. Materials and Methods: Wistar albino rats, rendered diabetic with streptozotocin, were divided into 5 groups, namely the diabetic control treated with vehicle (DC), standard control which received glibenclamide+metformin (SC), test groups treated with 100, 200and 400 mg/kg b.w. of Tinospora cordifolia (TC1, TC2 and TC3 respectively). A group of five normal animals served as normal control (NC). Fasting blood glucose, body weight and reaction time to tail flick were measured one week after induction of diabetes. The animals were then treated orally for two weeks after which the same parameters were repeated. In-vitro aldose reductase inhibition assay was carried out at concentrations of 5, 10, 25, 50, 100 and 200 mcg/ml of Tinospora cordifolia using rat lens from normal rats. The in-vivo results were analysed with Mann Whitney test. Results: The DC group demonstrated a decrease in the reaction time (hyperalgesia) compared to NC while a significant increase in the reaction time was observed with SC, TC2 and TC3 groups (p<0.05) as compared to the DC group. TC1 and TC2 showed a significant reduction in body weight compared to their baseline values (p<0.05). There was no significant change in the fasting blood glucose (FBS) in any of the groups. In-vitro aldose reductase inhibition was observed with TC with an IC50 of 103 mcg/ml. Conclusions: Tinospora cordifolia prevents the hyperalgesia in experimental diabetic neuropathy. It has an aldose reductase inhibitory activity in-vitro which may contribute to the beneficial effects.
Collapse
Affiliation(s)
- Pratibha D Nadig
- Department of Pharmacology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, Karnataka, India
| | | | | | | | | |
Collapse
|
16
|
Boulton AJM, Kempler P, Ametov A, Ziegler D. Whither pathogenetic treatments for diabetic polyneuropathy? Diabetes Metab Res Rev 2013; 29:327-33. [PMID: 23381942 DOI: 10.1002/dmrr.2397] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/07/2013] [Accepted: 01/27/2013] [Indexed: 01/17/2023]
Abstract
Diabetic distal symmetric polyneuropathy (DSPN) occurs in around one-third of patients with diabetes and is associated with significant morbidity and increased mortality. Diagnosis and clinical assessment of DSPN remain a challenge, not only for the physician in clinical practice but also for clinical trials. Optimal diabetes control is generally considered an essential first step in the prevention and management of DSPN. However, glycaemic control alone may be insufficient to prevent the development or progression of DSPN, especially in type 2 diabetes. Near-normoglycaemia is also difficult to achieve in a significant proportion of patients. Although considerable advances have been made in symptomatic pain management, these have not addressed the problem of sensory deficits and have no impact on the underlying pathogenesis of DSPN. There remains a lack of treatment options that effectively target the natural history of the disease. Several pathogenetic treatment approaches have been investigated, but evidence from clinical trials is limited with a number of treatments having shown disappointing results. However, some pathogenetic therapies have shown clinically relevant improvements in neuropathic endpoints in randomised controlled trials, in particular α-lipoic acid and Actovegin. These advances in DSPN disease modification need to be confirmed with further robust evidence from clinical trials together with a better understanding of the mechanisms of action of promising treatments.
Collapse
Affiliation(s)
- Andrew J M Boulton
- Centre for Endocrinology and Diabetes, University of Manchester, Manchester, UK.
| | | | | | | |
Collapse
|
17
|
Yamany AA, Sayed HM. Effect of low level laser therapy on neurovascular function of diabetic peripheral neuropathy. J Adv Res 2012. [DOI: 10.1016/j.jare.2011.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
18
|
Chattopadhyay M, Mata M, Fink DJ. Vector-mediated release of GABA attenuates pain-related behaviors and reduces Na(V)1.7 in DRG neurons. Eur J Pain 2011; 15:913-920. [PMID: 21486703 PMCID: PMC3321314 DOI: 10.1016/j.ejpain.2011.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/03/2011] [Accepted: 03/17/2011] [Indexed: 01/15/2023]
Abstract
Pain is a common and debilitating accompaniment of neuropathy that occurs as a complication of diabetes. In the current study, we examined the effect of continuous release of gamma amino butyric acid (GABA), achieved by gene transfer of glutamic acid decarboxylase (GAD67) to dorsal root ganglia (DRG) in vivo using a non-replicating herpes simplex virus (HSV)-based vector (vG) in a rat model of painful diabetic neuropathy (PDN). Subcutaneous inoculation of vG reduced mechanical hyperalgesia, thermal hyperalgesia and cold allodynia in rats with PDN. Continuous release of GABA from vector transduced cells in vivo prevented the increase in the voltage-gated sodium channel isoform 1.7 (Na(V)1.7) protein that is characteristic of PDN. In vitro, infection of primary DRG neurons with vG prevented the increase in Na(V)1.7 resulting from exposure to hyperglycemia. The effect of vector-mediated GABA on Na(V)1.7 levels in vitro was blocked by phaclofen but not by bicuculline, a GABA(B) receptor effect that was blocked by pertussis toxin-(PTX) interference with Gα((i/o)) function. Taken in conjunction with our previous observation that continuous activation of delta opioid receptors by vector-mediated release of enkephalin also prevents the increase in Na(V)1.7 in DRG exposed to hyperglycemia in vitro or in vivo, the observations in this report suggest a novel common mechanism through which activation of G protein coupled receptors (GPCR) in DRG neurons regulate the phenotype of the primary afferent.
Collapse
Affiliation(s)
- Munmun Chattopadhyay
- Department of Neurology, University of Michigan and VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | | | | |
Collapse
|
19
|
Jin KK, Chen L, Pan JY, Li JM, Wang Y, Wang FY. Acupressure therapy inhibits the development of diabetic complications in Chinese patients with type 2 diabetes. J Altern Complement Med 2009; 15:1027-32. [PMID: 19757980 DOI: 10.1089/acm.2008.0608] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The objectives of this study were to investigate the effects of acupressure therapy (AT) on the development and progression of diabetic complications in Chinese patients with type 2 diabetes (T2D). DESIGN AND METHODS A total of 80 patients with T2D were recruited for a randomized clinical study of the effect of AT on the progression and development of diabetic complications, and 64 patients were followed up for 3 years. All patients with T2D were treated with regular medicines and participated in diet and exercise programs for the control of hyperglycemia and hypertension. The patients in the AT group received additional treatment of a 90-minute AT 4-6 times per week for 3 consecutive years. Their blood lipids, fasting glucose levels, and heart and kidney functions and nerve conduction velocity (NCV) were longitudinally monitored before and every 12 months after AT. RESULTS Following AT therapy for 3 years, significantly lower levels of total cholesterol, triglycerides, low-density lipoprotein-cholesterol, and higher levels of high-density lipoprotein-cholesterol (HDL-C) were observed and no significantly increased levels of serum creatinine and urine protein were detected in the AT group, as compared with that in controls. Furthermore, the mean values of NCV in the AT group at 2 years post-treatment were significantly greater than those of controls and were further elevated at the end of this study. Therefore, AT inhibited the progression of hyperlipidemia and improved diabetes-associated kidney function and neuropathy in Chinese patients with T2D. CONCLUSIONS AT may be an effective nonpharmacological adjunctive strategy for alleviating the development and progression of T2D-related complications.
Collapse
Affiliation(s)
- Ke-Ke Jin
- Department of Pathophysiology, Wenzhou Medical College, Zhejiang, China
| | | | | | | | | | | |
Collapse
|
20
|
Current world literature. Curr Opin Neurol 2009; 22:554-61. [PMID: 19755870 DOI: 10.1097/wco.0b013e3283313b14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Abstract
The commonest cause of peripheral neuropathy is diabetes and pain occurs in approximately 30% of diabetic patients with neuropathy. It is extremely distressing for the patient and poses significant difficulties in management, as no treatment to date provides total relief and the side effects of therapy limit dose titration. Understanding the pathogenesis of diabetic neuropathy may lead to the development of new treatments for preventing nerve damage. Furthermore, a better understanding of the mechanisms that modulate pain may lead to more effective relief of painful symptoms. This review provides an update on the assessment and treatment of painful diabetic neuropathy.
Collapse
Affiliation(s)
- Mitra Tavakoli
- University of Manchester and Manchester Royal Infirmary, Division of Cardiovascular Medicine, Manchester, UK
| | | |
Collapse
|