1
|
Sadeghi Shaker M, Rokni M, Kavosi H, Enayati S, Madreseh E, Mahmoudi M, Farhadi E, Vodjgani M. Salirasib Inhibits the Expression of Genes Involved in Fibrosis in Fibroblasts of Systemic Sclerosis Patients. Immun Inflamm Dis 2024; 12:e70063. [PMID: 39601641 PMCID: PMC11600624 DOI: 10.1002/iid3.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/01/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Fibrosis is a principal sign of systemic sclerosis (SSc) which can affect several organs including the lung, heart, and dermis. Dermal fibroblasts of SSc patients are characterized by persistent and activated Ras and ERK1/2 signaling which stimulates extreme collagen and extracellular matrix synthesis. Salirasib is a Ras inhibitor that competitively prevents the adherence of GTP-bound Ras to the plasma membrane, that inhibits Ras signaling. This study intended to clarify whether salirasib can influence fibrotic mediators in SSc fibroblasts. MATERIALS AND METHODS Dermal fibroblasts from 10 SSc patients were treated with salirasib in the presence of TGF-β1, and mRNA levels of H-Ras and genes related to fibrosis, such as COL1A1, COL1A2, CTGF, TGF-β1, fibronectin, ACTA2, and MMP1 was measured by real-time PCR. The α-SMA protein expression was analyzed by immunofluorescence staining. RESULTS In dermal fibroblasts of SSc patients, salirasib treatment, markedly downregulated the H-Ras gene expression. In addition, the protein expression of α-SMA and gene expression of ACTA2 were inhibited upon salirasib treatment. Salirasib also significantly reduced the expression of COL1A1, and COL1A2 genes and augmented the gene expression of MMP1. The mRNA levels of other genes related to fibrosis such as FN1, CTGF, and TGF-β1 were significantly decreased upon salirasib treatment. CONCLUSION Considering salirasib significantly reduced the expression of genes related to the fibrosis process and α-SMA gene and protein expression, and given significant upregulation of MMP1 by salirasib, it can be considered as a new curative strategy for fibrotic diseases like SSc.
Collapse
Affiliation(s)
- Mina Sadeghi Shaker
- Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran
- Rheumatology Research CenterTehran University of Medical SciencesTehranIran
| | - Mohsen Rokni
- Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran
- Rheumatology Research CenterTehran University of Medical SciencesTehranIran
- Department of ImmunologyUniversity of social Welfare and Rehabilitation SciencesTehranIran
| | - Hoda Kavosi
- Rheumatology Research CenterTehran University of Medical SciencesTehranIran
- Research Center for Chronic Inflammatory DiseasesTehran University of Medical SciencesTehranIran
| | - Samaneh Enayati
- Rheumatology Research CenterTehran University of Medical SciencesTehranIran
| | - Elham Madreseh
- Rheumatology Research CenterTehran University of Medical SciencesTehranIran
- Department of Epidemiology and Biostatistics, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Mahdi Mahmoudi
- Rheumatology Research CenterTehran University of Medical SciencesTehranIran
- Research Center for Chronic Inflammatory DiseasesTehran University of Medical SciencesTehranIran
| | - Elham Farhadi
- Rheumatology Research CenterTehran University of Medical SciencesTehranIran
- Research Center for Chronic Inflammatory DiseasesTehran University of Medical SciencesTehranIran
| | - Mohammad Vodjgani
- Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
2
|
Spasovski V, Andjelkovic M, Parezanovic M, Komazec J, Ugrin M, Klaassen K, Stojiljkovic M. The Role of Autophagy and Apoptosis in Affected Skin and Lungs in Patients with Systemic Sclerosis. Int J Mol Sci 2023; 24:11212. [PMID: 37446389 DOI: 10.3390/ijms241311212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Systemic sclerosis (SSc) is a complex autoimmune inflammatory disorder with multiple organ involvement. Skin changes present the hallmark of SSc and coincide with poor prognosis. Interstitial lung diseases (ILD) are the most widely reported complications in SSc patients and the primary cause of death. It has been proposed that the processes of autophagy and apoptosis could play a significant role in the pathogenesis and clinical course of different autoimmune diseases, and accordingly in SSc. In this manuscript, we review the current knowledge of autophagy and apoptosis processes in the skin and lungs of patients with SSc. Profiling of markers involved in these processes in skin cells can be useful to recognize the stage of fibrosis and can be used in the clinical stratification of patients. Furthermore, the knowledge of the molecular mechanisms underlying these processes enables the repurposing of already known drugs and the development of new biological therapeutics that aim to reverse fibrosis by promoting apoptosis and regulate autophagy in personalized treatment approach. In SSc-ILD patients, the molecular signature of the lung tissues of each patient could be a distinctive criterion in order to establish the correct lung pattern, which directly impacts the course and prognosis of the disease. In this case, resolving the role of tissue-specific markers, which could be detected in the circulation using sensitive molecular methods, would be an important step toward development of non-invasive diagnostic procedures that enable early and precise diagnosis and preventing the high mortality of this rare disease.
Collapse
Affiliation(s)
- Vesna Spasovski
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Marina Andjelkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Marina Parezanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Jovana Komazec
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Milena Ugrin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Kristel Klaassen
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Maja Stojiljkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| |
Collapse
|
3
|
Immune complexome analysis of a rich variety of serum immune complexes identifies disease-characteristic immune complex antigens in systemic sclerosis. J Autoimmun 2023; 134:102954. [PMID: 36436353 DOI: 10.1016/j.jaut.2022.102954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/27/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by vascular endothelial dysfunction and skin fibrosis. Recently, the presence and pathogenic role of immune complexes (ICs) of SSc patients were reported. However, the identities of antigens in these ICs are unknown. Therefore, we examined ICs in the serum of SSc patients to elucidate SSc pathogenesis. In this study, IC concentrations in serum samples from SSc and systemic lupus erythematosus (SLE) patients were measured by C1q enzyme-linked immunosorbent assays; immune complex analysis was used for comprehensive identification and comparison of antigens incorporated into ICs (IC-antigens). The expression patterns of SSc-specific IC-antigens in skin sections were investigated by immunohistochemistry. Compared with SLE patients who developed disease because of IC deposition, SSc patients had a greater number of IC-antigens and a smaller difference in IC concentrations, suggesting that SSc pathogenesis is affected by the proteins present in ICs. In contrast, the IC concentration and number of IC-antigens did not significantly differ according to the clinical phenotype of SSc. We identified 478 IC-antigens in SSc patients, including multiple RNAP II-associated proteins that were targeted by antibodies previously associated with SSc pathogenesis. The most frequently detected RNAP II-associated protein, RNA polymerase II transcription subunit 30 (MED30), was strongly expressed at lesion sites and reportedly regulates endothelial differentiation. Therefore, increased expression of MED30 in lesions may have an antigenic effect, and MED30 function may be impaired or inhibited by IC formation. RNAP II-associated proteins may SSc pathogenesis through mechanisms such as the MED30 pathway.
Collapse
|
4
|
Liu Y, Cheng L, Zhan H, Li H, Li X, Huang Y, Li Y. The Roles of Noncoding RNAs in Systemic Sclerosis. Front Immunol 2022; 13:856036. [PMID: 35464474 PMCID: PMC9024074 DOI: 10.3389/fimmu.2022.856036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Noncoding RNAs (ncRNAs) constitute more than 90% of the RNAs in the human genome. In the past decades, studies have changed our perception of ncRNAs from “junk” transcriptional products to functional regulatory molecules that mediate critical processes, including chromosomal modifications, mRNA splicing and stability, and translation, as well as key signaling pathways. Emerging evidence suggests that ncRNAs are abnormally expressed in not only cancer but also autoimmune diseases, such as systemic sclerosis (SSc), and may serve as novel biomarkers and therapeutic targets for the diagnosis and treatment of SSc. However, the functions and underlying mechanisms of ncRNAs in SSc remain incompletely understood. In this review, we discuss the current findings on the biogenetic processes and functions of ncRNAs, including microRNAs and long noncoding RNAs, as well as explore emerging ncRNA-based diagnostics and therapies for SSc.
Collapse
Affiliation(s)
- Yongmei Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linlin Cheng
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haoting Zhan
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haolong Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaomeng Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuan Huang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- *Correspondence: Yongzhe Li,
| |
Collapse
|
5
|
Szabo I, Muntean L, Crisan T, Rednic V, Sirbe C, Rednic S. Novel Concepts in Systemic Sclerosis Pathogenesis: Role for miRNAs. Biomedicines 2021; 9:biomedicines9101471. [PMID: 34680587 PMCID: PMC8533248 DOI: 10.3390/biomedicines9101471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Systemic sclerosis (SSc) is a rare connective tissue disease with heterogeneous clinical phenotypes. It is characterized by the pathogenic triad: microangiopathy, immune dysfunction, and fibrosis. Epigenetic mechanisms modulate gene expression without interfering with the DNA sequence. Epigenetic marks may be reversible and their differential response to external stimuli could explain the protean clinical manifestations of SSc while offering the opportunity of targeted drug development. Small, non-coding RNA sequences (miRNAs) have demonstrated complex interactions between vasculature, immune activation, and extracellular matrices. Distinct miRNA profiles were identified in SSc skin specimens and blood samples containing a wide variety of dysregulated miRNAs. Their target genes are mainly involved in profibrotic pathways, but new lines of evidence also confirm their participation in impaired angiogenesis and aberrant immune responses. Research approaches focusing on earlier stages of the disease and on differential miRNA expression in various tissues could bring novel insights into SSc pathogenesis and validate the clinical utility of miRNAs as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Iulia Szabo
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
| | - Laura Muntean
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
- Department of Rheumatology, County Emergency Hospital Cluj-Napoca, 400000 Cluj-Napoca, Romania
- Correspondence:
| | - Tania Crisan
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania;
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Voicu Rednic
- Department of Gastroenterology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania;
- Department of Gastroenterology II, “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, 400000 Cluj-Napoca, Romania
| | - Claudia Sirbe
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
| | - Simona Rednic
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
- Department of Rheumatology, County Emergency Hospital Cluj-Napoca, 400000 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Lord MS, Melrose J, Day AJ, Whitelock JM. The Inter-α-Trypsin Inhibitor Family: Versatile Molecules in Biology and Pathology. J Histochem Cytochem 2020; 68:907-927. [PMID: 32639183 DOI: 10.1369/0022155420940067] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Inter-α-trypsin inhibitor (IαI) family members are ancient and unique molecules that have evolved over several hundred million years of vertebrate evolution. IαI is a complex containing the proteoglycan bikunin to which heavy chain proteins are covalently attached to the chondroitin sulfate chain. Besides its matrix protective activity through protease inhibitory action, IαI family members interact with extracellular matrix molecules and most notably hyaluronan, inhibit complement, and provide cell regulatory functions. Recent evidence for the diverse roles of the IαI family in both biology and pathology is reviewed and gives insight into their pivotal roles in tissue homeostasis. In addition, the clinical uses of these molecules are explored, such as in the treatment of inflammatory conditions including sepsis and Kawasaki disease, which has recently been associated with severe acute respiratory syndrome coronavirus 2 infection in children.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St. Leonards, NSW, Australia.,Sydney Medical School, Northern, Sydney University, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research and Lydia Becker Institute of Immunology and Inflammation, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - John M Whitelock
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Stem Cell Extracellular Matrix & Glycobiology, Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Faculty of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
7
|
Expression of apoptotic and proliferation factors in gastric mucosa of patients with systemic sclerosis correlates with form of the disease. Sci Rep 2019; 9:18461. [PMID: 31804582 PMCID: PMC6895086 DOI: 10.1038/s41598-019-54988-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Despite high prevalence of patients with gastric disease in systemic sclerosis (SSc), its pathogenesis is still poorly understood. We immunohistochemically analysed biopsies of gastric mucosa (GM) in 5 controls and 15 patients with different forms of SSc: limited cutaneous (lc), diffuse cutaneous moderate (sys1) and severe (sys2). The number of positive cells was analysed by a Kruskall-Wallis test, P < 0.05 was considered statistically significant. Percentage of proliferating (Ki-67 positive) cells was highest in sys1 (3% in superficial and 4,6% in deeper parts of GM), which dropped to 1% in sys2. Percentage of α-smooth muscle actin (α-SMA) positive cells was 5% in controls, 9% in superficial GM, while in deeper GM rose from 7% to 19% in sys1 and sys2, thus indicating increased myofibroblast population. Caspase-3 positive apoptotic cells characterized 1,5–2% of controls, 8% of superficial and 6% of deeper GM cells in sys1. In sys2, apoptosis affected 50% of surface epithelial and gland cells and 30% of deeper glands, and correlated with increased fibrosis and decreased syndecan-1 expression. Our data demonstrate that sys1 is the most „active” proliferating form of SSc. Sys2 characterize collagen deposition, surface epithelium defects, extensive apoptosis and low proliferation, GM atrophy and loss of function.
Collapse
|
8
|
Kozlova A, Pachera E, Maurer B, Jüngel A, Distler JHW, Kania G, Distler O. Regulation of Fibroblast Apoptosis and Proliferation by MicroRNA-125b in Systemic Sclerosis. Arthritis Rheumatol 2019; 71:2068-2080. [PMID: 31309742 DOI: 10.1002/art.41041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To analyze the expression, regulation, and role of microRNA-125b (miR-125b) in systemic sclerosis (SSc). METHODS MiR-125b expression was assessed by quantitative polymerase chain reaction (qPCR) of RNA from dermal fibroblasts and whole skin biopsy specimens from healthy controls and SSc patients. To identify downstream effectors, RNA from healthy control fibroblasts was sequenced after miR-125b knockdown and further validated using qPCR and Western blotting. Fibrosis, apoptosis, and proliferation were assessed by Caspase-Glo 3/7 assay, Western blotting, immunofluorescence staining for cleaved caspase 3, and annexin V real-time assay in dermal fibroblasts. RESULTS Expression of miR-125b was significantly down-regulated in SSc skin biopsy specimens by 53% (median fold change 0.47 [interquartile range 0.35-0.69]; P < 0.001) and in SSc dermal fibroblasts by 47% (median fold change 0.53 [interquartile range 0.36-0.58]; P < 0.001) compared to healthy control skin biopsy specimens and fibroblasts, respectively (n = 10 samples per group). Treatment with the histone deacetylase inhibitors trichostatin A and tubastatin A significantly decreased the expression of miR-125b in dermal fibroblasts. MiR-125b knockdown significantly reduced cell proliferation and α-smooth muscle actin (α-SMA) expression at the messenger RNA (mRNA) and protein levels. RNA-Seq identified BAK1, BMF, and BBC3 as potential targets of miR-125b. Quantitative PCR confirmed that knockdown of miR-125b up-regulated these genes (P < 0.01; n = 12). Bcl-2 homologous antagonist killer 1 showed the strongest induction confirmed at the protein level (P < 0.01; n = 10). Consequently, miR-125b knockdown increased apoptosis compared to scrambled control. Accordingly, miR-125b overexpression decreased apoptosis. CONCLUSION Our findings indicate that miR-125b is down-regulated in SSc skin and primary dermal fibroblasts. MiR-125b down-regulation increases apoptosis and decreases proliferation and α-SMA expression in dermal fibroblasts, indicating that its compensatory, antifibrotic mechanism may be a potential novel therapeutic option.
Collapse
Affiliation(s)
| | | | | | | | - Jörg H W Distler
- Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | | |
Collapse
|
9
|
Jafarinejad-Farsangi S, Farazmand A, Gharibdoost F, Karimizadeh E, Noorbakhsh F, Faridani H, Mahmoudi M, Jamshidi AR. Inhibition of MicroRNA-21 induces apoptosis in dermal fibroblasts of patients with systemic sclerosis. Int J Dermatol 2017; 55:1259-1267. [PMID: 27637490 DOI: 10.1111/ijd.13308] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 01/25/2016] [Accepted: 02/03/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Prolonged activation of dermal fibroblasts is the main cause of progressive fibrosis in systemic sclerosis (SSc). It seems that inhibition of apoptosis in SSc fibroblasts deregulates fibrosis. MicroRNA-21 (miR-21) is a pro-fibrotic factor with high expression in lesional areas of SSc skin and fibroblasts. METHODS The effects of miR-21 on expression of Bcl-2 and Bax, two apoptotic genes, in dermal fibroblasts of SSc patients were evaluated using real-time polymerase chain reaction and Western blot analysis. Apoptotic cells were detected using flow cytometry and Hoechst 33258 staining assays. RESULTS Overexpression of miR-21 using synthetic miR-21 RNA increased expression of Bcl-2, an inhibitor of apoptosis, and decreased the Bax : Bcl-2 expression ratio, a cell fate determinant, in SSc fibroblasts. Antisense inhibition of miR-21 induced a high rate of apoptosis in SSc fibroblasts. We propose that this may be associated with a decrease in Bcl-2 expression and a shift in the Bax : Bcl-2 ratio. CONCLUSIONS Although further studies are necessary to determine the underlying apoptotic pathway, we propose that inhibition of miR-21 in dermal fibroblasts from lesional skin may be useful in harnessing progressive fibrosis in SSc.
Collapse
Affiliation(s)
| | - Ali Farazmand
- Department of Cell and Molecular Biology, University of Tehran, Tehran, Iran.
| | - Farhad Gharibdoost
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Karimizadeh
- Department of Cell and Molecular Biology, University of Tehran, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Habibeh Faridani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Tian J, An X, Niu L. Myocardial fibrosis in congenital and pediatric heart disease. Exp Ther Med 2017; 13:1660-1664. [PMID: 28565750 PMCID: PMC5443200 DOI: 10.3892/etm.2017.4224] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 02/07/2017] [Indexed: 01/13/2023] Open
Abstract
Cardiac fibrosis is a common phenomenon in different types of heart diseases, such as ischemic heart disease, inherited cardiomyopathy mutations, diabetes, and ageing and is associated with morbidity and mortality. Increased accumulation of extracellular matrix (ECM) that impacts cardiac function, is the underlying cause of fibrotic heart disease. There are four different types of cardiac fibrosis, including, reactive interstitial fibrosis, replacement fibrosis, infiltrative interstitial fibrosis and endomyocardial fibrosis. They are involved in the activation and transformation of cardiac fibroblasts to myofibroblasts, which participate in ECM production and fibrotic process and several inflammatory pathways. Besides the ECM proteins, myofibroblasts also express smooth muscle α-actin, SM22 and caldesmon and other markers related to fibrotic process. Most commonly employed techniques to assess myocardial fibrosis include stress echocardiography, cardiac magnetic resonance imaging and positron emission tomography. Because of the involvement of renin-angiotensin-II-aldosterone system, transforming growth factor-β signaling and activin-linked kinase 5 in the mechanisms of cardiac fibrosis, these pathways and the involved proteins are useful as therapeutic targets. However, because of the importance of these pathways in many other physiological functions, their therapeutic targeting needs to be approached with caution.
Collapse
Affiliation(s)
- Jing Tian
- Department of Cardiology, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Xinjiang An
- Department of Cardiology, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Ling Niu
- Department of Cardiology, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
11
|
Jafarinejad-Farsangi S, Farazmand A, Mahmoudi M, Gharibdoost F, Karimizadeh E, Noorbakhsh F, Faridani H, Jamshidi AR. MicroRNA-29a induces apoptosis via increasing the Bax:Bcl-2 ratio in dermal fibroblasts of patients with systemic sclerosis. Autoimmunity 2015; 48:369-78. [PMID: 25857445 DOI: 10.3109/08916934.2015.1030616] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The most prominent feature of systemic sclerosis (SSc) and other diseases associated with fibrosis is the prolonged activation of fibroblasts not eliminated by apoptosis, hence characterized by accumulation of more extra cellular matrix (ECM). We tend to verify if microRNA-29a (miR-29a) as an anti-fibrotic factor could induce apoptosis in SSc fibroblasts. We did not detect apoptosis in SSc fibroblasts. We found that Bcl-2 expression was upregulated in SSc fibroblasts and the ratio of Bax:Bcl-2 in these cells was significantly lower (p = 0.02) compared to normal fibroblasts. Transfection of both SSc and transforming growth factor-β (TGF-β) stimulated fibroblasts by miR-29a mimic, significantly decreased the expression of two anti-apoptotic members of the Bcl-2 family, Bcl-2 (p = 0.0005, p = 0.01) and Bcl-XL (p = 0.0001, p = 0.006), resulted in enhanced Bax:Bcl-2 ratio and induced a high rate of apoptosis. Recently, miR-29 has been introduced as an anti-fibrotic factor with potential therapeutic effect on SSc. Until now, it has not been proposed whether there is a relationship between miR-29a and apoptosis in SSc. According to our results, it seems that miR-29a is a potent inducer of apoptosis in SSc fibroblasts and an attenuator of ECM production in these cells. MiR-29a disrupted the expression profiling of Bcl-2 family proteins (Bax, Bcl-2 and Bcl-XL) which is the central point of dynamic life-death rheostat in many apoptotic pathways. Furthermore, dermal fibroblasts from patients with SSc showed elevation in TNF-α mRNA levels, while restoration of miR-29a decreases TNF-α production in these cells. Although further molecular studies are necessary to investigate the underlying apoptotic pathways, the present findings suggest that anti-fibrotic and pro-apoptotic properties of miR-29a could provide novel benefits toward the development of fibroblast-specific anti-fibrotic therapies.
Collapse
|
12
|
Monument MJ, Hart DA, Salo PT, Befus AD, Hildebrand KA. Neuroinflammatory Mechanisms of Connective Tissue Fibrosis: Targeting Neurogenic and Mast Cell Contributions. Adv Wound Care (New Rochelle) 2015; 4:137-151. [PMID: 25785237 DOI: 10.1089/wound.2013.0509] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/26/2013] [Indexed: 12/26/2022] Open
Abstract
Significance: The pathogenesis of fibrogenic wound and connective tissue healing is complex and incompletely understood. Common observations across a vast array of human and animal models of fibroproliferative conditions suggest neuroinflammatory mechanisms are important upstream fibrogenic events. Recent Advances: As detailed in this review, mast cell hyperplasia is a common observation in fibrotic tissue. Recent investigations in human and preclinical models of hypertrophic wound healing and post-traumatic joint fibrosis provides evidence that fibrogenesis is governed by a maladaptive neuropeptide-mast cell-myofibroblast signaling pathway. Critical Issues: The blockade and manipulation of these factors is providing promising evidence that if timed correctly, the fibrogenic process can be appropriately regulated. Clinically, abnormal fibrogenic healing responses are not ubiquitous to all patients and the identification of those at-risk remains an area of priority. Future Directions: Ultimately, an integrated appreciation of the common pathobiology shared by many fibrogenic connective tissue conditions may provide a scientific framework to facilitate the development of novel antifibrotic prevention and treatment strategies.
Collapse
Affiliation(s)
- Michael J. Monument
- Division of Orthopaedic Surgery, McCaig Institute for Bone & Joint Health, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David A. Hart
- Division of Orthopaedic Surgery, McCaig Institute for Bone & Joint Health, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul T. Salo
- Division of Orthopaedic Surgery, McCaig Institute for Bone & Joint Health, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - A. Dean Befus
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin A. Hildebrand
- Division of Orthopaedic Surgery, McCaig Institute for Bone & Joint Health, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Karimizadeh E, Motamed N, Mahmoudi M, Jafarinejad-Farsangi S, Jamshidi A, Faridani H, Gharibdoost F. Attenuation of fibrosis with selective inhibition of c-Abl by siRNA in systemic sclerosis dermal fibroblasts. Arch Dermatol Res 2014; 307:135-42. [PMID: 25527259 DOI: 10.1007/s00403-014-1532-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/13/2014] [Accepted: 12/11/2014] [Indexed: 11/25/2022]
Abstract
Cellular abelson (c-Abl), a non-receptor tyrosine kinase, is an important molecule in the pathogenesis of systemic sclerosis. There have been reports of beneficial effects of pharmacological tyrosine kinase inhibitors, such as imatinib mesylate, on fibrosis. However, these inhibitors affect multiple tyrosine kinases including c-Abl, c-kit, and platelet-derived growth factor receptor. The effects of selective inhibition of c-Abl using small interfering RNA (siRNA) on dermal fibrosis have not yet been explored. The aim of this study is to evaluate whether specific inhibition of c-Abl by siRNA can influence the transforming growth factor-β1 (TGF-β1)-induced fibrotic responses. Dermal fibroblasts from systemic sclerosis patients and healthy controls were transfected with c-Abl siRNA. The expression levels of collagen type I, fibronectin, connective tissue growth factor (CTGF), and α-smooth muscle actin (α-SMA) were measured at both the mRNA and protein levels in the absence or presence of TGF-β1 pro-fibrotic cytokine. In healthy dermal fibroblasts, the expression of collagen type 1, fibronectin, α-SMA, and CTGF mRNAs and proteins that were upregulated after stimulation with TGF-β1 was markedly decreased by c-Abl siRNA. Silencing of c-Abl via siRNA efficiently reduced the basal synthesis of collagen type I, fibronectin, α-SMA, and CTGF mRNAs and proteins in systemic sclerosis fibroblasts, but it had no effect on the baseline expression of these genes and proteins in healthy dermal fibroblasts. In conclusion, specific c-Abl gene silencing using siRNA effectively reduced fibrosis-related gene expression. Inhibition of c-Abl by siRNA may be a potential therapeutic approach for fibrotic diseases such as systemic sclerosis.
Collapse
Affiliation(s)
- Elham Karimizadeh
- Department of Cell and Molecular Biology, School of biology, College of Science, University of Tehran, P.O. Box 141556455, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
14
|
Myofibroblasts: trust your heart and let fate decide. J Mol Cell Cardiol 2013; 70:9-18. [PMID: 24189039 DOI: 10.1016/j.yjmcc.2013.10.019] [Citation(s) in RCA: 255] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/18/2013] [Accepted: 10/24/2013] [Indexed: 12/27/2022]
Abstract
Cardiac fibrosis is a substantial problem in managing multiple forms of heart disease. Fibrosis results from an unrestrained tissue repair process orchestrated predominantly by the myofibroblast. These are highly specialized cells characterized by their ability to secrete extracellular matrix (ECM) components and remodel tissue due to their contractile properties. This contractile activity of the myofibroblast is ascribed, in part, to the expression of smooth muscle α-actin (αSMA) and other tension-associated structural genes. Myofibroblasts are a newly generated cell type derived largely from residing mesenchymal cells in response to both mechanical and neurohumoral stimuli. Several cytokines, chemokines, and growth factors are induced in the injured heart, and in conjunction with elevated wall tension, specific signaling pathways and downstream effectors are mobilized to initiate myofibroblast differentiation. Here we will review the cell fates that contribute to the myofibroblast as well as nodal molecular signaling effectors that promote their differentiation and activity. We will discuss canonical versus non-canonical transforming growth factor-β (TGFβ), angiotensin II (AngII), endothelin-1 (ET-1), serum response factor (SRF), transient receptor potential (TRP) channels, mitogen-activated protein kinases (MAPKs) and mechanical signaling pathways that are required for myofibroblast transformation and fibrotic disease. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium ".
Collapse
|
15
|
Villano M, Borghini A, Manetti M, Gabbrielli E, Rossi A, Sestini P, Milia A, Nacci F, Guiducci S, Matucci-Cerinic M, Ibba-Manneschi L, Weber E. Systemic sclerosis sera affect fibrillin-1 deposition by dermal blood microvascular endothelial cells: therapeutic implications of cyclophosphamide. Arthritis Res Ther 2013; 15:R90. [PMID: 23962393 PMCID: PMC3978697 DOI: 10.1186/ar4270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 08/20/2013] [Indexed: 01/15/2023] Open
Abstract
Introduction Systemic sclerosis (SSc) is a connective tissue disorder characterized by endothelial cell injury, autoimmunity and fibrosis. The following three fibrillin-1 alterations have been reported in SSc. (1) Fibrillin-1 microfibrils are disorganized in SSc dermis. (2) Fibrillin-1 microfibrils produced by SSc fibroblasts are unstable. (3) Mutations in the FBN1 gene and anti-fibrillin-1 autoantibodies have been reported in SSc. Fibrillin-1 microfibrils, which are abundantly produced by blood and lymphatic microvascular endothelial cells (B-MVECs and Ly-MVECs, respectively), sequester in the extracellular matrix the latent form of the potent profibrotic cytokine transforming growth factor β (TGF-β). In the present study, we evaluated the effects of SSc sera on the deposition of fibrillin-1 and microfibril-associated glycoprotein 1 (MAGP-1) and the expression of focal adhesion molecules by dermal B-MVECs and Ly-MVECs. Methods Dermal B-MVECs and Ly-MVECs were challenged with sera from SSc patients who were treatment-naïve or under cyclophosphamide (CYC) treatment and with sera from healthy controls. Fibrillin-1/MAGP-1 synthesis and deposition and the expression of αvβ3 integrin/phosphorylated focal adhesion kinase and vinculin/actin were evaluated by immunofluorescence and quantified by morphometric analysis. Results Fibrillin-1 and MAGP-1 colocalized in all experimental conditions, forming a honeycomb pattern in B-MVECs and a dense mesh of short segments in Ly-MVECs. In B-MVECs, fibrillin-1/MAGP-1 production and αvβ3 integrin expression significantly decreased upon challenge with sera from naïve SSc patients compared with healthy controls. Upon challenge of B-MVECs with sera from CYC-treated SSc patients, fibrillin-1/MAGP-1 and αvβ3 integrin levels were comparable to those of cells treated with healthy sera. Ly-MVECs challenged with SSc sera did not differ from those treated with healthy control sera in the expression of any of the molecules assayed. Conclusions Because of the critical role of fibrillin-1 in sequestering the latent form of TGF-β in the extracellular matrix, its decreased deposition by B-MVECs challenged with SSc sera might contribute to dermal fibrosis. In SSc, CYC treatment might limit fibrosis through the maintenance of physiologic fibrillin-1 synthesis and deposition by B-MVECs.
Collapse
|
16
|
Giovanini AF, Leonardi DP, Baratto-Filho F, Vlença PC, Moresca RC, Moro A, Schramm CA. An endodontic sealer induces a pathological condition when associated with persistent tissue toxicity and presence of myofibroblasts. Braz Dent J 2011; 22:369-76. [PMID: 22011891 DOI: 10.1590/s0103-64402011000500004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 05/29/2011] [Indexed: 11/22/2022] Open
Abstract
The aims of this study were to evaluate the ratio between inflammatory reactions induced by four endodontic sealers and the occurrence of fibrosis and the number of myofibroblasts with positivity to α-smooth-actin muscle (α-SMA). Polyethylene tubes were filled with a root canal sealer (Endofill, AH Plus, Acroseal and Epiphany) and inserted into 4 site at the dorsal region of 24 Wistar rats; 2 empty tubes (control) were grafted in 6 rats. After 7, 21, and 45 days, 8 animals were euthanized, providing 6 specimens per test group and 2 specimens from the control group. The fragments were subjected to histological processing and immunohistochemical analysis for anti α-SMA protein. All specimens, except those from the control group, presented severe inflammatory reaction on the 7th postoperative day, which also coincided with a large number of myofibroblasts. On the 21st and 45th days post-surgery, the inflammatory reaction induced by Endofill, AH Plus and Acroseal decreased significantly, which coincided with reduced presence of myofibroblasts and usual collagen deposition. In contrast, in the group filled with Epiphany, significant inflammatory cell infiltrate was present in all analyzed periods. The persistence of an inflammatory reaction induced by endodontic sealer may also induce the development of fibrosis in combination with presence of myofibroblasts.
Collapse
|
17
|
Giovanini AF, Gonzaga CC, Zielak JC, Deliberador TM, Kuczera J, Göringher I, de Oliveira Filho MA, Baratto-Filho F, Urban CA. Platelet-rich plasma (PRP) impairs the craniofacial bone repair associated with its elevated TGF-β levels and modulates the co-expression between collagen III and α-smooth muscle actin. J Orthop Res 2011; 29:457-63. [PMID: 20922797 DOI: 10.1002/jor.21263] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 08/17/2010] [Indexed: 02/04/2023]
Abstract
Transforming growth factor-β (TGF-β) is considered the main inducer of both the α-smooth muscle actin (α-SMA) phenotype and collagen synthesis and deposition and plays a significant role in the tissue repair and the development of fibrosis. Since the PRP constitutes an important source of TGF-β and its efficacy on the craniofacial bone repair remains controversy, the aim of this study was to evaluate the effect of PRP in the presence of levels of TGF-β on PRP samples, as well as in the presence of collagen III and α-SMA+ cells, while comparing these results by means of a histomorphometric analysis of the bone matrix and fibrous deposition on the bone repair. Four bone defects of 16 mm(2) were created on the calvarium of 21 rabbits. The surgical defects were treated with either particulate autograft, particulate autograft mixed with PRP and PRP alone. Animals were euthanized at 15, 30, and 45 days postoperative. Histomorphometric and immunohistochemical analyses were performed to assess repair time, as well as the expression of collagen III, and α-SMA. The histomorphometric results demonstrated intensive deposition of fibrous tissue while hinder bone deposition occurred in PRP groups. These results coincided with higher values of the TGF-β on the PRP sample, also larger occurrence of diffuse collagen III deposition and higher presence of α-SMA+ cells spread among the fibrous tissue. Thus, the higher levels of TGF-β associated with the both expression of collagen III and α-SMA on defect treated with PRP suggest that its biomaterial induce an effect that can be considered similarly to a fibroproliferative disorder.
Collapse
Affiliation(s)
- Allan Fernando Giovanini
- Positivo University, Rua Pedro Viriato Parigot de Souza #5300, Curitiba, Paraná 81280-330, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Naik-Mathuria B, Pilling D, Crawford JR, Gay AN, Smith CW, Gomer RH, Olutoye OO. Serum amyloid P inhibits dermal wound healing. Wound Repair Regen 2008; 16:266-73. [PMID: 18318811 DOI: 10.1111/j.1524-475x.2008.00366.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The repair of open wounds depends on granulation tissue formation and contraction, which is primarily mediated by myofibroblasts. A subset of myofibroblasts originates from bone-marrow-derived monocytes which differentiate into fibroblast-like cells called fibrocytes. Serum amyloid P (SAP) inhibits differentiation of monocytes into fibrocytes. Thus, we hypothesized that the addition of exogenous SAP would hinder the normal wound healing process. Excisional murine dorsal wounds were either injected with SAP (intradermal group) or the mice were treated with systemic SAP (intraperitoneal group) and compared with animals treated with vehicle. Grossly, SAP-treated wounds closed slower than respective controls in both groups. Histologically, the contraction rate was slower in SAP-treated wounds in both groups and the reepithelialization rate was slower in the intraperitoneal group. Furthermore, significantly less myofibroblasts expressing alpha-smooth muscle actin were noted in the intraperitoneal group wounds compared with controls. These data suggest that SAP delays normal murine dermal wound healing, probably due to increased inhibition of fibrocyte differentiation, and ultimately a decreased wound myofibroblast population. SAP may provide a potential therapeutic target to prevent or limit excessive fibrosis associated with keloid or hypertrophic scar formation. Furthermore, SAP removal from wound fluid could potentially accelerate the healing of chronic, nonhealing wounds.
Collapse
Affiliation(s)
- Bindi Naik-Mathuria
- Michael E. DeBakey Department of Surgery, Division of Pediatric Surgery, Baylor College of Medicine, Houston, Texas 77030-2399, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Sonnylal S, Denton CP, Zheng B, Keene DR, He R, Adams HP, Vanpelt CS, Geng YJ, Deng JM, Behringer RR, de Crombrugghe B. Postnatal induction of transforming growth factor beta signaling in fibroblasts of mice recapitulates clinical, histologic, and biochemical features of scleroderma. ACTA ACUST UNITED AC 2007; 56:334-44. [PMID: 17195237 DOI: 10.1002/art.22328] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Increased signaling by transforming growth factor beta (TGFbeta) has been implicated in systemic sclerosis (SSc; scleroderma), a complex disorder of connective tissues characterized by excessive accumulation of collagen and other extracellular matrix components in systemic organs. To directly assess the effect of sustained TGFbeta signaling in SSc, we established a novel mouse model in which the TGFbeta signaling pathway is activated in fibroblasts postnatally. METHODS The mice we used (termed TBR1(CA); Cre-ER mice) harbor both the DNA for an inducible constitutively active TGFbeta receptor I (TGFbetaRI) mutation, which has been targeted to the ROSA locus, and a Cre-ER transgene that is driven by a fibroblast-specific promoter. Administration of 4-hydroxytamoxifen 2 weeks after birth activates the expression of constitutively active TGFbetaRI. RESULTS These mice recapitulated clinical, histologic, and biochemical features of human SSc, showing pronounced and generalized fibrosis of the dermis, thinner epidermis, loss of hair follicles, and fibrotic thickening of small blood vessel walls in the lung and kidney. Primary skin fibroblasts from these mice showed elevated expression of downstream TGFbeta targets, reproducing the hallmark biochemical phenotype of explanted SSc dermal fibroblasts. The mouse fibroblasts also showed elevated basal expression of the TGFbeta-regulated promoters plasminogen activator inhibitor 1 and 3TP, increased Smad2/3 phosphorylation, and enhanced myofibroblast differentiation. CONCLUSION Constitutive activation of TGFbeta signaling in fibroblastic cells of mice after birth caused a marked fibrotic phenotype characteristic of SSc. These mice should be excellent models with which to test therapies aimed at correcting excessive TGFbeta signaling in human scleroderma.
Collapse
MESH Headings
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/metabolism
- Animals
- Cell Differentiation/drug effects
- Cells, Cultured
- Disease Models, Animal
- Female
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Gene Targeting/methods
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Phosphorylation
- Plasminogen Activator Inhibitor 1/metabolism
- Protein C Inhibitor/metabolism
- Protein Serine-Threonine Kinases
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Scleroderma, Systemic/genetics
- Scleroderma, Systemic/metabolism
- Scleroderma, Systemic/pathology
- Signal Transduction
- Skin/drug effects
- Skin/metabolism
- Skin/pathology
- Smad2 Protein/metabolism
- Smad3 Protein/metabolism
- Tamoxifen/analogs & derivatives
- Tamoxifen/pharmacology
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Sonali Sonnylal
- University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kissin EY, Merkel PA, Lafyatis R. Myofibroblasts and hyalinized collagen as markers of skin disease in systemic sclerosis. ACTA ACUST UNITED AC 2006; 54:3655-60. [PMID: 17075814 DOI: 10.1002/art.22186] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To investigate the correlation between the degree of dermal fibrosis and myofibroblast infiltration using clinical assessments of skin thickness and hardness in systemic sclerosis (SSc). METHODS Eleven patients with diffuse SSc and 10 healthy controls were evaluated using the modified Rodnan skin thickness score and durometry (hardness measurement). Biopsy samples were obtained from the dorsal mid-forearm in all subjects at the baseline visit and again 6-12 months later in patients with SSc. Five of the patients with SSc received treatment with cyclophosphamide (CYC) in the interval between skin biopsies. Biopsy sections were assessed for myofibroblast and hyalinized collagen content by 2 blinded observers. RESULTS Myofibroblast and hyalinized collagen scores each correlated with the forearm skin score (r = 0.83, P < 0.0001 and r = 0.78, P < 0.0001, respectively) and with the forearm durometry score (r = 0.72, P < 0.0004 and r = 0.69, P < 0.0008, respectively). The change in the dermal hyalinized collagen score correlated with the change in the forearm durometry score (r = 0.74, P < 0.0213). The myofibroblast score decreased in all 5 patients who received CYC and increased in those receiving non-CYC treatments (P < 0.01 for the difference). CONCLUSION Myofibroblasts play an important role in the pathogenesis of fibrosis, and our data imply that quantification of myofibroblasts and hyalinized collagen in skin may be a useful outcome measure in clinical studies of SSc.
Collapse
Affiliation(s)
- Eugene Y Kissin
- Boston University Medical Center, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
21
|
Vernet D, Nolazco G, Cantini L, Magee TR, Qian A, Rajfer J, Gonzalez-Cadavid NF. Evidence That Osteogenic Progenitor Cells in the Human Tunica Albuginea May Originate from Stem Cells: Implications for Peyronie Disease1. Biol Reprod 2005; 73:1199-210. [PMID: 16093362 DOI: 10.1095/biolreprod.105.041038] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Tissue ossification in Peyronie disease (commonly known as Peyronie's disease [PD]), a localized fibrotic lesion within the tunica albuginea (TA) of the penis, may result from osteogenic differentiation of fibroblasts, myofibroblasts, and/or adult stem cells in the TA, and may be triggered by chronic inflammation, oxidative stress, and profibrotic factors like transforming growth factor beta 1 (TGFB1). In this study, we have investigated whether cultures of cells from normal TA and PD plaques undergo osteogenesis, express markers for stem cells, and originate other cell lineages via processes modulated by TGFB1. We found that TA and PD cells in osteogenic medium (OM) expressed osteogenic markers, alkaline phosphatase, and osteopontin and underwent calcification. PD cells, but not TA cells, formed foci in soft agar that were positive for alkaline phosphatase and calcification and expressed the mRNAs for osteoblast-specific factors pleiotrophin and periostin and bone morphogenic protein 2. Both cultures expressed stem cell marker CD34 antigen but not protein tyrosine phosphatase, receptor type c. TA and PD cells expressed smooth-muscle cell markers smoothelin and transgelin. None of the cultures underwent adipogenesis in adipogenic medium. Incubation with TGFB1 increased osteogenesis and myofibroblast differentiation and reduced CD34 antigen expression in both cultures. TA and PD cells modulated the differentiation of the multipotent C3H 10T(1/2) cells in dual cultures, into osteoblasts and myofibroblasts. In conclusion, both TA and PD cultures contain cells, presumably stem cells, that undergo osteogenic and myofibroblast differentiation, and may induce these processes by paracrine interactions. This may explain progression of fibrosis in the PD plaque and its eventual calcification.
Collapse
Affiliation(s)
- Dolores Vernet
- Department of Urology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Fibrosis (progressive scarring) is a leading cause of organ failure worldwide and causes loss of organ function when normal tissue is replaced with excess connective tissue. Several organs are prone to this process regardless of etiology. The pleiotropic hormone, relaxin, is emerging as a novel antifibrotic therapy. Relaxin has been shown to limit collagen production and reorganization, while stimulating increased collagen degradation. It not only prevents fibrogenesis, but also reduces established scarring. This review summarizes (1) the levels at which relaxin inhibits collagen production and existing collagen overexpression in induced models of fibrosis, and (2) the collagen-related phenotypes of relaxin- and LGR7-deficient mice. Recent studies on relaxin-deficient mice have established relaxin as an important, naturally occurring regulator of collagen turnover and provide new insights into the therapeutic potential of relaxin.
Collapse
Affiliation(s)
- Chrishan S Samuel
- Howard Florey Institute, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
23
|
Laplante P, Raymond MA, Gagnon G, Vigneault N, Sasseville AMJ, Langelier Y, Bernard M, Raymond Y, Hébert MJ. Novel fibrogenic pathways are activated in response to endothelial apoptosis: implications in the pathophysiology of systemic sclerosis. THE JOURNAL OF IMMUNOLOGY 2005; 174:5740-9. [PMID: 15843576 DOI: 10.4049/jimmunol.174.9.5740] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Apoptosis of endothelial cells (EC) is appreciated as a primary pathogenic event in systemic sclerosis. Yet, how apoptosis of EC leads to fibrosis remains to be determined. We report that apoptosis of EC triggers the release of novel fibrogenic mediators. Medium conditioned by apoptotic EC (SSC) was found to inhibit apoptosis of fibroblasts, whereas medium conditioned by EC in which apoptosis was blocked (with either pan-caspase inhibition or Bcl-x(L) overexpression) did not. PI3K was activated in fibroblasts exposed to SSC. This was associated with downstream repression of Bim-EL and long-term up-regulation of Bcl-x(L) protein levels. RNA interference for Bim-EL in fibroblasts blocked apoptosis. SSC also induced PI3K-dependent myofibroblast differentiation with expression of alpha-smooth muscle actin, formation of stress fibers, and production of collagen I. A C-terminal fragment of the domain V of perlecan was identified as one of the fibrogenic mediators present in SSC. A synthetic peptide containing an EGF motif present on the perlecan fragment and chondroitin 4-sulfate, a glycosaminoglycan anchored on the domain V of perlecan, induced PI3K-dependent resistance to apoptosis in fibroblasts and myofibroblast differentiation. Human fibroblasts derived from sclerodermic skin lesions were more sensitive to the antiapoptotic activities of the synthetic peptide and chondroitin 4-sulfate than fibroblasts derived from normal controls. Hence, we propose that a chronic increase in endothelial apoptosis and/or increased sensitivity of fibroblasts to mediators produced by apoptotic EC could form the basis of a fibrotic response characterized by sustained induction of an antiapoptotic phenotype in fibroblasts and persistent myofibroblast differentiation.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- Apoptosis/immunology
- Cell Differentiation/immunology
- Cell Line
- Chondroitin Sulfates/pharmacology
- Culture Media, Conditioned
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Fibroblasts/immunology
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Heparan Sulfate Proteoglycans/physiology
- Humans
- Immunity, Innate
- Inflammation Mediators/metabolism
- Inflammation Mediators/physiology
- Molecular Sequence Data
- Peptide Fragments/chemical synthesis
- Peptide Fragments/pharmacology
- Phosphatidylinositol 3-Kinases/physiology
- Protein Structure, Tertiary
- Scleroderma, Systemic/immunology
- Scleroderma, Systemic/pathology
- Scleroderma, Systemic/physiopathology
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Patrick Laplante
- Research Centre Centre Hospitalier de l'Université de Montréal (CHUM), University of Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Denton CP, Lindahl GE, Khan K, Shiwen X, Ong VH, Gaspar NJ, Lazaridis K, Edwards DR, Leask A, Eastwood M, Leoni P, Renzoni EA, Bou Gharios G, Abraham DJ, Black CM. Activation of Key Profibrotic Mechanisms in Transgenic Fibroblasts Expressing Kinase-deficient Type II Transforming Growth Factor-β Receptor (TβRIIΔk). J Biol Chem 2005; 280:16053-65. [PMID: 15708853 DOI: 10.1074/jbc.m413134200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have generated transgenic mice expressing a kinase-deficient type II transforming growth factor-beta (TGFbeta) receptor selectively on fibroblasts (TbetaRIIDeltak-fib). These mice develop dermal and pulmonary fibrosis. In the present study we explore activation of TGFbeta signaling pathways in this strain and examine the profibrotic properties of explanted transgenic fibroblasts including myofibroblast differentiation and abnormal metalloproteinase production. Gene expression profiles of littermate wild type or transgenic fibroblasts were compared using high-density gene arrays and validated by Taqman reverse transcriptase-PCR, Northern and Western blotting. Using a specific inhibitor (SD-208) we demonstrate that the abnormal phenotype of these cells is dependent upon TbetaRI kinase (ALK5) activity, and that transgenic fibroblasts show enhanced expression and activation of TGFbeta together with increased levels of wild type TbetaRII. Moreover, we confirm that transgene expression is itself regulated by TGFbeta and that expression at low levels facilitates signaling, whereas high level expression is inhibitory. For a subset of TGFbeta responsive genes basal up-regulation is normalized or suppressed by exogenous recombinant TGFbeta1 at time points coincident with increased transgene expression. These findings explain the profound refractoriness of TbetaRIIDeltak-fib fibroblasts to exogenous TGFbeta1, despite their activated phenotype. Thus, transgenic fibroblasts recapitulate many hallmark biochemical properties of fibrotic cells, including high level CTGF (CCN2) expression and type I collagen overproduction, altered MMP production, and myofibroblast differentiation. These cells also show an enhanced ability to contract collagen gel matrices. Our study demonstrates that altered high affinity TGFbeta receptor function may lead to ligand-dependent activation of downstream signaling, and provides further evidence of a pivotal role for sustained TGFbeta overactivity in fibrosis.
Collapse
Affiliation(s)
- Christopher P Denton
- Centre for Rheumatology, Royal Free and University College Medical School, Hampstead Campus, London NW3 2PF, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jun JB, Kuechle M, Min J, Shim SC, Kim G, Montenegro V, Korn JH, Elkon KB. Scleroderma fibroblasts demonstrate enhanced activation of Akt (protein kinase B) in situ. J Invest Dermatol 2005; 124:298-303. [PMID: 15675946 DOI: 10.1111/j.0022-202x.2004.23559.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recent studies suggest that, in addition to activation and hypersecretion of matrix components, fibroblasts from patients with systemic sclerosis (SSc) are relatively resistant to apoptosis. Transforming growth factor-beta (TGF)-beta is strongly implicated in the pathogenesis of SSc and we and others have shown that TGF-beta can activate Akt, a kinase with potent anti-apoptotic effects. To determine whether Akt was activated in SSc, we quantified phospho-Akt expression in skin fibroblasts in vitro by western blot analysis and a functional kinase assay. In addition, the relative proportion of fibroblasts containing activated Akt in was quantified by immunohistochemistry on skin sections insitu. Analysis of Akt phosphorylation of skin fibroblasts in vitro suggested increased phosphorylation of Akt, and evaluation of skin sections by immunohistochemistry revealed significantly higher percentages of fibroblasts that stained for phospho-Akt compared with controls (78% +/- 14.0% vs 13% +/- 9%, p < 0.001). In addition, co-incident staining of phospho-Akt and alpha-smooth muscle actin was observed in some fibroblasts. These findings indicate that Akt is activated insitu in skin fibroblasts from patients with SSc. Akt activation may contribute to resistance to apoptosis, selection of disease-inducing fibroblasts, and, possibly, myofibroblasts.
Collapse
Affiliation(s)
- Jae-Bum Jun
- Division of Rheumatology, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle 98195, Washington, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bogatkevich GS, Gustilo E, Oates JC, Feghali-Bostwick C, Harley RA, Silver RM, Ludwicka-Bradley A. Distinct PKC isoforms mediate cell survival and DNA synthesis in thrombin-induced myofibroblasts. Am J Physiol Lung Cell Mol Physiol 2005; 288:L190-201. [PMID: 15447940 DOI: 10.1152/ajplung.00448.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thrombin activates protease-activated receptor (PAR)-1 and induces a myofibroblast phenotype in normal lung fibroblasts that resembles the phenotype of scleroderma lung fibroblasts. We now demonstrate that PAR-1 expression is dramatically increased in lung tissue from scleroderma patients, where it is associated with inflammatory and fibroproliferative foci. We also observe that thrombin induces resistance to apoptosis in normal lung fibroblasts, and this process is regulated by protein kinase C (PKC)-epsilon but not by PKC-alpha. Overexpression of a constitutively active (c-a) form of PAR-1 or PKC-epsilon significantly inhibits Fas ligand-induced apoptosis in lung fibroblasts, whereas scleroderma lung fibroblasts are resistant to apoptosis de novo. Thrombin translocates p21Cip1/WAF1, a signaling molecule downstream of PKC, from the nucleus to cytoplasm in normal lung fibroblasts mimicking the localization of p21Cip1/WAF1 in scleroderma lung fibroblasts. Overexpression of c-a PKC-alpha or PKC-epsilon results in accumulation of p21Cip1/WAF1 in the cytoplasm. Depletion of PKC-alpha or inhibition of mitogen-activated protein kinase (MAPK) blocks thrombin-induced DNA synthesis in lung fibroblasts. Inhibition of PKC by calphostin or PKC-alpha, but not PKC-epsilon, by antisense oligonucleotides prevents thrombin-induced MAPK phosphorylation and accumulation of G(1) phase regulatory protein cyclin D1, suggesting that PKC-alpha, MAPK, and cyclin D1 mediate lung fibroblast proliferation. These data demonstrate that two distinct PKC isoforms mediate thrombin-induced resistance to apoptosis and proliferation and suggest that p21Cip1/WAF1 promotes both phenomena.
Collapse
Affiliation(s)
- Galina S Bogatkevich
- Division of Rheumatology and Immunology, Dept. of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
A 62-year-old female who developed concomitantly acrosclerosis and keloid-like lesions is described. Biopsy specimens from these linear lesions showed a fibrous proliferation in the dermis composed mostly of normal-appearing, horizontally oriented collagen bundles and myofibroblasts, thus resembling a scar. Keloidal scleroderma is a rare variant of scleroderma. The diagnosis is considered for patients with scleroderma who develop lesions clinically and histologically indistinguishable from keloids. This case demonstrates for the first time that the histopathologic findings can mimic those of a scar, rather than a keloid, and hence is appropriately designated as keloid-like scleroderma. Clinical pathological correlation is mandatory for the correct diagnosis.
Collapse
Affiliation(s)
- Aviv Barzilai
- Department of Dermatology, Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Israel.
| | | | | | | |
Collapse
|
28
|
Pines M, Snyder D, Yarkoni S, Nagler A. Halofuginone to treat fibrosis in chronic graft-versus-host disease and scleroderma. Biol Blood Marrow Transplant 2003; 9:417-25. [PMID: 12869955 DOI: 10.1016/s1083-8791(03)00151-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic graft-versus-host disease (cGvHD) and systemic sclerosis (scleroderma [SSc]) share clinical characteristics, including skin and internal organ fibrosis. Fibrosis, regardless of the cause, is characterized by extracellular matrix deposition, of which collagen type I is the major constituent. The progressive accumulation of connective tissue results in destruction of normal tissue architecture and internal organ failure. In both SSc and cGvHD, the severity of skin and internal organ fibrosis correlates with the clinical course of the disease. Thus, there is an unmet need for well-tolerated antifibrotic therapy. Halofuginone is an inhibitor of collagen type I synthesis in cells derived from various tissues and species and in animal models of fibrosis in which excess collagen is the hallmark of the disease. Halofuginone decreased collagen synthesis in the tight skin mouse (Tsk) and murine cGvHD, the 2 experimental systems that show many features resembling those of human GvHD. Inhibition of collagen synthesis by halofuginone is achieved by inhibiting transforming growth factor beta-dependent Smad3 phosphorylation. Dermal application of halofuginone caused a decrease in collagen content at the treated site of a cGvHD patient, and reduction in skin scores was observed in a pilot study with SSc patients. The results of the human studies provide basis for using halofuginone treatment for dermal fibrosis. As a first step toward future treatment of internal organ involvement, an oral administration study was performed in which halofuginone was well tolerated and plasma levels surpassed the predicted therapeutic exposure.
Collapse
Affiliation(s)
- Mark Pines
- Institute of Animal Science, ARO, the Volcani Center, Bet Dagan, 50250, Israel.
| | | | | | | |
Collapse
|
29
|
Flavahan NA, Flavahan S, Mitra S, Chotani MA. The vasculopathy of Raynaud's phenomenon and scleroderma. Rheum Dis Clin North Am 2003; 29:275-91, vi. [PMID: 12841295 DOI: 10.1016/s0889-857x(03)00021-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The scleroderma (SSc) disease process involves dramatic dysfunction in acute and chronic vascular regulatory mechanisms; it presents initially with heightened vasoconstrictor or vasospastic activity and progresses to structural derangement or vasculopathy of the microcirculation. This article discusses the regulatory mechanisms that contribute to this dysfunction and the vascular changes in the context of the other aspects of the SSc disease process in a novel attempt to integrate the individual pathologies of the disease process.
Collapse
Affiliation(s)
- Nicholas A Flavahan
- Heart and Lung Research Institute, Ohio State University, 473 West 12th Avenue, Columbus OH 43210, USA.
| | | | | | | |
Collapse
|
30
|
Abstract
It has been appreciated for quite some time that a "round cell" inflammatory infiltrate is present in the dermis during the early stages of scleroderma. Considerable research has emanated from this basic observation, with the assumption that interactions between immune cells and fibroblasts are paramount in the genesis of fibrosis. The large number of mast cells that accumulate early in involved tissues has been less appreciated in recent studies. The purpose of this update is to demonstrate how mast cells interact with fibroblasts in a manner that leads to fibroblast activation and subsequent extracellular fibrosis. Furthermore, the notion that myofibroblasts represent a critical fibroblast phenotype in sclerosing disorders, such as scleroderma, has also gained considerable support. The relationship of tissue mast cells to the generation of a myofibroblast phenotype has been the focus of several recent reports and will also be discussed.
Collapse
Affiliation(s)
- Barry L Gruber
- Rheumatology Division, Department of Medicine, State University of New York at Stony Brook, HSC 16-040, 11794, USA.
| |
Collapse
|