1
|
Jahn J, Ehlen QT, Kaplan L, Best TM, Meng Z, Huang CY. Interplay of Glucose Metabolism and Hippo Pathway in Chondrocytes: Pathophysiology and Therapeutic Targets. Bioengineering (Basel) 2024; 11:972. [PMID: 39451348 PMCID: PMC11505586 DOI: 10.3390/bioengineering11100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
In this review, we explore the intricate relationship between glucose metabolism and mechanotransduction pathways, with a specific focus on the role of the Hippo signaling pathway in chondrocyte pathophysiology. Glucose metabolism is a vital element in maintaining proper chondrocyte function, but it has also been implicated in the pathogenesis of osteoarthritis (OA) via the induction of pro-inflammatory signaling pathways and the establishment of an intracellular environment conducive to OA. Alternatively, mechanotransduction pathways such as the Hippo pathway possess the capacity to respond to mechanical stimuli and have an integral role in maintaining chondrocyte homeostasis. However, these mechanotransduction pathways can be dysregulated and potentially contribute to the progression of OA. We discussed how alterations in glucose levels may modulate the Hippo pathway components via a variety of mechanisms. Characterizing the interaction between glucose metabolism and the Hippo pathway highlights the necessity of balancing both metabolic and mechanical signaling to maintain chondrocyte health and optimal functionality. Furthermore, this review demonstrates the scarcity of the literature on the relationship between glucose metabolism and mechanotransduction and provides a summary of current research dedicated to this specific area of study. Ultimately, increased research into this topic may elucidate novel mechanisms and relationships integrating mechanotransduction and glucose metabolism. Through this review we hope to inspire future research into this topic to develop innovative treatments for addressing the clinical challenges of OA.
Collapse
Affiliation(s)
- Jacob Jahn
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
| | - Quinn T. Ehlen
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
| | - Lee Kaplan
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Orthopedics, University of Miami, Miami, FL 33136, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
| | - Thomas M. Best
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Orthopedics, University of Miami, Miami, FL 33136, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
| | - Zhipeng Meng
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chun-Yuh Huang
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
2
|
Glitsch MD. Recent advances in acid sensing by G protein coupled receptors. Pflugers Arch 2024; 476:445-455. [PMID: 38340167 PMCID: PMC11006784 DOI: 10.1007/s00424-024-02919-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Changes in extracellular proton concentrations occur in a variety of tissues over a range of timescales under physiological conditions and also accompany virtually all pathologies, notably cancers, stroke, inflammation and trauma. Proton-activated, G protein coupled receptors are already partially active at physiological extracellular proton concentrations and their activity increases with rising proton concentrations. Their ability to monitor and report changes in extracellular proton concentrations and hence extracellular pH appears to be involved in a variety of processes, and it is likely to mirror and in some cases promote disease progression. Unsurprisingly, therefore, these pH-sensing receptors (pHR) receive increasing attention from researchers working in an expanding range of research areas, from cellular neurophysiology to systemic inflammatory processes. This review is looking at progress made in the field of pHRs over the past few years and also highlights outstanding issues.
Collapse
Affiliation(s)
- Maike D Glitsch
- Medical School Hamburg, Am Sandtorkai 1, 20457, Hamburg, Germany.
| |
Collapse
|
3
|
Brown WE, Lavernia L, Bielajew BJ, Hu JC, Athanasiou KA. Human nasal cartilage: Functional properties and structure-function relationships for the development of tissue engineering design criteria. Acta Biomater 2023; 168:113-124. [PMID: 37454708 DOI: 10.1016/j.actbio.2023.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Nose reconstruction often requires scarce cartilage grafts. Nasal cartilage properties must be determined to serve as design criteria for engineering grafts. Thus, mechanical and biochemical properties were obtained in multiple locations of human nasal septum, upper lateral cartilage (ULC), and lower lateral cartilage (LLC). Within each region, no statistical differences among locations were detected, but anisotropy at some septum locations was noted. In the LLC, the tensile modulus and ultimate tensile strength (UTS) in the inferior-superior direction were statistically greater than in the anterior-posterior direction. Cartilage from all regions exhibited hyperelasticity in tension, but regions varied in degree of hyalinicity (i.e., Col II:Col I ratio). The septum contained the most collagen II and least collagen I and III, making it more hyaline than the ULC and LLC. The septum had a greater aggregate modulus, UTS, and lower total collagen/wet weight (Col/WW) than the ULC and LLC. The ULC had greater tensile modulus, DNA/WW, and lower glycosaminoglycan/WW than the septum and LLC. The ULC had a greater pyridinoline/Col than the septum. Histological staining suggested the presence of chondrons in all regions. In the ULC and LLC, tensile modulus correlated with total collagen content, while aggregate modulus correlated with pyridinoline content and weakly with pentosidine content. However, future studies should be performed to validate these proposed structure-function relationships. This study of human nasal cartilage provides 1) crucial design criteria for nasal cartilage tissue engineering efforts, 2) quantification of major and minor collagen subtypes and crosslinks, and 3) structure-function relationships. Surprisingly, the large mechanical properties found, particularly in the septum, suggests that nasal cartilage may experience higher-than-expected mechanical loads. STATEMENT OF SIGNIFICANCE: While tissue engineering holds promise to generate much-needed cartilage grafts for nasal reconstruction, little is known about nasal cartilage from an engineering perspective. In this study, the mechanical and biochemical properties of the septum, upper lateral cartilage (ULC), and lower lateral cartilage (LLC) were evaluated using cartilage-specific methods. For the first time in this tissue, all major and minor collagens and collagen crosslinks were measured, demonstrating that the septum was more hyaline than the ULC and LLC. Additionally, new structure-function relationships in the ULC and LLC were identified. This study greatly expands upon the quantitative understanding of human nasal cartilage and provides crucial engineering design criteria for much-needed nasal cartilage tissue engineering efforts.
Collapse
Affiliation(s)
- Wendy E Brown
- Department of Biomedical Engineering, University of California Irvine, 3120 Natural Sciences II, Irvine, CA, 92697, USA
| | - Laura Lavernia
- Department of Biomedical Engineering, University of California Irvine, 3120 Natural Sciences II, Irvine, CA, 92697, USA
| | - Benjamin J Bielajew
- Department of Biomedical Engineering, University of California Irvine, 3120 Natural Sciences II, Irvine, CA, 92697, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Irvine, 3120 Natural Sciences II, Irvine, CA, 92697, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Irvine, 3120 Natural Sciences II, Irvine, CA, 92697, USA.
| |
Collapse
|
4
|
Wakale S, Wu X, Sonar Y, Sun A, Fan X, Crawford R, Prasadam I. How are Aging and Osteoarthritis Related? Aging Dis 2023; 14:592-604. [PMID: 37191424 PMCID: PMC10187698 DOI: 10.14336/ad.2022.0831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/31/2022] [Indexed: 05/17/2023] Open
Abstract
Osteoarthritis is the most prevalent degenerative joint disease and one of the leading causes of physical impairment in the world's aging population. The human lifespan has significantly increased as a result of scientific and technological advancements. According to estimates, the world's elderly population will increase by 20% by 2050. Aging and age-related changes are discussed in this review in relation to the development of OA. We specifically discussed the cellular and molecular changes that occur in the chondrocytes during aging and how these changes may make synovial joints more susceptible to OA development. These changes include chondrocyte senescence, mitochondrial dysfunction, epigenetic modifications, and decreased growth factor response. The age-associated changes occur not only in the chondrocytes but also in the matrix, subchondral bone, and synovium. This review aims to provide an overview of the interplay between chondrocytes and matrix and how age-related changes affect the normal function of cartilage and contribute to OA development. Understanding the alterations that affect the function of chondrocytes will emerge new possibilities for prospective therapeutic options for the treatment of OA.
Collapse
Affiliation(s)
- Shital Wakale
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Xiaoxin Wu
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Yogita Sonar
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Antonia Sun
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Xiwei Fan
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Ross Crawford
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
- Orthopaedic Department, The Prince Charles Hospital, Brisbane, Queensland, Australia.
| | - Indira Prasadam
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
5
|
Liu Z, Hui Mingalone CK, Gnanatheepam E, Hollander JM, Zhang Y, Meng J, Zeng L, Georgakoudi I. Label-free, multi-parametric assessments of cell metabolism and matrix remodeling within human and early-stage murine osteoarthritic articular cartilage. Commun Biol 2023; 6:405. [PMID: 37055483 PMCID: PMC10102009 DOI: 10.1038/s42003-023-04738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
Osteoarthritis (OA) is characterized by the progressive deterioration of articular cartilage, involving complicated cell-matrix interactions. Systematic investigations of dynamic cellular and matrix changes during OA progression are lacking. In this study, we use label-free two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) imaging to assess cellular and extracellular matrix features of murine articular cartilage during several time points at early stages of OA development following destabilization of medial meniscus surgery. We detect significant changes in the organization of collagen fibers and crosslink-associated fluorescence of the superficial zone as early as one week following surgery. Such changes become significant within the deeper transitional and radial zones at later time-points, highlighting the importance of high spatial resolution. Cellular metabolic changes exhibit a highly dynamic behavior, and indicate metabolic reprogramming from enhanced oxidative phosphorylation to enhanced glycolysis or fatty acid oxidation over the ten-week observation period. The optical metabolic and matrix changes detected within this mouse model are consistent with differences identified in excised human cartilage specimens from OA and healthy cartilage specimens. Thus, our studies reveal important cell-matrix interactions at the onset of OA that may enable improved understanding of OA development and identification of new potential treatment targets.
Collapse
Affiliation(s)
- Zhiyi Liu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, Zhejiang, 314000, China
| | - Carrie K Hui Mingalone
- Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | | | - Judith M Hollander
- Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - Yang Zhang
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Jia Meng
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Li Zeng
- Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA, 02111, USA
- Department of Orthopaedics, Tufts Medical Center, Boston, MA, 02111, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
- Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
6
|
Yang Q, Shi Y, Jin T, Duan B, Wu S. Advanced Glycation End Products Induced Mitochondrial Dysfunction of Chondrocytes through Repression of AMPKα-SIRT1-PGC-1α Pathway. Pharmacology 2022; 107:298-307. [PMID: 35240662 DOI: 10.1159/000521720] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Our previous studies have demonstrated advanced glycation end products (AGEs) was an important mediator in osteoarthritis (OA) which may induce mitochondrial dysfunction. AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), and its downstream target peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) are the critical sensors that regulate mitochondrial biogenesis and have been recognized as therapeutic targets in OA. This study was designed to test whether AGEs caused mitochondrial dysfunction through modulation of AMPKα/SIRT1/PGC-1α. METHODS We knocked down or overexpressed AMPKα, SIRT1, and PGC-1α by small interfering RNA or plasmid DNA transfection, respectively. Mitochondrial membrane potential (△Ψ) was detected by tetraethylbenzimidazolyl carbocyanine iodide (JC-1) fluorescence probe. RESULTS The results showed that AGEs impaired △Ψ, intracellular ATP level, and mitochondrial DNA content, linked to decreased AMPKα, SIRT1, and PGC-1α expression in chondrocyte. AMPKα pharmacologic activation or overexpression of AMPKα, SIRT1, and PGC-1α reversed impairments of mitochondrial biogenesis, oxidative stress, and inflammation in AGEs-induced chondrocytes. However, AMPKα activation using AICAR had decreased capacity to increase each of those same effect readouts in AGEs-treated SIRT1-siRNA or PGC-1α-siRNA chondrocyte. CONCLUSION Taken together, AGEs reduced the AMPKα/SIRT1/PGC-1α signaling in chondrocytes, leading to mitochondrial dysfunction as a result of increased oxidative stress, inflammation, and apoptosis. These results indicated that target AMPK may be as a novel therapeutic strategy for AGEs-related OA prevention.
Collapse
Affiliation(s)
- Qingshan Yang
- Department of Orthopaedics, Gan Su Province Hospital, Lan Zhou, China
| | - Yucong Shi
- Department of Orthopaedics, Gan Su Province Hospital, Lan Zhou, China.,Gansu University of Chinese Medicine, Lan Zhou, China
| | - Tao Jin
- Department of Orthopaedics, Gan Su Province Hospital, Lan Zhou, China.,Gansu University of Chinese Medicine, Lan Zhou, China
| | - Bowen Duan
- Department of Pharmacy, Gan Su ProvincTe Hospital, Lan Zhou, China
| | - Shujin Wu
- Department of Pharmacy, Gan Su ProvincTe Hospital, Lan Zhou, China
| |
Collapse
|
7
|
Donahue RP, Link JM, Meli VS, Hu JC, Liu WF, Athanasiou KA. Stiffness- and Bioactive Factor-Mediated Protection of Self-Assembled Cartilage against Macrophage Challenge in a Novel Co-Culture System. Cartilage 2022; 13:19476035221081466. [PMID: 35313741 PMCID: PMC9137312 DOI: 10.1177/19476035221081466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/23/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Tissue-engineered cartilage implants must withstand the potential inflammatory and joint loading environment for successful long-term repair of defects. The work's objectives were to develop a novel, direct cartilage-macrophage co-culture system and to characterize interactions between self-assembled neocartilage and differentially stimulated macrophages. DESIGN In study 1, it was hypothesized that the proinflammatory response of macrophages would intensify with increasing construct stiffness; it was expected that the neocartilage would display a decrease in mechanical properties after co-culture. In study 2, it was hypothesized that bioactive factors would protect neocartilage properties during macrophage co-culture. Also, it was hypothesized that interleukin 10 (IL-10)-stimulated macrophages would improve neocartilage mechanical properties compared to lipopolysaccharide (LPS)-stimulated macrophages. RESULTS As hypothesized, stiffer neocartilage elicited a heightened proinflammatory macrophage response, increasing tumor necrosis factor alpha (TNF-α) secretion by 5.47 times when LPS-stimulated compared to construct-only controls. Interestingly, this response did not adversely affect construct properties for the stiffest neocartilage but did correspond to a significant decrease in aggregate modulus for soft and medium stiffness constructs. In addition, bioactive factor-treated constructs were protected from macrophage challenge compared to chondrogenic medium-treated constructs, but IL-10 did not improve neocartilage properties, although stiff constructs appeared to bolster the anti-inflammatory nature of IL-10-stimulated macrophages. However, co-culture of bioactive factor-treated constructs with LPS-treated macrophages reduced TNF-α secretion by over 4 times compared to macrophage-only controls. CONCLUSIONS In conclusion, neocartilage stiffness can mediate macrophage behavior, but stiffness and bioactive factors prevent macrophage-induced degradation. Ultimately, this co-culture system could be utilized for additional studies to develop the burgeoning field of cartilage mechano-immunology.
Collapse
Affiliation(s)
- Ryan P. Donahue
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Jarrett M. Link
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Vijaykumar S. Meli
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA, USA
| | - Jerry C. Hu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Wendy F. Liu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | | |
Collapse
|
8
|
AGE/Non-AGE Glycation: An Important Event in Rheumatoid Arthritis Pathophysiology. Inflammation 2021; 45:477-496. [PMID: 34787800 DOI: 10.1007/s10753-021-01589-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/29/2021] [Accepted: 10/25/2021] [Indexed: 12/28/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory, autoimmune disease that gradually affects the synovial membrane and joints. Many intrinsic and/or extrinsic factors are crucial in making RA pathology challenging throughout the disease. Substantial enzymatic or non-enzymatic modification of proteins driving inflammation has gained a lot of interest in recent years. Endogenously modified glycated protein influences disease development linked with AGEs/non-AGEs and is reported as a disease marker. In this review, we summarized current knowledge of the differential abundance of glycated proteins by compiling and analyzing a variety of AGE and non-AGE ligands that bind with RAGE to activate multi-faceted inflammatory and oxidative stress pathways that are pathobiologically associated with RA-fibroblast-like synoviocytes (RA-FLS). It is critical to comprehend the connection between oxidative stress and inflammation generation, mediated by glycated protein, which may bind to the receptor RAGE, activate downstream pathways, and impart immunogenicity in RA. It is worth noting that AGEs and non-AGEs ligands play a variety of functions, and their functionality is likely to be more reliant on pathogenic states and severity that may serve as biomarkers for RA. Screening and monitoring of these differentially glycated proteins, as well as their stability in circulation, in combination with established pre-clinical characteristics, may aid or predict the onset of RA.
Collapse
|
9
|
Shi L, Lu PP, Dai GC, Li YJ, Rui YF. Advanced glycation end productions and tendon stem/progenitor cells in pathogenesis of diabetic tendinopathy. World J Stem Cells 2021; 13:1338-1348. [PMID: 34630866 PMCID: PMC8474716 DOI: 10.4252/wjsc.v13.i9.1338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/26/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Tendinopathy is a challenging complication observed in patients with diabetes mellitus. Tendinopathy usually leads to chronic pain, limited joint motion, and even ruptured tendons. Imaging and histological analyses have revealed pathological changes in various tendons of patients with diabetes, including disorganized arrangement of collagen fibers, microtears, calcium nodules, and advanced glycation end product (AGE) deposition. Tendon-derived stem/ progenitor cells (TSPCs) were found to maintain hemostasis and to participate in the reversal of tendinopathy. We also discovered the aberrant osteochondrogenesis of TSPCs in vitro. However, the relationship between AGEs and TSPCs in diabetic tendinopathy and the underlying mechanism remain unclear. In this review, we summarize the current findings in this field and hypothesize that AGEs could alter the properties of tendons in patients with diabetes by regulating the proliferation and differentiation of TSPCs in vivo.
Collapse
Affiliation(s)
- Liu Shi
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Pan-Pan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Guang-Chun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Ying-Juan Li
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
10
|
Chen X, Yu M, Xu W, Zou L, Ye J, Liu Y, Xiao Y, Luo J. Rutin inhibited the advanced glycation end products-stimulated inflammatory response and extra-cellular matrix degeneration via targeting TRAF-6 and BCL-2 proteins in mouse model of osteoarthritis. Aging (Albany NY) 2021; 13:22134-22147. [PMID: 34550907 PMCID: PMC8507296 DOI: 10.18632/aging.203470] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/23/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is degenerative joint disorder mainly characterized by long-term pain with limited activity of joints, the disease has no effective preventative therapy. Rutin (RUT) is a flavonoid compound, present naturally. The flavonoid shows range of biological activities such as anti-inflammatory and anti-cancer effect. We screened RUT for its activity against osteoarthritis with in vivo and in vitro models of osteoarthritis. METHODS Animal model of OA was developed using C57BL/6 mice by surgical destabilization of medial meniscus. For in vitro studies the human articular cartilage tissues were used which were collected from osteoarthritis patients and were processed to isolate chondrocytes. The chondrocytes were submitted to advanced glycation end products (AGEs) for inducing osteoarthritis in vitro. Cell viability was done by CCK-8 assay, ELISA analysis for MMP13, collage II, PGE2, IL-6, TNF-α, ADAMTS-5 and MMP-13. Western blot analysis was done for expression of proteins and in silico analysis was done by docking studies. RESULTS Pretreatment of RT showed no cytotoxic effect and also ameliorated the AGE mediated inflammatory reaction on human chondrocytes in vitro. Treatment of RT inhibited the levels of COX-2 and iNOS in AGE exposed chondrocytes. RT decreased the AGE mediated up-regulation of IL-6, NO, TNF-α and PGE-2 in a dose dependent manner. Pretreatment of RT decreased the extracellular matrix degradation, inhibited expression of TRAF-6 and BCL-2 the NF-κB/MAPK pathway proteins. The treatment of RT in mice prevented the calcification of cartilage tissues, loss of proteoglycans and also halted the narrowing of joint space is mice subjected to osteoarthritis. The in-silico analysis suggested potential binding affinity of RT with TRAF-6 and BCL-2. CONCLUSION In brief RT inhibited AGE-induced inflammatory reaction and also degradation of ECM via targeting the NF-κB/MAPK pathway proteins BCL-2 and TRAF-6. RT can be a potential molecule in treating OA.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Mingchuan Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Wei Xu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Linfeng Zou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Jing Ye
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Yu Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Yuhong Xiao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| |
Collapse
|
11
|
Sun X, Zhang J, Li Y, Ren W, Wang L. Etomidate ameliorated advanced glycation end-products (AGEs)-induced reduction of extracellular matrix genes expression in chondrocytes. Bioengineered 2021; 12:4191-4200. [PMID: 34308765 PMCID: PMC8806553 DOI: 10.1080/21655979.2021.1951926] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Osteoarthritis (OA) is a rheumatic disease common in the elderly. AGEs are the end products of glycation reactions and play an important role in the development of OA. Etomidate is a general anesthesia-inducing agent recently reported to exert significant anti-inflammatory effects. The present study aims to explore the protective effect of Etomidate against advanced glycation end-products (AGEs)-induced reduction of extracellular matrix gene expression in chondrocytes. In the present study, we found that AGEs significantly reduced the expression of Collagen II (COL2A1) and Aggrecan (ACAN) at the gene level. Furthermore, AGEs inhibited the expression of SRY-related high mobility group-box gene 9 (SOX-9), promoting the expression of COL2A1 and ACAN. COL2A1, ACAN, and SOX-9 in chondrocytes were significantly elevated by treatment with Etomidate alone. Consistently, Etomidate ameliorated AGEs-induced downregulation of COL2A1, ACAN, and SOX-9 in a dose-dependent manner. Importantly, we found that knockdown of SOX-9 eliminated the beneficial effects of Etomidate against AGEs-induced decrease in COL2A1 and ACAN genes. Based on these findings, we demonstrated that Etomidate could ameliorate AGEs-induced reduction of extracellular matrix gene expression in chondrocytes by upregulating SOX-9.
Collapse
Affiliation(s)
- Xiaohua Sun
- Department of Anesthesiology, Outpatient and Emergency, Tianjin Hospital, Tianjin, China
| | - Jizheng Zhang
- Department of Anesthesiology, Outpatient and Emergency, Tianjin Hospital, Tianjin, China
| | - Yi Li
- Department of Anesthesiology, Outpatient and Emergency, Tianjin Hospital, Tianjin, China
| | - Wanlu Ren
- Department of Anesthesiology, Outpatient and Emergency, Tianjin Hospital, Tianjin, China
| | - Lijun Wang
- Department of Anus& Intestine Surgery, Tianjin Hospital, Tianjin, China
| |
Collapse
|
12
|
Zheng L, Zhang Z, Sheng P, Mobasheri A. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res Rev 2021; 66:101249. [PMID: 33383189 DOI: 10.1016/j.arr.2020.101249] [Citation(s) in RCA: 309] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by low-grade inflammation and high levels of clinical heterogeneity. Aberrant chondrocyte metabolism is a response to changes in the inflammatory microenvironment and may play a key role in cartilage degeneration and OA progression. Under conditions of environmental stress, chondrocytes tend to adapt their metabolism to microenvironmental changes by shifting from one metabolic pathway to another, for example from oxidative phosphorylation to glycolysis. Similar changes occur in other joint cells, including synoviocytes. Switching between these pathways is implicated in metabolic alterations that involve mitochondrial dysfunction, enhanced anaerobic glycolysis, and altered lipid and amino acid metabolism. The shift between oxidative phosphorylation and glycolysis is mainly regulated by the AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) pathways. Chondrocyte metabolic changes are likely to be a feature of different OA phenotypes. Determining the role of chondrocyte metabolism in OA has revealed key features of disease pathogenesis. Future research should place greater emphasis on immunometabolism and altered metabolic pathways as a means to understand the pathophysiology of age-related OA. This knowledge will advance the development of new drugs against therapeutic targets of metabolic significance.
Collapse
Affiliation(s)
- Linli Zheng
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China
| | - Ziji Zhang
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China
| | - Puyi Sheng
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China.
| | - Ali Mobasheri
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China; Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, PO Box 5000, FI-90014 Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406, Vilnius, Lithuania; Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 508 GA, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Chuntakaruk H, Kongtawelert P, Pothacharoen P. Chondroprotective effects of purple corn anthocyanins on advanced glycation end products induction through suppression of NF-κB and MAPK signaling. Sci Rep 2021; 11:1895. [PMID: 33479339 PMCID: PMC7820347 DOI: 10.1038/s41598-021-81384-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/06/2021] [Indexed: 01/15/2023] Open
Abstract
Formation of advanced glycation end products (AGEs), which are associated with diabetes mellitus, contributes to prominent features of osteoarthritis, i.e., inflammation-mediated destruction of articular cartilage. Among the phytochemicals which play a role in anti-inflammatory effects, anthocyanins have also been demonstrated to have anti-diabetic properties. Purple corn is a source of three major anthocyanins: cyanidin-3-O-glucoside, pelargonidin-3-O-glucoside and peonidin-3-O-glucoside. Purple corn anthocyanins have been demonstrated to be involved in the reduction of diabetes-associated inflammation, suggesting that they may have a beneficial effect on diabetes-mediated inflammation of cartilage. This investigation of the chondroprotective effects of purple corn extract on cartilage degradation found a reduction in glycosaminoglycans released from AGEs induced cartilage explants, corresponding with diminishing of uronic acid loss of the cartilage matrix. Investigation of the molecular mechanisms in human articular chondrocytes showed the anti-inflammatory effect of purple corn anthocyanins and the metabolite, protocatechuic acid (PCA) on AGEs induced human articular chondrocytes via inactivation of the NFκb and MAPK signaling pathways. This finding suggests that purple corn anthocyanins and PCA may help ameliorate AGEs mediated inflammation and diabetes-mediated cartilage degradation.
Collapse
Affiliation(s)
- Hathaichanok Chuntakaruk
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Peraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
14
|
Kraal T, Lübbers J, van den Bekerom MPJ, Alessie J, van Kooyk Y, Eygendaal D, Koorevaar RCT. The puzzling pathophysiology of frozen shoulders - a scoping review. J Exp Orthop 2020; 7:91. [PMID: 33205235 PMCID: PMC7672132 DOI: 10.1186/s40634-020-00307-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose The pathophysiology of frozen shoulders is a complex and multifactorial process. The purpose of this review is to scope the currently available knowledge of the pathophysiology of frozen shoulders. Methods A systematic search was conducted in Medline, Embase and the Cochrane library. Original articles published between 1994 and October 2020 with a substantial focus on the pathophysiology of frozen shoulders were included. Results Out of 827 records, 48 original articles were included for the qualitative synthesis of this review. Glenohumeral capsular biopsies were reported in 30 studies. Fifteen studies investigated were classified as association studies. Three studies investigated the pathophysiology in an animal studies. A state of low grade inflammation, as is associated with diabetes, cardiovascular disease and thyroid disorders, predisposes for the development of frozen shoulder. An early immune response with elevated levels of alarmins and binding to the receptor of advance glycation end products is present at the start of the cascade. Inflammatory cytokines, of which transforming growth factor-β1 has a prominent role, together with mechanical stress stimulates Fibroblast proliferation and differentiation into myofibroblasts. This leads to an imbalance of extracellular matrix turnover resulting in a stiff and thickened glenohumeral capsule with abundance of type III collagen. Conclusion This scoping review outlines the complexity of the pathophysiology of frozen shoulder. A comprehensive overview with background information on pathophysiologic mechanisms is given. Leads are provided to progress with research for clinically important prognostic markers and in search for future interventions. Level of evidence Level V.
Collapse
Affiliation(s)
- T Kraal
- Department of Orthopaedic Surgery, Spaarne Gasthuis, Hoofddorp, the Netherlands. .,, Haarlem, The Netherlands.
| | - J Lübbers
- Department of Molecular cell biology and Immunology, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | | | - J Alessie
- Avans University of Applied Science, Breda, The Netherlands
| | - Y van Kooyk
- Department of Molecular cell biology and Immunology, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - D Eygendaal
- Department of Orthopaedic Surgery, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - R C T Koorevaar
- Department of Orthopaedic Surgery, Deventer Hospital, Deventer, the Netherlands
| |
Collapse
|
15
|
Gao F, Zhang S. Loratadine Alleviates Advanced Glycation End Product-Induced Activation of NLRP3 Inflammasome in Human Chondrocytes. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2899-2908. [PMID: 32801633 PMCID: PMC7382759 DOI: 10.2147/dddt.s243512] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/27/2020] [Indexed: 12/27/2022]
Abstract
Background Chondrocytes in joint tissue are responsible for the synthesis and degradation of the cartilage matrix. Chondrocytes have been closely linked to the pathogenesis of osteoarthritis and cartilage damage. Targeted drug intervention directed at chondrocyte function is a promising strategy for the treatment of osteoarthritis. The effects of histamine receptor H1 (H1R) and its antagonist loratadine in osteoarthritic chondrocytes are less known. Materials and Methods The inhibitory effects of loratadine on NLRP3 inflammasome and the NADPH oxidase subunit NOX4 were assessed in advanced glycation end products (AGEs)-treated SW1353 chondrocytes by real-time PCR, ELISA, and Western blot experiments. The mitochondrial ROS level was measured using the specific probe MitoSOX Red. The dependent effect of loratadine on the transcriptional factor nuclear factor erythroid 2-related factor 2 (NRF2) was evaluated through an oligo-based siRNA knockdown approach and Western blot analysis. Results The expression of H1R was dose-responsively induced by AGEs in chondrocytes. Treatment with loratadine mitigated AGEs-induced oxidative stress, as revealed by suppressed production of mitochondrial ROS and the NADPH oxidase subunit NOX4. Loratadine treatment inhibited the expression of TxNIP and several components of the NLRP3 inflammasome complex, including NLRP3, ASC, and cleaved caspase 1 (P10). Moreover, loratadine suppressed the expression of NRF2, and the silencing of NRF2 abolished the suppressive effect of loratadine on NLRP3 inflammasome activation. Conclusion Our study demonstrates that loratadine protects chondrocytes from AGEs-induced TxNIP/NLRP3 inflammasome activation by modulating the expression of the transcriptional factor NRF2. This finding implies that loratadine has therapeutic potential in the treatment of osteoarthritis and cartilage injury.
Collapse
Affiliation(s)
- Feng Gao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun City, Jilin Province 130041, People's Republic of China
| | - Shanyong Zhang
- Department of Spine Surgery, The Second Hospital of Jilin University, Changchun City, Jilin Province 130041, People's Republic of China
| |
Collapse
|
16
|
Xu HC, Wu B, Ma YM, Xu H, Shen ZH, Chen S. Hederacoside-C protects against AGEs-induced ECM degradation in mice chondrocytes. Int Immunopharmacol 2020; 84:106579. [PMID: 32413742 DOI: 10.1016/j.intimp.2020.106579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 11/28/2022]
Abstract
Hederacoside-C (HDC), a natural compound extracted from the leaves of Hedera helix with inflammation modulatory properties in variety of disorders. In this study, we investigated the latent mechanism of HDC in alleviating of the progress of OA in vitro experiment. The results showed that HDC pretreatment suppressed the advanced glycation end-products (AGEs) induced over-regulation of ROS level and inflammatory factors. Moreover, HDC also downregulate the degradation of ECM induced by AGEs. Mechanistically, the HDC suppressed NF-κB signaling pathway in chondrocyte. To sum up, this study indicated HDC possessed a new potential therapeutic option in osteoarthritis.
Collapse
Affiliation(s)
- Hai-Chao Xu
- Department of Orthopaedics, Shaoxing Second Hospital, Shaoxing, China
| | - Bin Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yi-Ming Ma
- Department of Orthopaedics, Shaoxing Second Hospital, Shaoxing, China
| | - Hao Xu
- Department of Orthopaedics, Shaoxing Second Hospital, Shaoxing, China
| | - Zhong-Hai Shen
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Sheng Chen
- Department of Orthopaedics, Shaoxing Second Hospital, Shaoxing, China
| |
Collapse
|
17
|
Xu C, Sheng S, Dou H, Chen J, Zhou K, Lin Y, Yang H. α-Bisabolol suppresses the inflammatory response and ECM catabolism in advanced glycation end products-treated chondrocytes and attenuates murine osteoarthritis. Int Immunopharmacol 2020; 84:106530. [PMID: 32334386 DOI: 10.1016/j.intimp.2020.106530] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022]
Abstract
As a chronic musculoskeletal degeneration disease, osteoarthritis (OA) clinically manifests as joint pain, stiffness and a limited range of movement. OA has affected the life quality of at least one-tenth of the population but lacks satisfactory treatments. α-Bisabolol (BISA) is a small oily sesquiterpene alcohol widely found in essential oils of chamomile (Matricaria recutita), salvia and wood of Candeia and has multiple biological properties, particularly an anti-inflammatory effect. The purpose of this study is to assess the anti-inflammatory and chondroprotective effect of BISA in OA progression and explore its underlying mechanism. We isolated human chondrocytes and treated them with advanced glycation end products (AGEs) to imitate OA progression in vitro. BISA pretreatment suppressed the AGE-induced inflammatory reaction and extracellular matrix (ECM) degeneration by blocking nuclear factor kappa B (NF-κB), p38 and c-Jun N-terminal kinase (JNK) signaling. Moreover, a mouse destabilization of the medial meniscus (DMM) model was established by surgery to investigate BISA protection in vivo. BISA administration attenuated DMM-induced radiological and histopathological changes relative to the DMM group and resulted in lower OARSI scores. Taken together, the results of our study indicate the potential of BISA in OA therapy.
Collapse
Affiliation(s)
- Cong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Sunren Sheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Haicheng Dou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kailiang Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yan Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
18
|
Sebag J. Vitreous and Vision Degrading Myodesopsia. Prog Retin Eye Res 2020; 79:100847. [PMID: 32151758 DOI: 10.1016/j.preteyeres.2020.100847] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022]
Abstract
Macromolecules comprise only 2% of vitreous, yet are responsible for its gel state, transparency, and physiologic function(s) within the eye. Myopia and aging alter collagen and hyaluronan association causing concurrent gel liquefaction and fibrous degeneration. The resulting vitreous opacities and collapse of the vitreous body during posterior vitreous detachment are the most common causes for the visual phenomenon of vitreous floaters. Previously considered innocuous, the vitreous opacities that cause floaters sometimes impact vision by profoundly degrading contrast sensitivity function and impairing quality-of-life. While many people adapt to vitreous floaters, clinically significant cases can be diagnosed with Vision Degrading Myodesopsia based upon echographic assessment of vitreous structure and by measuring contrast sensitivity function. Perhaps due to the ubiquity of floaters, the medical profession has to date largely ignored the plight of those with Vision Degrading Myodesopsia. Improved diagnostics will enable better disease staging and more accurate identification of severe cases that merit therapy. YAG laser treatments may occasionally be slightly effective, but vitrectomy is currently the definitive cure. Future developments will usher in more informative diagnostic approaches as well as safer and more effective therapeutic strategies. Improved laser treatments, new pharmacotherapies, and possibly non-invasive optical corrections are exciting new approaches to pursue. Ultimately, enhanced understanding of the underlying pathogenesis of Vision Degrading Myodesopsia should result in prevention, the ultimate goal of modern Medicine.
Collapse
Affiliation(s)
- J Sebag
- VMR Institute for Vitreous Macula Retina, Huntington Beach, CA, USA; Doheny Eye Institute, Pasadena, CA, USA; Department of Ophthalmology, Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Molecular taxonomy of osteoarthritis for patient stratification, disease management and drug development: biochemical markers associated with emerging clinical phenotypes and molecular endotypes. Curr Opin Rheumatol 2020; 31:80-89. [PMID: 30461544 DOI: 10.1097/bor.0000000000000567] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE OF REVIEW This review focuses on the molecular taxonomy of osteoarthritis from the perspective of molecular biomarkers. We discuss how wet biochemical markers may be used to understand disease pathogenesis and progression and define molecular endotypes of osteoarthritis and how these correspond to clinical phenotypes. RECENT FINDINGS Emerging evidence suggests that osteoarthritis is a heterogeneous and multifaceted disease with multiple causes, molecular endotypes and corresponding clinical phenotypes. Biomarkers may be employed as tools for patient stratification in clinical trials, enhanced disease management in the primary care centres of the future and for directing more rational and targeted osteoarthritis drug development. Proximal molecular biomarkers (e.g synovial fluid) are more likely to distinguish between molecular endotypes because there is less interference from systemic sources of biomarker noise, including comorbidities. SUMMARY In this review, we have focused on the molecular biomarkers of four distinct osteoarthritis subtypes including inflammatory, subchondral bone remodelling, metabolic syndrome and senescent age-related endotypes, which have corresponding phenotypes. Progress in the field of osteoarthritis endotype and phenotype research requires a better understanding of molecular biomarkers that may be used in conjunction with imaging, pain and functional assessments for the design of more effective, stratified and individualized osteoarthritis treatments.
Collapse
|
20
|
Tangredi BP, Lawler DF. Osteoarthritis from evolutionary and mechanistic perspectives. Anat Rec (Hoboken) 2019; 303:2967-2976. [PMID: 31854144 DOI: 10.1002/ar.24339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/15/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022]
Abstract
Developmental osteogenesis and the pathologies associated with tissues that normally are mineralized are active areas of research. All of the basic cell types of skeletal tissue evolved in early aquatic vertebrates. Their characteristics, transcription factors, and signaling pathways have been conserved, even as they adapted to the challenge imposed by gravity in the transition to terrestrial existence. The response to excess mechanical stress (among other factors) can be expressed in the pathologic phenotype described as osteoarthritis (OA). OA is mediated by epigenetic modification of the same conserved developmental gene networks, rather than by gene mutations or new chemical signaling pathways. Thus, these responses have their evolutionary roots in morphogenesis. Epigenetic channeling and heterochrony, orchestrated primarily by microRNAs, maintain the sequence of these responses, while allowing variation in their timing that depends at least partly on the life history of the individual.
Collapse
Affiliation(s)
- Basil P Tangredi
- Vermont Institute of Natural Sciences, Quechee, Vermont
- Sustainable Agriculture Program, Green Mountain College, Poultney, Vermont
| | - Dennis F Lawler
- Center for American Archaeology, Kampsville, Illinois
- Illinois State Museum, Springfield, Illinois
- Pacific Marine Mammal Center, Laguna Beach, California
| |
Collapse
|
21
|
Advanced glycation endproducts produced by in vitro glycation of type I collagen modulate the functional and secretory behavior of dorsal root ganglion cells cultivated in two-dimensional system. Exp Cell Res 2019; 382:111475. [PMID: 31255600 DOI: 10.1016/j.yexcr.2019.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 12/24/2022]
Abstract
Advanced glycation end-products (AGEs) are proteins/lipids that are glycated upon sugar exposure and are often increased during inflammatory diseases such as osteoarthritis and neurodegenerative disorders. Here, we developed an extracellular matrix (ECM) using glycated type I collagen (ECM-GC), which produced similar levels of AGEs to those detected in the sera of arthritic mice. In order to determine whether AGEs were sufficient to stimulate sensory neurons, dorsal root ganglia (DRGs) cells were cultured on ECM-GC or ECM-NC-coated plates. ECM-GC or ECM-NC were favorable for DRG cells expansion. However, ECM-GC cultivated neurons displayed thinner F-actin filaments, rounded morphology, and reduced neuron interconnection compared to ECM-NC. In addition, ECM-GC did not affect RAGE expression levels in the neurons, although induced rapid p38, MAPK and ERK activation. Finally, ECM-GC stimulated the secretion of nitrite and TNF-α by DRG cells. Taken together, our in vitro glycated ECM model suitably mimics the in vivo microenvironment of inflammatory disorders and provides new insights into the role of ECM impairment as a nociceptive stimulus.
Collapse
|
22
|
Trellu S, Courties A, Jaisson S, Gorisse L, Gillery P, Kerdine-Römer S, Vaamonde-Garcia C, Houard X, Ekhirch FP, Sautet A, Friguet B, Jacques C, Berenbaum F, Sellam J. Impairment of glyoxalase-1, an advanced glycation end-product detoxifying enzyme, induced by inflammation in age-related osteoarthritis. Arthritis Res Ther 2019; 21:18. [PMID: 30635030 PMCID: PMC6330409 DOI: 10.1186/s13075-018-1801-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Accumulation of advanced glycation end-products (AGEs) is involved in age-related osteoarthritis (OA). Glyoxalase (Glo)-1 is the main enzyme involved in the removal of AGE precursors, especially carboxymethyl-lysine (CML). We aimed to investigate the expression of several AGEs and Glo-1 in human OA cartilage and to study chondrocytic Glo-1 regulation by inflammation, mediated by interleukin (IL)-1β. METHODS Ex vivo, we quantified AGEs (pentosidine, CML, methylglyoxal-hydroimidazolone-1) in knee cartilage from 30 OA patients. Explants were also incubated with and without IL-1β, and we assessed Glo-1 protein expression and enzymatic activity. In vitro, primary cultured murine chondrocytes were stimulated with increasing concentrations of IL-1β to assess Glo-1 enzymatic activity and expression. To investigate the role of oxidative stress in the IL-1β effect, cells were also treated with inhibitors of mitochondrial oxidative stress or nitric oxide synthase. RESULTS Ex vivo, only the human cartilage CML content was correlated with patient age (r = 0.78, p = 0.0031). No statistically significant correlation was found between Glo-1 protein expression and enzymatic activity in human cartilage and patient age. We observed that cartilage explant stimulation with IL-1β decreased Glo-1 protein expression and enzymatic activity. In vitro, we observed a dose-dependent decrease in Glo-1 mRNA, protein quantity, and enzymatic activity in response to IL-1β in murine chondrocytes. Inhibitors of oxidative stress blunted this downregulation. CONCLUSION Glo-1 is impaired by inflammation mediated by IL-1β in chondrocytes through oxidative stress pathways and may explain age-dependent accumulation of the AGE CML in OA cartilage.
Collapse
Affiliation(s)
- Sabine Trellu
- Sorbonne University, UPMC Univ Paris 06, Paris, France
- INSERM UMRS_938, CRSA, Paris, France
- Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France
- Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, 184 rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Alice Courties
- Sorbonne University, UPMC Univ Paris 06, Paris, France
- INSERM UMRS_938, CRSA, Paris, France
- Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France
- Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, 184 rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Stéphane Jaisson
- UMR MEDyC CNRS/URCA 7369, University of Reims Champagne-Ardenne, Reims, France
| | - Laëtitia Gorisse
- UMR MEDyC CNRS/URCA 7369, University of Reims Champagne-Ardenne, Reims, France
| | - Philippe Gillery
- UMR MEDyC CNRS/URCA 7369, University of Reims Champagne-Ardenne, Reims, France
| | - Saadia Kerdine-Römer
- INSERM UMR 996, Univ Paris-Sud, University Paris-Saclay, Châtenay-Malabry, France
| | - Carlos Vaamonde-Garcia
- Sorbonne University, UPMC Univ Paris 06, Paris, France
- INSERM UMRS_938, CRSA, Paris, France
- Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France
- Department of Physiotherapy, Cell Therapy and Regenerative Medicine Group, Medicine and Biological Science. Faculty of Health Sciences, University of A Coruña, 15006 A Coruña, Spain
| | - Xavier Houard
- Sorbonne University, UPMC Univ Paris 06, Paris, France
- INSERM UMRS_938, CRSA, Paris, France
- Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France
| | | | - Alain Sautet
- Sorbonne University, UPMC Univ Paris 06, Paris, France
- Department of Orthopedic Surgery, AP-HP, Saint-Antoine Hospital, Paris, France
| | - Bertrand Friguet
- Sorbonne University, UPMC Univ Paris 06, Paris, France
- UMR 8256 - IBPS, CNRS UMR 8256, INSERM U1164, F-75005 Paris, France
| | - Claire Jacques
- Sorbonne University, UPMC Univ Paris 06, Paris, France
- INSERM UMRS_938, CRSA, Paris, France
- Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France
| | - Francis Berenbaum
- Sorbonne University, UPMC Univ Paris 06, Paris, France
- INSERM UMRS_938, CRSA, Paris, France
- Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France
- Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, 184 rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Jérémie Sellam
- Sorbonne University, UPMC Univ Paris 06, Paris, France
- INSERM UMRS_938, CRSA, Paris, France
- Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France
- Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, 184 rue du Faubourg Saint-Antoine, 75012 Paris, France
| |
Collapse
|
23
|
Zhai G. Alteration of Metabolic Pathways in Osteoarthritis. Metabolites 2019; 9:E11. [PMID: 30634493 PMCID: PMC6359189 DOI: 10.3390/metabo9010011] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/27/2022] Open
Abstract
Sir Archibald Edward Garrod, who pioneered the field of inborn errors of metabolism and first elucidated the biochemical basis of alkaptonuria over 100 years ago, suggested that inborn errors of metabolism were "merely extreme examples of variations of chemical behavior which are probably everywhere present in minor degrees, just as no two individuals of a species are absolutely identical in bodily structure neither are their chemical processes carried out on exactly the same lines", and that this "chemical individuality [confers] predisposition to and immunities from various mishaps which are spoken of as diseases". Indeed, with advances in analytical biochemistry, especially the development of metabolomics in the post-genomic era, emerging data have been demonstrating that the levels of many metabolites do show substantial interindividual variation, and some of which are likely to be associated with common diseases, such as osteoarthritis (OA). Much work has been reported in the literature on the metabolomics of OA in recent years. In this narrative review, we provided an overview of the identified alteration of metabolic pathways in OA and discussed the role of those identified metabolites and related pathways in OA diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Guangju Zhai
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada.
| |
Collapse
|
24
|
Xue X, Chen Y, Wang Y, Zhan J, Chen B, Wang X, Pan X. Troxerutin suppresses the inflammatory response in advanced glycation end-product-administered chondrocytes and attenuates mouse osteoarthritis development. Food Funct 2019; 10:5059-5069. [PMID: 31359010 DOI: 10.1039/c9fo01089k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As a chronic degenerative joint disease, osteoarthritis (OA) is clinically characterized by a high incidence, long-term pain, and limited joint activity but without effective preventative therapy.
Collapse
Affiliation(s)
- Xinghe Xue
- Department of Orthopaedics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- China
- Zhejiang Provincial Key Laboratory of Orthpaedics
| | - Yunlin Chen
- Department of Orthopaedics
- The Second Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou
- China
| | - Ye Wang
- The Second School of Medicine
- Wenzhou Medical University
- Wenzhou
- China
| | - Jingdi Zhan
- Department of Orthopaedics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- China
- Zhejiang Provincial Key Laboratory of Orthpaedics
| | - Bin Chen
- Department of Orthopaedics
- The Second Affiliated Hospital of Jiaxing University
- Jiaxing
- China
| | - Xiangyang Wang
- Department of Orthopaedics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- China
- Zhejiang Provincial Key Laboratory of Orthpaedics
| | - Xiaoyun Pan
- Department of Orthopaedics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- China
- Zhejiang Provincial Key Laboratory of Orthpaedics
| |
Collapse
|
25
|
Chen JH, Lin X, Bu C, Zhang X. Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies. Nutr Metab (Lond) 2018; 15:72. [PMID: 30337945 PMCID: PMC6180645 DOI: 10.1186/s12986-018-0306-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 09/21/2018] [Indexed: 02/08/2023] Open
Abstract
Advanced glycation end products (AGEs), a group of compounds that are formed by non-enzymatic reactions between carbonyl groups of reducing sugars and free amino groups of proteins, lipids or nucleic acids, can be obtained exogenously from diet or formed endogenously within the body. AGEs accumulate intracellularly and extracellularly in all tissues and body fluids and can cross-link with other proteins and thus affect their normal functions. Furthermore, AGEs can interact with specific cell surface receptors and hence alter cell intracellular signaling, gene expression, the production of reactive oxygen species and the activation of several inflammatory pathways. High levels of AGEs in diet as well as in tissues and the circulation are pathogenic to a wide range of diseases. With respect to mobility, AGEs accumulate in bones, joints and skeletal muscles, playing important roles in the development of osteoporosis, osteoarthritis, and sarcopenia with aging. This report covered the related pathological mechanisms and the potential pharmaceutical and dietary intervention strategies in reducing systemic AGEs. More prospective studies are needed to determine whether elevated serum AGEs and/or skin autofluorescence predict a decline in measures of mobility. In addition, human intervention studies are required to investigate the beneficial effects of exogenous AGEs inhibitors on mobility outcomes.
Collapse
Affiliation(s)
- Jie-Hua Chen
- Science and Technology Centre, By-Health Co. Ltd, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Science City, Luogang District, Guangzhou, 510000 China
| | - Xu Lin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Cuihong Bu
- Science and Technology Centre, By-Health Co. Ltd, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Science City, Luogang District, Guangzhou, 510000 China
| | - Xuguang Zhang
- Science and Technology Centre, By-Health Co. Ltd, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Science City, Luogang District, Guangzhou, 510000 China
| |
Collapse
|
26
|
Effects of Glycation on Mechanical Properties of Articular Cartilage. Arch Rheumatol 2018; 33:241-243. [PMID: 30207567 DOI: 10.5606/archrheumatol.2018.6680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 11/21/2022] Open
|
27
|
Krajewska-Włodarczyk M, Owczarczyk-Saczonek A, Placek W, Osowski A, Wojtkiewicz J. Articular Cartilage Aging-Potential Regenerative Capacities of Cell Manipulation and Stem Cell Therapy. Int J Mol Sci 2018; 19:E623. [PMID: 29470431 PMCID: PMC5855845 DOI: 10.3390/ijms19020623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/11/2018] [Accepted: 02/16/2018] [Indexed: 12/13/2022] Open
Abstract
Changes in articular cartilage during the aging process are a stage of natural changes in the human body. Old age is the major risk factor for osteoarthritis but the disease does not have to be an inevitable consequence of aging. Chondrocytes are particularly prone to developing age-related changes. Changes in articular cartilage that take place in the course of aging include the acquisition of the senescence-associated secretory phenotype by chondrocytes, a decrease in the sensitivity of chondrocytes to growth factors, a destructive effect of chronic production of reactive oxygen species and the accumulation of the glycation end products. All of these factors affect the mechanical properties of articular cartilage. A better understanding of the underlying mechanisms in the process of articular cartilage aging may help to create new therapies aimed at slowing or inhibiting age-related modifications of articular cartilage. This paper presents the causes and consequences of cellular aging of chondrocytes and the biological therapeutic outlook for the regeneration of age-related changes of articular cartilage.
Collapse
Affiliation(s)
- Magdalena Krajewska-Włodarczyk
- Department of Rheumatology, Municipal Hospital in Olsztyn, 10-900 Olsztyn, Poland.
- Department of Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Waldemar Placek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Adam Osowski
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
- Laboratory for Regenerative Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| |
Collapse
|
28
|
Effects of non-enzymatic glycation on the micro- and nano-mechanics of articular cartilage. J Mech Behav Biomed Mater 2018; 77:551-556. [DOI: 10.1016/j.jmbbm.2017.09.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/16/2017] [Accepted: 09/27/2017] [Indexed: 11/18/2022]
|
29
|
Bierma-Zeinstra S, Waarsing J. The role of atherosclerosis in osteoarthritis. Best Pract Res Clin Rheumatol 2017; 31:613-633. [DOI: 10.1016/j.berh.2018.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/16/2018] [Accepted: 07/06/2018] [Indexed: 01/06/2023]
|
30
|
Williams MF, London DA, Husni EM, Navaneethan S, Kashyap SR. Type 2 diabetes and osteoarthritis: a systematic review and meta-analysis. J Diabetes Complications 2016; 30:944-50. [PMID: 27114387 DOI: 10.1016/j.jdiacomp.2016.02.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND Observational studies have reported an association between type 2 diabetes and osteoarthritis (OA) development and progression. However no systematic review of the literature exists assessing whether this association is consistently true. We aimed to systematically review the association between type 2 diabetes and the presence, development, and progression of OA. METHODS We searched MEDLINE, SCOPUS, EMBASE, the Web of Science, and Grey Literature (through August 2014) for prospective cohort, cross-sectional, and case-control studies with confidence intervals (CI) that reported an association between type 2 diabetes and impaired glucose tolerance (IGT) and the development or presence of OA of any joint. RESULTS Ten studies and fourteen ratios were included in the analysis. The pooled population size in our meta-regression was 16,742 patients. Type 2 diabetes was significantly associated with the development or presence of OA (OR; 1·21, 95% CI: 1·02-1·41). In the subset of 7 studies that did control for weight or BMI there was an increased odds of OA associated with type 2 diabetes was (OR: 1·25, 95% CI: 1·05-1·46) from a smaller pool of patients (n=7156). CONCLUSIONS Type 2 diabetes is associated with the development and presence of radiographic and symptomatic OA even when controlling for body mass index and weight.
Collapse
Affiliation(s)
- Mia F Williams
- University of California San Francisco, Internal Medicine Residency, 505 Parnassus Avenue, San Francisco, CA 94143-0119
| | | | - Elaine M Husni
- Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | | | | |
Collapse
|
31
|
Li H, George DM, Jaarsma RL, Mao X. Metabolic syndrome and components exacerbate osteoarthritis symptoms of pain, depression and reduced knee function. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:133. [PMID: 27162783 DOI: 10.21037/atm.2016.03.48] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND The purpose of this study was to investigate the prevalence of metabolic syndrome and its co-morbidities in patients with primary knee osteoarthritis and to assess if the severity of metabolic syndrome, and components, correlates with the severity of osteoarthritis symptoms. METHODS A case controlled analysis of 70 patients with osteoarthritis compared to a control group of 81 patients. Each patient underwent clinical review including history, examination, and pathology tests. The case-group all had stage IV osteoarthritis as determined by radiographs and intra-operative assessment. In addition a visual analogue scale (VAS), Hospital for Special Surgery knee score (HSS), and Hamilton Depression scores were completed. RESULTS The prevalence of hypertension, obesity, dyslipidemia and metabolic syndrome was significantly higher in the patients with osteoarthritis compared to the control group. There is a significant correlation between the degree of hypertension, the presence of dyslipidemia or hyperglycemia and the severity of osteoarthritis symptoms. Variables hypertension, low HDL-C levels, and the number of co-morbidities were all identified as risk factors for increased osteoarthritis symptoms. CONCLUSIONS There is a correlation between the number of metabolic disorders, the severity of hypertension and severity of osteoarthritis symptoms. Hypertension and decreased HDL-cholesterol were positive risk factors for increased osteoarthritis symptomatology.
Collapse
Affiliation(s)
- Hongxing Li
- 1 Department of Orthopaedic Surgery, Central Hospital of Shaoyang, Shaoyang 422000, China ; 2 Department of Orthopaedics, School of Medicine, Flinders University, Adelaide, Australia ; 3 Department of Orthopaedics and Trauma, Flinders Medical Centre, Adelaide, Australia ; 4 Department of Orthopaedic Surgery, 2nd Xiangya Hospital, Changsha 410011, China
| | - Daniel M George
- 1 Department of Orthopaedic Surgery, Central Hospital of Shaoyang, Shaoyang 422000, China ; 2 Department of Orthopaedics, School of Medicine, Flinders University, Adelaide, Australia ; 3 Department of Orthopaedics and Trauma, Flinders Medical Centre, Adelaide, Australia ; 4 Department of Orthopaedic Surgery, 2nd Xiangya Hospital, Changsha 410011, China
| | - Ruurd L Jaarsma
- 1 Department of Orthopaedic Surgery, Central Hospital of Shaoyang, Shaoyang 422000, China ; 2 Department of Orthopaedics, School of Medicine, Flinders University, Adelaide, Australia ; 3 Department of Orthopaedics and Trauma, Flinders Medical Centre, Adelaide, Australia ; 4 Department of Orthopaedic Surgery, 2nd Xiangya Hospital, Changsha 410011, China
| | - Xinzhan Mao
- 1 Department of Orthopaedic Surgery, Central Hospital of Shaoyang, Shaoyang 422000, China ; 2 Department of Orthopaedics, School of Medicine, Flinders University, Adelaide, Australia ; 3 Department of Orthopaedics and Trauma, Flinders Medical Centre, Adelaide, Australia ; 4 Department of Orthopaedic Surgery, 2nd Xiangya Hospital, Changsha 410011, China
| |
Collapse
|
32
|
Mendel OI, Luchihina LV, Mendel W. Aging and osteoarthritis. Chronic nonspecific inflammation as a link between aging and osteoarthritis (a review). ADVANCES IN GERONTOLOGY 2015. [DOI: 10.1134/s2079057015040165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
Hardin JA, Cobelli N, Santambrogio L. Consequences of metabolic and oxidative modifications of cartilage tissue. Nat Rev Rheumatol 2015; 11:521-9. [PMID: 26034834 DOI: 10.1038/nrrheum.2015.70] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A hallmark of chronic metabolic diseases, such as diabetes and metabolic syndrome, and oxidative stress, as occurs in chronic inflammatory and degenerative conditions, is the presence of extensive protein post-translational modifications, including glycation, glycoxidation, carbonylation and nitrosylation. These modifications have been detected on structural cartilage proteins in joints and intervertebral discs, where they are known to affect protein folding, induce protein aggregation and, ultimately, generate microanatomical changes in the proteoglycan-collagen network that surrounds chondrocytes. Many of these modifications have also been shown to promote oxidative cleavage as well as enzymatically-mediated matrix degradation. Overall, a general picture starts to emerge indicating that biochemical changes in proteins constitute an early event that compromises the anatomical organization and viscoelasticity of cartilage, thereby affecting its ability to sustain pressure and, ultimately, impeding its overall bio-performance.
Collapse
Affiliation(s)
- John A Hardin
- Department of Orthopedic Surgery, Montefiore Medical Centre, 1250 Waters Place, New York, NY 10467, USA
| | - Neil Cobelli
- Department of Orthopedic Surgery, Montefiore Medical Centre, 1250 Waters Place, New York, NY 10467, USA
| | - Laura Santambrogio
- Departments of Pathology, Microbiology and Immunology and Orthopedic Surgery, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA
| |
Collapse
|
34
|
Ashraf JM, Haque QS, Tabrez S, Choi I, Ahmad S. Biochemical and immunological parameters as indicators of osteoarthritis subjects: role of OH-collagen in auto-antibodies generation. EXCLI JOURNAL 2015; 14:1057-66. [PMID: 26933405 PMCID: PMC4763472 DOI: 10.17179/excli2014-423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/05/2015] [Indexed: 11/16/2022]
Abstract
Osteoarthritis (OA) is characterized by inflammation of the knee joint, which is caused by accumulation of cytokines and C-reactive protein (CRP) in the extracellular matrix as an early immune response to infection. The articular cartilage destruction is discernible by elevated tumour necrosis factor-α (TNF-α). In this study, blood samples of knee osteoarthritis patients were analyzed for biochemical and physiological parameters based on the lipid profile, uric acid, total leukocyte count (TLC), hemoglobin percentage (Hb%) and absolute lymphocyte count (ALC). Furthermore, immunological parameters including TNF-α , interleukin-6 (IL-6) and CRP were analyzed. The presence of antibodies against hydroxyl radical modified collagen-II (•OH-collagen-II) was also investigated in arthritis patients using direct binding ELISA. The uric acid and lipid profiles changed extensively. Specifically, increased uric acid levels were associated with OA in both genders, as were enhanced immunological parameters. The TNF-α level also increased in both genders suffering from OA. Finally, auto-antibodies against OH-collagen II antigen were found in the sera of arthritis patients. These results indicated that immunological parameters are better predictors or indexes for diagnosis of OA than biochemical parameters.
Collapse
Affiliation(s)
| | - Quazi S Haque
- Department of Biochemistry, Hind Institute of Medical Sciences, Barabanki, U.P., India
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Inho Choi
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Saheem Ahmad
- Department of BioSciences, Integral University, Lucknow, India
| |
Collapse
|
35
|
Variations in Tendon Stiffness Due to Diets with Different Glycotoxins Affect Mechanical Properties in the Muscle-Tendon Unit. Ann Biomed Eng 2012; 41:488-96. [DOI: 10.1007/s10439-012-0674-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/03/2012] [Indexed: 01/22/2023]
|
36
|
Karsdal MA, Nielsen MJ, Sand JM, Henriksen K, Genovese F, Bay-Jensen AC, Smith V, Adamkewicz JI, Christiansen C, Leeming DJ. Extracellular matrix remodeling: the common denominator in connective tissue diseases. Possibilities for evaluation and current understanding of the matrix as more than a passive architecture, but a key player in tissue failure. Assay Drug Dev Technol 2012; 11:70-92. [PMID: 23046407 DOI: 10.1089/adt.2012.474] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Increased attention is paid to the structural components of tissues. These components are mostly collagens and various proteoglycans. Emerging evidence suggests that altered components and noncoded modifications of the matrix may be both initiators and drivers of disease, exemplified by excessive tissue remodeling leading to tissue stiffness, as well as by changes in the signaling potential of both intact matrix and fragments thereof. Although tissue structure until recently was viewed as a simple architecture anchoring cells and proteins, this complex grid may contain essential information enabling the maintenance of the structure and normal functioning of tissue. The aims of this review are to (1) discuss the structural components of the matrix and the relevance of their mutations to the pathology of diseases such as fibrosis and cancer, (2) introduce the possibility that post-translational modifications (PTMs), such as protease cleavage, citrullination, cross-linking, nitrosylation, glycosylation, and isomerization, generated during pathology, may be unique, disease-specific biochemical markers, (3) list and review the range of simple enzyme-linked immunosorbent assays (ELISAs) that have been developed for assessing the extracellular matrix (ECM) and detecting abnormal ECM remodeling, and (4) discuss whether some PTMs are the cause or consequence of disease. New evidence clearly suggests that the ECM at some point in the pathogenesis becomes a driver of disease. These pathological modified ECM proteins may allow insights into complicated pathologies in which the end stage is excessive tissue remodeling, and provide unique and more pathology-specific biochemical markers.
Collapse
|
37
|
Braun M, Hulejová H, Gatterová J, Filková M, Pavelková A, Sléglová O, Kaspříková N, Vencovský J, Pavelka K, Senolt L. Pentosidine, an advanced glycation end-product, may reflect clinical and morphological features of hand osteoarthritis. Open Rheumatol J 2012; 6:64-9. [PMID: 22715350 PMCID: PMC3377906 DOI: 10.2174/1874312901206010064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 04/05/2012] [Accepted: 04/12/2012] [Indexed: 01/01/2023] Open
Abstract
The study investigates pentosidine levels, an advanced glycation end-product, in patients with erosive and non-erosive hand osteoarthritis (HOA) and determine its potential association with clinical findings and imaging-defined joint damage.Pentosidine was measured by HPLC in serum and urine of 53 females with HOA (31 erosive and 22 non-erosive HOA) and normalised to the total serum protein or urinary creatinine, respectively. Pain, joint stiffness and disability were assessed by the Australian/Canadian OA hand index (AUSCAN). The hand radiographs scored according to the Kallman grading scale were assessed to determine a baseline value and reassessed after two years.The levels of urine pentosidine, but not of serum pentosidine, were higher in patients with erosive HOA than in non-erosive HOA (p=0.039). Urinary pentosidine correlated with CRP (r=0.302, p=0.031), ESR (r=0.288, p=0.041) and AUSCAN (r=0.408, p=0.003). Serum pentosidine, but not in urine, significantly correlated with the Kallman radiographic score in erosive HOA at the baseline (r=0.409, p=0.022) and after 2 years (r=0.385, p=0.032). However, when corrected for age and disease duration, only correlation between urine pentosidine and AUSCAN remained significant (r=0.397, p=0.004).Our data suggest that serum and urine pentosidine levels may relate to the distinctive clinical and morphological features of HOA.
Collapse
Affiliation(s)
- Martin Braun
- Institute of Rheumatology, Department of Experimental and Clinical Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Leeming DJ, Bay-Jensen AC, Vassiliadis E, Larsen MR, Henriksen K, Karsdal MA. Post-translational modifications of the extracellular matrix are key events in cancer progression: opportunities for biochemical marker development. Biomarkers 2011; 16:193-205. [PMID: 21506694 DOI: 10.3109/1354750x.2011.557440] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aim of this review is to discuss the potential usefulness of a novel class of biochemical markers, designated neoepitopes. Neoepitopes are post-translational modifications (PTMs) of proteins and are derived by processes, such as protease cleavage, citrullination, nitrosylation, glycosylation and isomerization. Each PTM results from a specific local physiological or pathobiological process. Identification of each modification to a tissue-specific protein may reveal a unique disease-specific biochemical marker. During cancer metastasis, the host tissue is extensively degraded and replaced by cancer-associated extracellular matrix (ECM) proteins. Furthermore, severe cellular stress and inflammation, caused by cancer, results in generation of PTMs, which will be distributed throughout the ECM. This gives rise to release of protein-specific fragments to the circulation. Here we highlight the importance of remodeling of the ECM in cancer and the generation of PTMs, which may be cancer specific and reflect disease progression; thus having potential for biochemical marker development.
Collapse
Affiliation(s)
- D J Leeming
- Nordic Bioscience A/S, Herlev Hovedgade 207, Herlev, Denmark
| | | | | | | | | | | |
Collapse
|
39
|
Huang CY, Lai KY, Hung LF, Wu WL, Liu FC, Ho LJ. Advanced glycation end products cause collagen II reduction by activating Janus kinase/signal transducer and activator of transcription 3 pathway in porcine chondrocytes. Rheumatology (Oxford) 2011; 50:1379-89. [PMID: 21482542 DOI: 10.1093/rheumatology/ker134] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The major risk factor for OA is ageing; however, the mechanisms remain largely unclear. We investigated the effects and mechanisms of advanced glycation end products (AGEs) that accumulate in aged joints in chondrocytes. METHODS Porcine chondrocytes or cartilage fragments were prepared. Gene expression of MMPs and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) was assessed by real-time RT-PCR. Gelatin zymography was used to determine MMP-13 enzyme activity. Histochemistry or immunoblotting analysis was applied to determine the expression of collagen II, proteoglycan and aggrecan. Electrophoretic mobility shift assay and immunoblotting were used to study the activation of signal transducer and activator of transcription 3 (STAT3). Genetic manipulations with short hairpin RNA (shRNA) or dominant negative constructs were applied. RESULTS AGE enhanced expression and enzyme activity of MMP and ADAMTS genes and resulted in reduction of collagen II. Both janus kinase 2 (JAK2) and JAK3 inhibitors suppressed AGE-induced MMP-13, ADAMTS-4 and ADAMTS-5 expression and enzyme activity. Inhibition of JAK2 or JAK3 prevented AGE-mediated decrease of collagen II in chondrocytes and proteoglycan (aggrecan) degradation in cartilage fragments. In addition, interference of STAT3 expression inhibited AGE-induced MMP-13 and ADAMTS enzyme activities and mRNA levels. Furthermore, expression of the dominant negative receptor of AGE (DN-RAGE) blocked AGE-induced STAT3 phosphorylation. CONCLUSION Blocking JAK/STAT3 signalling pathway inhibited AGE-induced activation of MMP-13 and ADAMTS and prevented AGE-mediated decrease of collagen II and proteoglycan (aggrecan). The results indicated that JAK/STAT3 pathway may be a potential target for designing disease-modifying drugs for the treatment of OA.
Collapse
Affiliation(s)
- Chuan-Yueh Huang
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
40
|
Chayanupatkul M, Honsawek S. Soluble receptor for advanced glycation end products (sRAGE) in plasma and synovial fluid is inversely associated with disease severity of knee osteoarthritis. Clin Biochem 2010; 43:1133-7. [PMID: 20627100 DOI: 10.1016/j.clinbiochem.2010.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/19/2010] [Accepted: 07/04/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVES The aim of this study was to measure soluble receptor for advanced glycation end products (sRAGE) in plasma and synovial fluid of knee osteoarthritis (OA) patients and to determine the correlation between sRAGE levels and disease severity. DESIGN AND METHODS Thirty-six OA patients and 15 healthy controls were enrolled in this study. OA grading was performed using the Kellgren-Lawrence classification. sRAGE levels in plasma and synovial fluid were analyzed by enzyme-linked immunosorbent assay. RESULTS Plasma sRAGE levels were significantly lower in OA patients than in healthy controls (P=0.01). sRAGE levels in plasma were remarkably higher with regard to paired synovial fluid (P=0.001). Additionally, sRAGE concentrations in plasma and synovial fluid showed significant inverse correlation with disease severity (r=-0.65, P<0.001 and r=-0.55, P=0.001, respectively). Further analysis showed that there was a strong positive correlation between plasma and synovial sRAGE concentration (r=0.81, P<0.001). CONCLUSIONS sRAGE levels were significantly lower in OA patients compared with controls, and sRAGE levels in plasma and synovial fluid also decreased significantly as the disease severity increased. Accordingly, sRAGE levels could be used as a biochemical marker for assessing the severity and progression of knee OA.
Collapse
Affiliation(s)
- Maneerat Chayanupatkul
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | |
Collapse
|
41
|
Karsdal MA, Henriksen K, Leeming DJ, Woodworth T, Vassiliadis E, Bay-Jensen AC. Novel combinations of Post-Translational Modification (PTM) neo-epitopes provide tissue-specific biochemical markers—are they the cause or the consequence of the disease? Clin Biochem 2010; 43:793-804. [DOI: 10.1016/j.clinbiochem.2010.03.015] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/22/2010] [Accepted: 03/28/2010] [Indexed: 12/31/2022]
|
42
|
Quintero DG, Winger JN, Khashaba R, Borke JL. Advanced glycation endproducts and rat dental implant osseointegration. J ORAL IMPLANTOL 2010; 36:97-103. [PMID: 20426586 DOI: 10.1563/aaid-joi-d-09-00032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Advanced glycation endproducts (AGEs) are a diverse group of molecular adducts formed in environments high in reducing sugars that accumulate with aging and in diabetes. This study tests the hypothesis that AGEs inhibit the stabile osseointegration of dental implants through tissue interactions that interfere with bone turnover and compromise the biomechanical properties at the bone-implant interface. Maxillary first molars were extracted from 32 rats and allowed to heal for 4 weeks. Titanium implants (1 mm x 3 mm) were placed in the healed sockets of 2 groups of 16 rats consisting of 8 rats injected 3 times/wk for 1 month with AGE (prepared from glucose and lysine) and 8 rats injected with vehicle as a control. AGE injections continued for an additional 14 or 28 days before sacrifice. X-ray images, blood, and tissues were collected to examine bone/implant contact ratio, serum pyridinoline ([PYD] a collagen breakdown marker), osteocalcin ([OSC] a bone formation marker), and for immunohistochemistry with antibodies to AGE and the bone turnover-marker protein matrix metalloproteinase1. Compared with the AGE-treated groups, the controls showed significantly higher bone/implant contact at both 14- and 28-day time points. PYD (P < .05) and OSC (trend) levels from controls showed decreases at 28 days when compared with AGE-treated groups. Immunohistochemistry with AGE-specific and bone turnover marker antibodies showed stronger staining associated with the implant/tissue interface in AGE-treated rats. Our studies indicate an association between AGE and inhibition of bone turnover, suggesting that the formation of AGE in high glycemic conditions, such as diabetes, may contribute to a slower rate of osseointegration that negatively affects implant stability.
Collapse
Affiliation(s)
- David G Quintero
- Department of Oral Biology, Medical College of Georgia, Augusta, GA, USA
| | | | | | | |
Collapse
|
43
|
Matsumoto T, Tsurumoto T, Baba H, Osaki M, Enomoto H, Yonekura A, Shindo H, Miyata T. Measurement of advanced glycation endproducts in skin of patients with rheumatoid arthritis, osteoarthritis, and dialysis-related spondyloarthropathy using non-invasive methods. Rheumatol Int 2007; 28:157-60. [PMID: 17653550 DOI: 10.1007/s00296-007-0408-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 06/19/2007] [Indexed: 10/23/2022]
Abstract
Advanced glycation endproducts (AGEs) are the products of non-enzymatic glycation and oxidation of proteins and lipids. Low-turnover tissues such as articular cartilage seem to be susceptible to the accumulation of AGEs, which might lead to cartilage degradation. Recently, a non-invasive method for measuring skin AGE accumulation was developed by using the Autofluorescence Reader (AFR). To examine the usefulness of measuring skin AGE in patients with bone and joint diseases, we examined autofluorescence (AF) levels in skin of patients with osteoarthritis (OA), rheumatoid arthritis (RA), and dialysis-related spondyloarthropathy (DRSA). Ninety-three patients with RA, 24 patients with OA, and 29 patients with DRSA were examined, and 43 healthy volunteers were used as controls. Skin AF was assessed on the lower arm with the AGE-Reader. Mean AF was significantly higher in the patients with RA (median 2.13 and range 1.25-2.94) or with DRSA (median 2.21 and range 1.29-3.88) than in the patients with OA (median 1.63 and range 1.07-2.31) or in the controls (median 1.74 and range 1.10-2.46). There was no significant difference between OA and the controls, or between RA and DRSA. These findings suggest that differences of AGE accumulation in the skin might reflect the different pathologies of these diseases.
Collapse
Affiliation(s)
- Tomoko Matsumoto
- Department of Orthopaedic Surgery, Nagasaki University School of Medicine, Nagasaki city, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Alikhani M, Alikhani Z, Boyd C, MacLellan CM, Raptis M, Liu R, Pischon N, Trackman PC, Gerstenfeld L, Graves DT. Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways. Bone 2007; 40:345-53. [PMID: 17064973 PMCID: PMC1913208 DOI: 10.1016/j.bone.2006.09.011] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 07/21/2006] [Accepted: 09/05/2006] [Indexed: 12/27/2022]
Abstract
We have previously shown that diabetes significantly enhances apoptosis of osteoblastic cells in vivo and that the enhanced apoptosis contributes to diabetes impaired new bone formation. A potential mechanism is enhanced apoptosis stimulated by advanced glycation end products (AGEs). To investigate this further, an advanced glycation product, carboxymethyl lysine modified collagen (CML-collagen), was injected in vivo and stimulated a 5-fold increase in calvarial periosteal cell apoptosis compared to unmodified collagen. It also induced apoptosis in primary cultures of human or neonatal rat osteoblastic cells or MC3T3-E1 cells in vitro. Moreover, the apoptotic effect was largely mediated through RAGE receptor. CML-collagen increased p38 and JNK activity 3.2- and 4.4-fold, respectively. Inhibition of p38 and JNK reduced CML-collagen stimulated apoptosis by 45% and 59% and by 90% when used together (P<0.05). The predominant apoptotic pathway induced by CML-collagen involved caspase-8 activation of caspase-3 and was independent of NF-kappaB activation. When osteoblastic cells were exposed to a long-term low dose incubation with CML-collagen, there was a higher degree of apoptosis compared to short-term incubation. In more differentiated osteoblastic cultures, apoptosis was enhanced even further. These results indicate that advanced glycation end products, which accumulate in diabetic and aged individuals, may promote apoptosis of osteoblastic cells and contribute to deficient bone formation.
Collapse
Affiliation(s)
- Mani Alikhani
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, Massachusetts 02118
| | - Zoubin Alikhani
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, Massachusetts 02118
| | - Coy Boyd
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, Massachusetts 02118
| | - Christine M. MacLellan
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, Massachusetts 02118
| | - Markos Raptis
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, Massachusetts 02118
| | - Rongkun Liu
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, Massachusetts 02118
| | - Nicole Pischon
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, Massachusetts 02118
| | - Philip C. Trackman
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, Massachusetts 02118
| | - Louis Gerstenfeld
- Department of Orthopedics, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Dana T. Graves
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, Massachusetts 02118
| |
Collapse
|
45
|
Yokosuka K, Park JS, Jimbo K, Yamada K, Sato K, Tsuru M, Takeuchi M, Yamagishi SI, Nagata K. Advanced glycation end-products downregulating intervertebral disc cell production of proteoglycans in vitro. J Neurosurg Spine 2006; 5:324-9. [PMID: 17048769 DOI: 10.3171/spi.2006.5.4.324] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Object
The authors sought to clarify the role, if any, of advanced glycation end-products (AGEs) in disc degeneration.
Methods
Intervertebral discs were analyzed for the presence of AGEs and of their receptor (RAGE) by immunohistochemical analysis. Reverse transcriptase polymerase chain reaction (RT-PCR) was performed to detect any RAGE gene expression, and real-time PCR was used to quantify messenger RNA (mRNA) levels of aggrecan and collagen types I and II in nucleus pulposus cells treated with AGEs. Aggrecan protein concentration was determined by enzyme-linked immunosorbent assay.
Immunohistochemical analysis revealed that AGEs and RAGE were localized in the nucleus pulposus of the intervertebral disc. Advanced glycation end-products were found to significantly suppress the expression of aggrecan at both mRNA and protein levels in a dose- and time-dependent manner. The levels of collagen types I and II remained unchanged after treatments with AGEs.
Conclusions
These results suggest that the accumulation of AGEs and their interaction with their receptor in the nucleus pulposus might result in the downregulation of aggrecan production responsible for disc degeneration.
Collapse
Affiliation(s)
- Kimiaki Yokosuka
- Department of Orthopedic Surgery and Internal Medicine III, Kurume University School of Medicine, Kurume, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Alikhani M, Maclellan CM, Raptis M, Vora S, Trackman PC, Graves DT. Advanced glycation end products induce apoptosis in fibroblasts through activation of ROS, MAP kinases, and the FOXO1 transcription factor. Am J Physiol Cell Physiol 2006; 292:C850-6. [PMID: 17005604 DOI: 10.1152/ajpcell.00356.2006] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Advanced glycation end products (AGEs) are elevated in aged and diabetic individuals and are associated with pathological changes associated with both. Previously we demonstrated that the AGE N(epsilon)-(carboxymethyl)lysine (CML)-collagen induced fibroblast apoptosis through the cytoplasmic and mitochondrial pathways and the global induction of proapoptotic genes. In the present study we investigated upstream mechanisms of CML-collagen-induced apoptosis. CML-collagen induced activation of the proapoptotic transcription factor FOXO1 compared with unmodified collagen. When FOXO1 was silenced, CML-collagen-stimulated apoptosis was reduced by approximately 75% compared with fibroblasts incubated with nonsilencing small interfering RNA, demonstrating the functional significance of FOXO1 activation (P < 0.05). CML-collagen but not control collagen also induced a 3.3-fold increase in p38 and a 5.6-fold increase in JNK(1/2) activity (P < 0.05). With the use of specific inhibitors, activation of p38 and JNK was shown to play an important role in CML-collagen-induced activation of FOXO1 and caspase-3. Moreover, inhibition of p38 and JNK reduced CML-collagen-stimulated apoptosis by 48 and 57%, respectively, and by 89% when used together (P < 0.05). In contrast, inhibition of the phosphatidylinositol 3-kinase/Akt pathway enhanced FOXO1 activation. p38 and JNK stimulation by CML-collagen was almost entirely blocked when formation of ROS was inhibited and was partially reduced by NO and ceramide inhibitors. These inhibitors also reduced apoptosis to a similar extent. Together these data support a model in which AGE-induced apoptosis involves the formation of ROS, NO, and ceramide and leads to p38 and JNK MAP kinase activation, which in turn induces FOXO1 and caspase-3.
Collapse
Affiliation(s)
- Mani Alikhani
- Dept. of Periodontology and Oral Biology, Boston Univ. School of Dental Medicine, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
The effects of exercise on articular hyaline articular cartilage have traditionally been examined in animal models, but until recently little information has been available on human cartilage. Magnetic resonance imaging now permits cartilage morphology and composition to be analysed quantitatively in vivo. This review briefly describes the methodological background of quantitative cartilage imaging and summarizes work on short-term (deformational behaviour) and long-term (functional adaptation) effects of exercise on human articular cartilage. Current findings suggest that human cartilage deforms very little in vivo during physiological activities and recovers from deformation within 90 min after loading. Whereas cartilage deformation appears to become less with increasing age, sex and physical training status do not seem to affect in vivo deformational behaviour. There is now good evidence that cartilage undergoes some type of atrophy (thinning) under reduced loading conditions, such as with postoperative immobilization and paraplegia. However, increased loading (as encountered by elite athletes) does not appear to be associated with increased average cartilage thickness. Findings in twins, however, suggest a strong genetic contribution to cartilage morphology. Potential reasons for the inability of cartilage to adapt to mechanical stimuli include a lack of evolutionary pressure and a decoupling of mechanical competence and tissue mass.
Collapse
Affiliation(s)
- F Eckstein
- Institute of Anatomy & Musculoskeletal Research, Paracelsus Private Medical University (PMU), Salzburg, Austria.
| | | | | |
Collapse
|
48
|
Webster J, Wilke M, Stahl P, Kientsch-Engel R, Münch G. [Maillard reaction products in food as pro-inflammatory and pro-arteriosclerotic factors of degenerative diseases]. Z Gerontol Geriatr 2006; 38:347-53. [PMID: 16244820 DOI: 10.1007/s00391-005-0263-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 09/03/2004] [Indexed: 12/30/2022]
Abstract
Heating of food induces the formation of Maillard reaction products (MRPs) caused by the reaction of reducing sugars with proteins or amino acids. Analogous reactions occur in the human body, eventually forming "Advanced Glycation Endproducts" (AGEs). AGEs accumulate in aging tissues accelerating degenerative-inflammatory and proliferative processes. MRPs present in food can also directly cause inflammatory processes in the intestines and, once absorbed, would support and reinforce any inflammatory and degenerative process occurring in the body. The contribution of AGEs (and additional MRPs) in the development of diabetic complications as well as nephropathy, neuropathy, micro- and macroangiopathies is now well established. Which of the MRPs or AGEs in particular induce these cellular processes is currently unknown. Thus the exact knowledge of the chemical structures of the MRPs could help to minimize the formation of "harmful MRPs" that occur due to heating in food processing. Because MRPs play a decisive role in the successful marketing of edibles due to their characteristics as flavor components, it is important to increase the amount of innocuous and palatable MRPs, and minimize signal active pro-inflammatory MRPs by the use of defined preparation methods. It is practicable to use low-priced immunological methods for the quantitative determination of specific MRPs or AGEs. In the medical area, the knowledge of the signal active MRP/AGE structures provides the opportunity to measure their concentrations in body fluids and tissues and thus determine their influence on inflammatory and age-related degenerative processes (e. g., late diabetic complications, arteriosclerosis, degeneration of neurons). From a clinical perspective, the application of RAGE antagonists after an appropriate chemical diagnosis could be effective in supporting the treatment of affected patient groups, especially older diabetic and dialysis patients.
Collapse
Affiliation(s)
- J Webster
- Comparative Genomics Center , James Cook University, Townsville, Australia
| | | | | | | | | |
Collapse
|
49
|
von Delwig A, Altmann DM, Isaacs JD, Harding CV, Holmdahl R, McKie N, Robinson JH. The impact of glycosylation on HLA-DR1-restricted T cell recognition of type II collagen in a mouse model. ACTA ACUST UNITED AC 2006; 54:482-91. [PMID: 16447222 DOI: 10.1002/art.21565] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Type II collagen (CII) is a candidate autoantigen implicated in the pathogenesis of rheumatoid arthritis (RA). Posttranslational glycosylation of CII could alter intracellular antigen processing, leading to the development of autoimmune T cell responses. To address this possibility, we studied the intracellular processing of CII for presentation of the arthritogenic glycosylated epitope CII(259-273) to CD4 T cells in macrophages from HLA-DR1-transgenic mice. METHODS HLA-DR1-transgenic mice were generated on a class II major histocompatibility complex-deficient background, and T cell hybridomas specific for the glycosylated and nonglycosylated epitope CII(259-273) were developed. Subcellular fractionation of macrophages was used to localize CII degradation to particular compartments and to identify the catalytic subtype of proteinases involved. RESULTS We showed that the glycosylated CII(259-273) epitope required more extensive processing than did the nonglycosylated form of the same epitope. Dense fractions containing lysosomes were primarily engaged in the processing of CII for antigen presentation, since these compartments contained 1) enzyme activity that generated antigenic CII fragments bearing the arthritogenic glycosylated epitope, 2) the antigenic CII fragments themselves, 3) CII peptide-receptive HLA-DR1 molecules, and 4) peptide/HLA-DR1 complexes that could directly activate T cell hybridomas. Degradation of CII by dense fractions occurred optimally at pH 4.5 and was abrogated by inhibitors of serine and cysteine proteinases. CONCLUSION Processing of the arthritogenic glycosylated CII(259-273) epitope, which is implicated in the induction of autoimmune arthritis, is more stringently regulated than is processing of the nonglycosylated form of the same epitope. Mechanisms of intracellular processing of the glycosylated epitope may constitute novel therapeutic targets for the treatment of RA.
Collapse
Affiliation(s)
- Alexei von Delwig
- Musculoskeletal Research Group, University of Newcastle upon Tyne, Newcastle upon Tyne, UK.
| | | | | | | | | | | | | |
Collapse
|
50
|
Kume S, Kato S, Yamagishi SI, Inagaki Y, Ueda S, Arima N, Okawa T, Kojiro M, Nagata K. Advanced glycation end-products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue, cartilage, and bone. J Bone Miner Res 2005; 20:1647-58. [PMID: 16059636 DOI: 10.1359/jbmr.050514] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 05/11/2005] [Accepted: 05/20/2005] [Indexed: 01/03/2023]
Abstract
UNLABELLED The impact of AGEs on human MSCs was studied. AGEs inhibited the proliferation of MSCs, induced apoptosis, and prevented cognate differentiation into adipose tissue, cartilage, and bone, suggesting a deleterious effect of AGEs in the pathogenesis of musculoskeletal disorders in aged and diabetic patients. INTRODUCTION Advanced glycation end-products (AGEs) are accumulated on long-lived proteins of various tissues in advanced age and diabetes mellitus and have been implicated in chronic complication, including musculoskeletal disorders. Human mesenchymal stem cells (MSCs) potentially differentiate into mature musculoskeletal tissues during tissue repair, but the pathogenetic role of AGEs on MSCs is unclear. MATERIALS AND METHODS AGEs were prepared by incubating BSA with glucose, glyceraldehydes, or glycolaldehyde (designated as AGE-1, AGE-2, or AGE-3, respectively). Proliferation, apoptosis, and reactive oxygen species (ROS) generation were assayed in AGE-treated cells. The expression of the receptor for AGE (RAGE) was examined by immunohistochemistry and Western blotting. Involvement of RAGE-mediated signaling was examined using a neutralizing antiserum against RAGE. Differentiation into adipose tissue, cartilage, and bone were morphologically and biochemically monitored with specific markers for each. RESULTS AGE-2 and AGE-3, but not control nonglycated BSA and AGE-1, reduced the viable cell number and 5-bromo-2'deoxyuridine (BrdU) incorporation with increased intracellular ROS generation and the percentage of apoptotic cells. MSCs expressed RAGE and its induction was stimulated by AGE-2 and AGE-3. These AGEs inhibited adipogenic differentiation (assayed by oil red O staining, lipoprotein lipase production, and intracellular triglyceride content) and chondrogenic differentiation (assayed by safranin O staining and type II collagen production). On osteogenic differentiation, AGE-2 and AGE-3 increased alkaline phosphatase activity and intracellular calcium content; however, von Kossa staining revealed the loss of mineralization and mature bone nodule formation. The antiserum against RAGE partially prevented AGE-induced cellular events. CONCLUSION AGE-2 and AGE-3 may lead to the in vivo loss of MSC mass and the delay of tissue repair by inhibiting the maturation of MSC-derived cells. The AGE-RAGE interaction may be involved in the deleterious effect of AGEs on MSCs.
Collapse
Affiliation(s)
- Shinichiro Kume
- Department of Orthopaedic Surgery, Kurume University School of Medicine, Kurume, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|