1
|
Patel KD, Keskin-Erdogan Z, Sawadkar P, Nik Sharifulden NSA, Shannon MR, Patel M, Silva LB, Patel R, Chau DYS, Knowles JC, Perriman AW, Kim HW. Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine. NANOSCALE HORIZONS 2024; 9:1630-1682. [PMID: 39018043 DOI: 10.1039/d4nh00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Many pathological conditions are predominantly associated with oxidative stress, arising from reactive oxygen species (ROS); therefore, the modulation of redox activities has been a key strategy to restore normal tissue functions. Current approaches involve establishing a favorable cellular redox environment through the administration of therapeutic drugs and redox-active nanomaterials (RANs). In particular, RANs not only provide a stable and reliable means of therapeutic delivery but also possess the capacity to finely tune various interconnected components, including radicals, enzymes, proteins, transcription factors, and metabolites. Here, we discuss the roles that engineered RANs play in a spectrum of pathological conditions, such as cancer, neurodegenerative diseases, infections, and inflammation. We visualize the dual functions of RANs as both generator and scavenger of ROS, emphasizing their profound impact on diverse cellular functions. The focus of this review is solely on inorganic redox-active nanomaterials (inorganic RANs). Additionally, we deliberate on the challenges associated with current RANs-based approaches and propose potential research directions for their future clinical translation.
Collapse
Affiliation(s)
- Kapil D Patel
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Zalike Keskin-Erdogan
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
- Department of Chemical Engineering, Imperial College London, Exhibition Rd, South Kensington, SW7 2BX, London, UK
| | - Prasad Sawadkar
- Division of Surgery and Interventional Science, UCL, London, UK
- The Griffin Institute, Northwick Park Institute for Medical Research, Northwick Park and St Mark's Hospitals, London, HA1 3UJ, UK
| | - Nik Syahirah Aliaa Nik Sharifulden
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Mark Robert Shannon
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Women University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Lady Barrios Silva
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Rajkumar Patel
- Energy & Environment Sciences and Engineering (EESE), Integrated Sciences and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdongwahak-ro, Yeonsungu, Incheon 21938, Republic of Korea
| | - David Y S Chau
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Adam W Perriman
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
2
|
Sozarukova MM, Kozlova TO, Beshkareva TS, Popov AL, Kolmanovich DD, Vinnik DA, Ivanova OS, Lukashin AV, Baranchikov AE, Ivanov VK. Gadolinium Doping Modulates the Enzyme-like Activity and Radical-Scavenging Properties of CeO 2 Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:769. [PMID: 38727363 PMCID: PMC11085435 DOI: 10.3390/nano14090769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024]
Abstract
Their unique physicochemical properties and multi-enzymatic activity make CeO2 nanoparticles (CeO2 NPs) the most promising active component of the next generation of theranostic drugs. When doped with gadolinium ions, CeO2 NPs constitute a new type of contrast agent for magnetic resonance imaging, possessing improved biocatalytic properties and a high level of biocompatibility. The present study is focused on an in-depth analysis of the enzyme-like properties of gadolinium-doped CeO2 NPs (CeO2:Gd NPs) and their antioxidant activity against superoxide anion radicals, hydrogen peroxide, and alkylperoxyl radicals. Using an anion-exchange method, CeO2:Gd NPs (~5 nm) with various Gd-doping levels (10 mol.% or 20 mol.%) were synthesized. The radical-scavenging properties and biomimetic activities (namely SOD- and peroxidase-like activities) of CeO2:Gd NPs were assessed using a chemiluminescent method with selective chemical probes: luminol, lucigenin, and L-012 (a highly sensitive luminol analogue). In particular, gadolinium doping has been shown to enhance the radical-scavenging properties of CeO2 NPs. Unexpectedly, both bare CeO2 NPs and CeO2:Gd NPs did not exhibit SOD-like activity, acting as pro-oxidants and contributing to the generation of reactive oxygen species. Gadolinium doping caused an increase in the pro-oxidant properties of nanoscale CeO2. At the same time, CeO2:Gd NPs did not significantly inhibit the intrinsic activity of the natural enzyme superoxide dismutase, and CeO2:Gd NPs conjugated with SOD demonstrated SOD-like activity. In contrast to SOD-like properties, peroxidase-like activity was observed for both bare CeO2 NPs and CeO2:Gd NPs. This type of enzyme-like activity was found to be pH-dependent. In a neutral medium (pH = 7.4), nanoscale CeO2 acted as a prooxidant enzyme (peroxidase), while in an alkaline medium (pH = 8.6), it lost its catalytic properties; thus, it cannot be regarded as a nanozyme. Both gadolinium doping and conjugation with a natural enzyme were shown to modulate the interaction of CeO2 NPs with the key components of redox homeostasis.
Collapse
Affiliation(s)
- Madina M. Sozarukova
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Taisiya O. Kozlova
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana S. Beshkareva
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
- Materials Science Department, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Anton L. Popov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Danil D. Kolmanovich
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Darya A. Vinnik
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Olga S. Ivanova
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Alexey V. Lukashin
- Materials Science Department, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexander E. Baranchikov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
3
|
Mao Y, Ren J, Yang L. Advances of nanomedicine in treatment of atherosclerosis and thrombosis. ENVIRONMENTAL RESEARCH 2023; 238:116637. [PMID: 37482129 DOI: 10.1016/j.envres.2023.116637] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/17/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease. Myocardial ischemia originated from AS is the main cause of cardiovascular diseases, one of the major factors contributing to the global disease burden. AS is typically quiescent until occurrence of plaque rupture and thrombosis, leading to acute coronary syndrome and sudden death. Currently, clinical diagnostic techniques suffer from major pitfalls including lack of accuracy and specificity, which makes it rather difficult for drugs to directly target plaques to achieve therapeutic effect. Therefore, how to accurately diagnose and effectively intervene vulnerable AS plaques to achieve accurate delivery of drugs has become an urgent and evolving clinical problem. With the rapid development of nanomedicine and nanomaterials, nanotechnology has shown unique advantages in monitoring vulnerable plaques and thrombus and improving drug efficacy. Recent studies have shown that application of nanoparticle drug delivery system can booster the safety and effectiveness of drug therapy, and molecular imaging technology and nanomedicine also exhibit high clinical application potentials in disease diagnosis. Therefore, nanotechnology provides another promising avenue for diagnosis and treatment of AS and thrombosis, and has shown excellent performance in the development of targeted drug therapy and biomaterials. In this review, the research progress, challenges and prospects of nanotechnology in AS and thrombosis are discussed, expecting to provide new ideas for the prevention, diagnosis and treatment of AS and thrombosis.
Collapse
Affiliation(s)
- Yu Mao
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Lifang Yang
- Department of Anesthesiology, Xi'an Children Hospital, Xi'an, China.
| |
Collapse
|
4
|
Grosjean N, Le Jean M, Ory J, Blaudez D. Yeast Deletomics to Uncover Gadolinium Toxicity Targets and Resistance Mechanisms. Microorganisms 2023; 11:2113. [PMID: 37630673 PMCID: PMC10459663 DOI: 10.3390/microorganisms11082113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Among the rare earth elements (REEs), a crucial group of metals for high-technologies. Gadolinium (Gd) is the only REE intentionally injected to human patients. The use of Gd-based contrasting agents for magnetic resonance imaging (MRI) is the primary route for Gd direct exposure and accumulation in humans. Consequently, aquatic environments are increasingly exposed to Gd due to its excretion through the urinary tract of patients following an MRI examination. The increasing number of reports mentioning Gd toxicity, notably originating from medical applications of Gd, necessitates an improved risk-benefit assessment of Gd utilizations. To go beyond toxicological studies, unravelling the mechanistic impact of Gd on humans and the ecosystem requires the use of genome-wide approaches. We used functional deletomics, a robust method relying on the screening of a knock-out mutant library of Saccharomyces cerevisiae exposed to toxic concentrations of Gd. The analysis of Gd-resistant and -sensitive mutants highlighted the cell wall, endosomes and the vacuolar compartment as cellular hotspots involved in the Gd response. Furthermore, we identified endocytosis and vesicular trafficking pathways (ESCRT) as well as sphingolipids homeostasis as playing pivotal roles mediating Gd toxicity. Finally, tens of yeast genes with human orthologs linked to renal dysfunction were identified as Gd-responsive. Therefore, the molecular and cellular pathways involved in Gd toxicity and detoxification uncovered in this study underline the pleotropic consequences of the increasing exposure to this strategic metal.
Collapse
Affiliation(s)
- Nicolas Grosjean
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;
| | - Marie Le Jean
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France;
| | - Jordan Ory
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France;
| | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France;
| |
Collapse
|
5
|
Mansour J, Coleman C, Mendoza F, Lammi M, Saketkoo LA. Nephrogenic systemic fibrosis-related pulmonary restriction: An under-appreciated manifestation potentially reversible with imatinib therapy. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2022; 7:NP7-NP11. [PMID: 36211205 PMCID: PMC9537706 DOI: 10.1177/23971983221088213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/15/2022] [Indexed: 10/03/2023]
Abstract
Nephrogenic systemic fibrosis typically occurs in patients with renal failure and is strongly associated with gadolinium exposure through stimulation of macrophage-activated fibrosis. Patients present with prominent fibrosis of the skin and internal organs. Quality of life is significantly diminished due to impairment from restrictive mobility of large and small joint contractures, pain, and ensuing psychological stress. Nephrogenic systemic fibrosis can be severe and life-threatening. Nephrogenic systemic fibrosis patients reliant on hemodialysis with cutaneous symptoms, defined as hyperpigmentation, hardening, and tethering of skin on the extremities, experience rates of mortality as high as 48%. Physician awareness and preventive strategies coincided with a reduction in the incidence of nephrogenic systemic fibrosis. Several treatments, of which physical therapy may be a key adjuvant, have been used to treat nephrogenic systemic fibrosis, with variable and inconsistent results, lacking wide consensus. Improvement of renal function may improve nephrogenic systemic fibrosis, with some patients demonstrating stabilization or improvement after renal transplantation or resolution of acute renal failure. Imatinib, a tyrosine kinase inhibitor, demonstrates antifibrotic effects in the skin and recently was used to successfully treat nephrogenic systemic fibrosis. We report a case of severe nephrogenic systemic fibrosis with extensive skin fibrosis causing extrapulmonary restriction who demonstrated improved lung function following treatment with imatinib.
Collapse
Affiliation(s)
- Jennifer Mansour
- Undergraduate Honors Department, Tulane
University School of Medicine, New Orleans, LA, USA
- New Orleans Scleroderma and Sarcoidosis
Patient Care and Research Center, New Orleans, LA, USA
| | - Cheralyn Coleman
- New Orleans Scleroderma and Sarcoidosis
Patient Care and Research Center, New Orleans, LA, USA
| | - Fabian Mendoza
- Rheumatology Division, Department of
Medicine, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson Institute of Molecular Medicine and
Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew Lammi
- New Orleans Scleroderma and Sarcoidosis
Patient Care and Research Center, New Orleans, LA, USA
- Comprehensive Pulmonary Hypertension Center
and Interstitial Lung Disease Clinic Programs, University Medical Center, New Orleans, LA,
USA
- Section of Pulmonary Medicine, Louisiana
State University School of Medicine, New Orleans, LA, USA
| | - Lesley Ann Saketkoo
- Undergraduate Honors Department, Tulane
University School of Medicine, New Orleans, LA, USA
- New Orleans Scleroderma and Sarcoidosis
Patient Care and Research Center, New Orleans, LA, USA
- Comprehensive Pulmonary Hypertension Center
and Interstitial Lung Disease Clinic Programs, University Medical Center, New Orleans, LA,
USA
- Section of Pulmonary Medicine, Louisiana
State University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
6
|
He H, Zhang X, Du L, Ye M, Lu Y, Xue J, Wu J, Shuai X. Molecular imaging nanoprobes for theranostic applications. Adv Drug Deliv Rev 2022; 186:114320. [PMID: 35526664 DOI: 10.1016/j.addr.2022.114320] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/11/2022] [Accepted: 04/30/2022] [Indexed: 12/13/2022]
Abstract
As a non-invasive imaging monitoring method, molecular imaging can provide the location and expression level of disease signature biomolecules in vivo, leading to early diagnosis of relevant diseases, improved treatment strategies, and accurate assessment of treating efficacy. In recent years, a variety of nanosized imaging probes have been developed and intensively investigated in fundamental/translational research and clinical practice. Meanwhile, as an interdisciplinary discipline, this field combines many subjects of chemistry, medicine, biology, radiology, and material science, etc. The successful molecular imaging not only requires advanced imaging equipment, but also the synthesis of efficient imaging probes. However, limited summary has been reported for recent advances of nanoprobes. In this paper, we summarized the recent progress of three common and main types of nanosized molecular imaging probes, including ultrasound (US) imaging nanoprobes, magnetic resonance imaging (MRI) nanoprobes, and computed tomography (CT) imaging nanoprobes. The applications of molecular imaging nanoprobes were discussed in details. Finally, we provided an outlook on the development of next generation molecular imaging nanoprobes.
Collapse
Affiliation(s)
- Haozhe He
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xindan Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihua Du
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510260, China
| | - Minwen Ye
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yonglai Lu
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiajia Xue
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jun Wu
- PCFM Lab of Ministry of Education, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510260, China.
| |
Collapse
|
7
|
Eriksson P, Truong AH, Brommesson C, du Rietz A, Kokil GR, Boyd RD, Hu Z, Dang TT, Persson POA, Uvdal K. Cerium Oxide Nanoparticles with Entrapped Gadolinium for High T 1 Relaxivity and ROS-Scavenging Purposes. ACS OMEGA 2022; 7:21337-21345. [PMID: 35755371 PMCID: PMC9218977 DOI: 10.1021/acsomega.2c03055] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Gadolinium chelates are employed worldwide today as clinical contrast agents for magnetic resonance imaging. Until now, the commonly used linear contrast agents based on the rare-earth element gadolinium have been considered safe and well-tolerated. Recently, concerns regarding this type of contrast agent have been reported, which is why there is an urgent need to develop the next generation of stable contrast agents with enhanced spin-lattice relaxation, as measured by improved T 1 relaxivity at lower doses. Here, we show that by the integration of gadolinium ions in cerium oxide nanoparticles, a stable crystalline 5 nm sized nanoparticulate system with a homogeneous gadolinium ion distribution is obtained. These cerium oxide nanoparticles with entrapped gadolinium deliver strong T 1 relaxivity per gadolinium ion (T 1 relaxivity, r 1 = 12.0 mM-1 s-1) with the potential to act as scavengers of reactive oxygen species (ROS). The presence of Ce3+ sites and oxygen vacancies at the surface plays a critical role in providing the antioxidant properties. The characterization of radial distribution of Ce3+ and Ce4+ oxidation states indicated a higher concentration of Ce3+ at the nanoparticle surfaces. Additionally, we investigated the ROS-scavenging capabilities of pure gadolinium-containing cerium oxide nanoparticles by bioluminescent imaging in vivo, where inhibitory effects on ROS activity are shown.
Collapse
Affiliation(s)
- Peter Eriksson
- Division
of Molecular Surface Physics and Nanoscience, Department of Physics,
Chemistry and Biology (IFM), Linköping
University, SE-581 83 Linköping, Sweden
| | - Anh H.T. Truong
- Laboratory
of Therapeutic Cellular and Drug Delivery Systems, School of Chemical
and Biomedical Engineering (SCBE), Nanyang
Technological University, Singapore 637459 Singapore
| | - Caroline Brommesson
- Division
of Molecular Surface Physics and Nanoscience, Department of Physics,
Chemistry and Biology (IFM), Linköping
University, SE-581 83 Linköping, Sweden
| | - Anna du Rietz
- Division
of Molecular Surface Physics and Nanoscience, Department of Physics,
Chemistry and Biology (IFM), Linköping
University, SE-581 83 Linköping, Sweden
| | - Ganesh R. Kokil
- School
of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert D. Boyd
- Division
of Plasma Coatings Physics Department of Physics, Chemistry and Biology (IFM), Linköping
University, SE-581 83 Linköping, Sweden
| | - Zhangjun Hu
- Division
of Molecular Surface Physics and Nanoscience, Department of Physics,
Chemistry and Biology (IFM), Linköping
University, SE-581 83 Linköping, Sweden
| | - Tram T. Dang
- Division
of Thin Film Physics, Department of Physics, Chemistry and Biology (IFM), Linköping
University, SE-581 83 Linköping, Sweden
| | - Per O. A. Persson
- Division
of Thin Film Physics, Department of Physics, Chemistry and Biology (IFM), Linköping
University, SE-581 83 Linköping, Sweden
| | - Kajsa Uvdal
- Division
of Molecular Surface Physics and Nanoscience, Department of Physics,
Chemistry and Biology (IFM), Linköping
University, SE-581 83 Linköping, Sweden
| |
Collapse
|
8
|
Song X, Liu X, Ma Y, Zhu Q, Bi M. Synthesis of Ce/Gd@HA/PLGA Scaffolds Contributing to Bone Repair and MRI Enhancement. Front Bioeng Biotechnol 2022; 10:834226. [PMID: 35433654 PMCID: PMC9009416 DOI: 10.3389/fbioe.2022.834226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
It is important for future clinical applications to design and synthesize multipurpose scaffolding materials for bone tissue engineering with high osteogenic induction and MRI capability. In the present study, we synthesized Ce/Gd@HA by co-doping Ce3+ and Gd3+ into hydroxyapatite (HA) using a hydrothermal synthesis method, and then Ce/Gd@HA composites were synthesized by combining Ce/Gd@HA nanoparticles with polylactic-co-glycolic acid (PLGA) to investigate whether implanted Ce/Gd@HA/PLGA composites could promote osteoblast viability, leading to tibia repair of the rats and enhance MRI. The measurement results contain X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and environmental scanning electron microscopy (ESEM) showing that HA doped with Ce3+ and Gd3+ was still a hexagonal crystal with high crystallinity. The synthesized Ce/Gd@HA/PLGA composites have a structure and obvious magnetic resonance imaging (MRI) capability. The in vitro experimental results indicated that Ce/Gd@HA/PLGA composites significantly promoted the performance of MC3T3-E1 cells, containing proliferation, adhesion, and osteogenic differentiation capacities. These include the improvement of alkaline phosphatase activity, enhancement of mineral deposition, and upregulation of OCN and COL-1 gene expression. The in vivo experimental results demonstrated that the Ce/Gd@HA/PLGA composites significantly improved the healing rate of rat bone defects. The MRI images indicated that the Ga-doped composites were observed in the MRI T1 sequence in rats. The aforementioned results suggested that Ce/Gd@HA/PLGA composites not only effectively promoted bone formation but also enhanced MRI capability. The composites synthesized in this study have great potential in bone regeneration with an extensive application in bone tissue engineering.
Collapse
Affiliation(s)
- Xianji Song
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xilin Liu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yihang Ma
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qingsan Zhu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mingchao Bi
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Lattanzio SM. Toxicity associated with gadolinium-based contrast-enhanced examinations. AIMS BIOPHYSICS 2021. [DOI: 10.3934/biophy.2021015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
10
|
Noukeu LC, Wolf J, Yuan B, Banerjee S, Nguyen KT. Nanoparticles for Detection and Treatment of Peripheral Arterial Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800644. [PMID: 29952061 DOI: 10.1002/smll.201800644] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Indexed: 06/08/2023]
Abstract
Peripheral arterial disease (PAD) is defined as a slow, progressive disorder of the lower extremity arterial vessels characterized by chronic narrowing that often results in occlusion and is associated with loss of functional capacity. Although the PAD occurrence rate is increasing in the elderly population, outcomes with current treatment strategies are suboptimal. Hence, there is an urgent need to develop new technologies that overcome limitations of traditional modalities for PAD detection and therapy. In this Review, the application of nanotechnology as a tool that bridges the gap in PAD diagnosis and therapy is in focus. Several materials including synthetic, natural, biodegradable, and biocompatible materials are used to develop nanoparticles for PAD diagnostic and/or therapeutic applications. Moreover, various recent research approaches are being explored to diagnose PAD through multimodality imaging with different nanoplatforms. Further efforts include targeted delivery of various therapeutic agents using nanostructures as carriers to treat PAD. Last, but not least, despite being a fairly new field, researchers are exploring the use of nanotheranostics for PAD detection and therapy.
Collapse
Affiliation(s)
- Linda C Noukeu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76010, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern, Dallas, TX, 75235, USA
| | - Joseph Wolf
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76010, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern, Dallas, TX, 75235, USA
| | - Baohong Yuan
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76010, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern, Dallas, TX, 75235, USA
| | - Subhash Banerjee
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Kytai T Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76010, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern, Dallas, TX, 75235, USA
| |
Collapse
|
11
|
Eriksson P, Tal AA, Skallberg A, Brommesson C, Hu Z, Boyd RD, Olovsson W, Fairley N, Abrikosov IA, Zhang X, Uvdal K. Cerium oxide nanoparticles with antioxidant capabilities and gadolinium integration for MRI contrast enhancement. Sci Rep 2018; 8:6999. [PMID: 29725117 PMCID: PMC5934375 DOI: 10.1038/s41598-018-25390-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/19/2018] [Indexed: 12/26/2022] Open
Abstract
The chelating gadolinium-complex is routinely used as magnetic resonance imaging (MRI) -contrast enhancer. However, several safety issues have recently been reported by FDA and PRAC. There is an urgent need for the next generation of safer MRI-contrast enhancers, with improved local contrast and targeting capabilities. Cerium oxide nanoparticles (CeNPs) are designed with fractions of up to 50% gadolinium to utilize the superior MRI-contrast properties of gadolinium. CeNPs are well-tolerated in vivo and have redox properties making them suitable for biomedical applications, for example scavenging purposes on the tissue- and cellular level and during tumor treatment to reduce in vivo inflammatory processes. Our near edge X-ray absorption fine structure (NEXAFS) studies show that implementation of gadolinium changes the initial co-existence of oxidation states Ce3+ and Ce4+ of cerium, thereby affecting the scavenging properties of the nanoparticles. Based on ab initio electronic structure calculations, we describe the most prominent spectral features for the respective oxidation states. The as-prepared gadolinium-implemented CeNPs are 3-5 nm in size, have r1-relaxivities between 7-13 mM-1 s-1 and show clear antioxidative properties, all of which means they are promising theranostic agents for use in future biomedical applications.
Collapse
Affiliation(s)
- Peter Eriksson
- Division of Molecular Surface Physics and Nanoscience, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden
| | - Alexey A Tal
- Division of Theoretical Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden
- Materials Modeling and Development Laboratory, National University of Science and Technology "MISIS", 119049, Moscow, Russia
| | - Andreas Skallberg
- Division of Molecular Surface Physics and Nanoscience, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden
| | - Caroline Brommesson
- Division of Molecular Surface Physics and Nanoscience, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden.
| | - Zhangjun Hu
- Division of Molecular Surface Physics and Nanoscience, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden
| | - Robert D Boyd
- Plasma Coatings Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden
| | - Weine Olovsson
- Division of Theoretical Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden
| | - Neal Fairley
- Casa Software Ltd, Bay House, 5 Grosvenor Terrace, Teignmouth, TQ14 8NE, United Kingdom
| | - Igor A Abrikosov
- Division of Theoretical Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden
- Materials Modeling and Development Laboratory, National University of Science and Technology "MISIS", 119049, Moscow, Russia
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Kajsa Uvdal
- Division of Molecular Surface Physics and Nanoscience, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden.
| |
Collapse
|
12
|
Savarino E, Chianca V, Bodini G, Albano D, Messina C, Tontini GE, Sconfienza LM. Gadolinium accumulation after contrast-enhanced magnetic resonance imaging: Which implications in patients with Crohn's disease? Dig Liver Dis 2017; 49:728-730. [PMID: 28506472 DOI: 10.1016/j.dld.2017.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022]
Abstract
Crohn's disease (CD) is a chronic inflammatory condition of the bowel, characterized by an alternation of remission and relapse phases, leading to a progressive intestinal damage with loss of function. Magnetic resonance enterography has been widely used in the past for the evaluation of fistulizing disease, but its use increased over time, being considered helpful in different moments of disease course. Intravenous injection of Gadolinium-based contrast agents has been demonstrated to be crucial to assess mucosal inflammation, transmural involvement, and extraintestinal disease. Recently, Gadolinium accumulation in human tissues has been increasingly reported, although clinical implications of this event are still unclear. In the present paper, we review the main evidence on the topic, focusing on the potential implications for gastroenterological practice.
Collapse
Affiliation(s)
- Edoardo Savarino
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padova, Italy
| | - Vito Chianca
- Department of Advanced Biomedical Sciences, Federico II University, Napoli, Italy
| | - Giorgia Bodini
- Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Domenico Albano
- Department of Radiology, DIBIMED, University of Palermo, Palermo, Italy
| | - Carmelo Messina
- Scuola di Specializzazione in Radiodiagnostica, University of Milano, Milano, Italy
| | - Gian Eugenio Tontini
- Unit of Gastroenterology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Luca Maria Sconfienza
- Department of Biomedical Sciences for Health, University of Milano, Milano, Italy; Unit of Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy.
| |
Collapse
|
13
|
Abstract
In vivo imaging, which enables us to peer deeply within living subjects, is producing tremendous opportunities both for clinical diagnostics and as a research tool. Contrast material is often required to clearly visualize the functional architecture of physiological structures. Recent advances in nanomaterials are becoming pivotal to generate the high-resolution, high-contrast images needed for accurate, precision diagnostics. Nanomaterials are playing major roles in imaging by delivering large imaging payloads, yielding improved sensitivity, multiplexing capacity, and modularity of design. Indeed, for several imaging modalities, nanomaterials are now not simply ancillary contrast entities, but are instead the original and sole source of image signal that make possible the modality's existence. We address the physicochemical makeup/design of nanomaterials through the lens of the physical properties that produce contrast signal for the cognate imaging modality-we stratify nanomaterials on the basis of their (i) magnetic, (ii) optical, (iii) acoustic, and/or (iv) nuclear properties. We evaluate them for their ability to provide relevant information under preclinical and clinical circumstances, their in vivo safety profiles (which are being incorporated into their chemical design), their modularity in being fused to create multimodal nanomaterials (spanning multiple different physical imaging modalities and therapeutic/theranostic capabilities), their key properties, and critically their likelihood to be clinically translated.
Collapse
Affiliation(s)
- Bryan Ronain Smith
- Stanford University , 3155 Porter Drive, #1214, Palo Alto, California 94304-5483, United States
| | - Sanjiv Sam Gambhir
- The James H. Clark Center , 318 Campus Drive, First Floor, E-150A, Stanford, California 94305-5427, United States
| |
Collapse
|
14
|
Bañobre-López M, Bran C, Rodríguez-Abreu C, Gallo J, Vázquez M, Rivas J. A colloidally stable water dispersion of Ni nanowires as an efficient T2-MRI contrast agent. J Mater Chem B 2017; 5:3338-3347. [DOI: 10.1039/c7tb00574a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A colloidally stable dispersion of anisotropic Ni nanowires in water has been achieved showing good performance as a T2-contrast agent in MRI.
Collapse
Affiliation(s)
- Manuel Bañobre-López
- International Iberian Nanotechnology Laboratory
- Av. Mestre José Veiga s/n
- 4715-330 Braga
- Portugal
| | - Cristina Bran
- Institute of Materials Science of Madrid
- CSIC
- 28049 Madrid
- Spain
| | - Carlos Rodríguez-Abreu
- International Iberian Nanotechnology Laboratory
- Av. Mestre José Veiga s/n
- 4715-330 Braga
- Portugal
- Instituto de Química Avanzada de Cataluña
| | - Juan Gallo
- International Iberian Nanotechnology Laboratory
- Av. Mestre José Veiga s/n
- 4715-330 Braga
- Portugal
| | - Manuel Vázquez
- Institute of Materials Science of Madrid
- CSIC
- 28049 Madrid
- Spain
| | - José Rivas
- Department of Applied Physics
- Technological Research Institute
- Nanotechnology and Magnetism Lab
- Universidade de Santiago de Compostela
- Spain
| |
Collapse
|
15
|
Karunamuni R, Naha PC, Lau KC, Al-Zaki A, Popov AV, Delikatny EJ, Tsourkas A, Cormode DP, Maidment ADA. Development of silica-encapsulated silver nanoparticles as contrast agents intended for dual-energy mammography. Eur Radiol 2016; 26:3301-9. [PMID: 26910906 PMCID: PMC4974128 DOI: 10.1007/s00330-015-4152-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 11/13/2015] [Accepted: 11/30/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Dual-energy (DE) mammography has recently entered the clinic. Previous theoretical and phantom studies demonstrated that silver provides greater contrast than iodine for this technique. Our objective was to characterize and evaluate in vivo a prototype silver contrast agent ultimately intended for DE mammography. METHODS The prototype silver contrast agent was synthesized using a three-step process: synthesis of a silver core, silica encapsulation and PEG coating. The nanoparticles were then injected into mice to determine their accumulation in various organs, blood half-life and dual-energy contrast. All animal procedures were approved by the institutional animal care and use committee. RESULTS The final diameter of the nanoparticles was measured to be 102 (±9) nm. The particles were removed from the vascular circulation with a half-life of 15 min, and accumulated in macrophage-rich organs such as the liver, spleen and lymph nodes. Dual-energy subtraction techniques increased the signal difference-to-noise ratio of the particles by as much as a factor of 15.2 compared to the single-energy images. These nanoparticles produced no adverse effects in mice. CONCLUSION Silver nanoparticles are an effective contrast agent for dual-energy x-ray imaging. With further design improvements, silver nanoparticles may prove valuable in breast cancer screening and diagnosis. KEY POINTS • Silver has potential as a contrast agent for DE mammography. • Silica-coated silver nanoparticles are biocompatible and suited for in vivo use. • Silver nanoparticles produce strong contrast in vivo using DE mammography imaging systems.
Collapse
Affiliation(s)
- Roshan Karunamuni
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Pratap C Naha
- Department of Radiology, University of Pennsylvania, 1 Silverstein, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Kristen C Lau
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ajlan Al-Zaki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Anatoliy V Popov
- Department of Radiology, University of Pennsylvania, 1 Silverstein, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Edward J Delikatny
- Department of Radiology, University of Pennsylvania, 1 Silverstein, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, 1 Silverstein, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Andrew D A Maidment
- Department of Radiology, University of Pennsylvania, 1 Silverstein, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Incidence of Retrocochlear Pathology Found on MRI in Patients With Non-Pulsatile Tinnitus. Otol Neurotol 2015; 36:1730-4. [DOI: 10.1097/mao.0000000000000890] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Progressive Increase of T1 Signal Intensity of the Dentate Nucleus on Unenhanced Magnetic Resonance Images Is Associated With Cumulative Doses of Intravenously Administered Gadodiamide in Patients With Normal Renal Function, Suggesting Dechelation. Invest Radiol 2014; 49:685-90. [PMID: 24872007 DOI: 10.1097/rli.0000000000000072] [Citation(s) in RCA: 348] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Frullano L, Caravan P. Strategies for the preparation of bifunctional gadolinium(III) chelators. Curr Org Synth 2011; 8:535-565. [PMID: 22375102 DOI: 10.2174/157017911796117250] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of gadolinium chelators that can be easily and readily linked to various substrates is of primary importance for the development high relaxation efficiency and/or targeted magnetic resonance imaging (MRI) contrast agents. Over the last 25 years a large number of bifunctional chelators have been prepared. For the most part, these compounds are based on ligands that are already used in clinically approved contrast agents. More recently, new bifunctional chelators have been reported based on complexes that show a more potent relaxation effect, faster complexation kinetics and in some cases simpler synthetic procedures. This review provides an overview of the synthetic strategies used for the preparation of bifunctional chelators for MRI applications.
Collapse
Affiliation(s)
- Luca Frullano
- Case Western Reserve University. 11100 Euclid Ave Cleveland, OH 44106
| | | |
Collapse
|
19
|
Miscellaneous arthropathies including synovial tumors and foreign body synovitis and nephrogenic systemic fibrosis. Rheumatology (Oxford) 2011. [DOI: 10.1016/b978-0-323-06551-1.00166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Greenberg SA. Zinc transmetallation and gadolinium retention after MR imaging: case report. Radiology 2010; 257:670-3. [PMID: 20829541 DOI: 10.1148/radiol.10100560] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A patient with chronic zinc poisoning from denture cream retained gadolinium after a magnetic resonance imaging procedure, likely due to transmetallation. During chelation therapy, high levels of gadolinium in excreted urine (up to 89 μg/d, 29 days after gadolinium administration) were present, indicating that gadolinium had been retained. Almost 2½ years after gadolinium exposure, a 24-hour urine collection indicated that the gadolinium level remained in the elevated range (0.6 μg/d). This single case report suggests that patients with elevated zinc exposure may be at increased risk of gadolinium retention.
Collapse
Affiliation(s)
- Steven A Greenberg
- Department of Neurology, Brigham and Women's Hospital, Children's Hospital Informatics Program, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Drug allergy. J Allergy Clin Immunol 2010; 125:S126-37. [DOI: 10.1016/j.jaci.2009.10.028] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 10/12/2009] [Accepted: 10/15/2009] [Indexed: 12/30/2022]
|
22
|
Abujudeh HH, Rolls H, Kaewlai R, Agarwal S, Gebreananya ZA, Saini S, Schaefer PW, Kay J. Retrospective assessment of prevalence of nephrogenic systemic fibrosis (NSF) after implementation of a new guideline for the use of gadobenate dimeglumine as a sole contrast agent for magnetic resonance examination in renally impaired patients. J Magn Reson Imaging 2009; 30:1335-40. [DOI: 10.1002/jmri.21976] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
23
|
Thakral C, Abraham JL. Gadolinium-Induced Nephrogenic Systemic Fibrosis Is Associated with Insoluble Gd Deposits in Tissues:In VivoTransmetallation Confirmed by Microanalysis. J Cutan Pathol 2009; 36:1244-54. [DOI: 10.1111/j.1600-0560.2009.01283.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Marckmann P, Skov L. Nephrogenic Systemic Fibrosis: Clinical Picture and Treatment. Radiol Clin North Am 2009; 47:833-40, vi. [DOI: 10.1016/j.rcl.2009.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Guzzo TJ, Pierorazio PM, Schaeffer EM, Fishman EK, Allaf ME. The accuracy of multidetector computerized tomography for evaluating tumor thrombus in patients with renal cell carcinoma. J Urol 2008; 181:486-90; discussion 491. [PMID: 19100567 DOI: 10.1016/j.juro.2008.10.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Indexed: 11/19/2022]
Abstract
PURPOSE New advances in computerized tomography, including multidetector computerized tomography with 3-dimensional reformatting has recently called into question the absolute need for magnetic resonance imaging for evaluating renal cell carcinoma with suspected venous involvement. We assessed the accuracy of multidetector computerized tomography for predicting tumor thrombus and the level of venous involvement in patients with renal cell carcinoma. MATERIALS AND METHODS We retrospectively reviewed clinical and pathological features in 41 patients with renal cell carcinoma who underwent staging multidetector computerized tomography before surgery. Multidetector computerized tomography findings regarding the presence and level of tumor thrombus were compared to findings at surgery and at final pathological evaluation. All multidetector computerized tomography studies were read by a single radiologist (EKF) before surgery. RESULTS When excluding patients with segmental venous involvement only, the concordance rate between multidetector computerized tomography and pathological findings was 84%. Multidetector computerized tomography accurately predicted the level of tumor thrombus in 26 of 27 patients (96%). Four cases of negative multidetector computerized tomography findings were up staged to renal vein involvement based on pathological findings. All 4 patients had early distal thrombi that did not change operative management. CONCLUSIONS Multidetector computerized tomography with 3-dimensional mapping is an effective imaging modality for accurately characterizing the level of venous thrombus in patients with renal cell carcinoma. This modality effectively identified patients with clinically significant venous thrombus. Patients with renal cell carcinoma in whom multidetector computerized tomography fails to detect tumor thrombus are unlikely to have a tumor thrombus found at surgery that would change the surgical approach.
Collapse
Affiliation(s)
- Thomas J Guzzo
- The James Buchanan Brady Urologic Institute, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, USA.
| | | | | | | | | |
Collapse
|
26
|
Sarraf P, Kay J, Reginato AM. Non-crystalline and crystalline rheumatic disorders in chronic kidney disease. Curr Rheumatol Rep 2008; 10:235-48. [PMID: 18638433 DOI: 10.1007/s11926-008-0038-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Rheumatic syndromes are cause for morbidity in patients with end-stage renal disease. Recent advances in understanding the role of tissue remodeling have provided insight into the pathogenic mechanisms responsible for some of these manifestations. Here, we survey recent and clinically relevant advances in translational research that impact our understanding of rheumatic syndromes seen in patients with significant renal disease. The management of acute and chronic crystalline arthropathies in chronic kidney disease and hemodialysis patients is discussed.
Collapse
Affiliation(s)
- Pasha Sarraf
- US National Instituteof Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | | | | |
Collapse
|