1
|
Naboka YL, Kogan MI, Mayr JM, Gudima IA, Koliva EM, Kotieva VM, Chernytskaya ML, Sizonov VV. Urinary Microbiota of Healthy Prepubescent Girls and Boys-A Pilot Study. CHILDREN (BASEL, SWITZERLAND) 2024; 12:40. [PMID: 39857871 PMCID: PMC11763805 DOI: 10.3390/children12010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND The urinary microbiota of healthy children has rarely been studied, and potential differences between boys and girls have not been addressed. Thus, this study aimed to compare the urinary microbiota of healthy prepubescent girls and boys. METHODS We included healthy children aged between 4 and 10 years who were free of functional or organic urinary tract diseases and had no history of urinary tract infection. We collected the mean portion of morning urine during natural micturition and determined aerobic and anaerobic microbiota using HiCrome™ chromogenic growth media. We identified microorganisms on the basis of morphotinctural properties and analyzed α- and β-diversity of microorganisms isolated from the urine of boys and girls. RESULTS Mean age of the children was 6.1 ± 3.2 years. In general, four-component (28.1%) as well as two-component (15.6%), three-component (15.6%), and six-component (12.5%) combinations of microorganisms prevailed in the urine of children. The urine of boys exhibited four-component combinations significantly more often than that of girls (p ˂ 0.05), while the urine of girls contained seven-component microbial combinations significantly more often than that of boys (p ˂ 0.05). Comparison of multicomponent combinations of microorganisms in boys and girls revealed an overrepresentation of Enterococcus spp. in girls (p < 0.05). Furthermore, there was a trend towards higher microbial α-diversity in the urine of girls, but the difference between girls and boys was not significant. CONCLUSIONS The urine of healthy prepubescent children contained various aerobic-anaerobic combinations of microorganisms. Their diversity in the urine of girls and boys did not differ significantly. However, the level of α-diversity of microorganisms was higher in girls than in boys. We noted differences in the prevalence of certain taxa of microorganisms in the urine of boys and girls. Our study showed a close functional relationship between aerobic and anaerobic microorganisms detected in the urine of children in more than half of the cases.
Collapse
Affiliation(s)
- Yulia L. Naboka
- Department of Microbiology and Virology No. 1, Rostov State Medical University, 344022 Rostov-on-Don, Russia; (Y.L.N.)
| | - Mikhail I. Kogan
- Division of Pediatric Urology of the Department of Urology and Human Reproductive Health, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| | - Johannes M. Mayr
- Children’s Day Hospital Liestal, and University of Basel, 4001 Basel, Switzerland
| | - Irina A. Gudima
- Department of Microbiology and Virology No. 1, Rostov State Medical University, 344022 Rostov-on-Don, Russia; (Y.L.N.)
| | - Elizaveta M. Koliva
- Department of Microbiology and Virology No. 1, Rostov State Medical University, 344022 Rostov-on-Don, Russia; (Y.L.N.)
| | - Violetta M. Kotieva
- Department of Microbiology and Virology No. 1, Rostov State Medical University, 344022 Rostov-on-Don, Russia; (Y.L.N.)
| | - Marina L. Chernytskaya
- Department of Microbiology and Virology No. 1, Rostov State Medical University, 344022 Rostov-on-Don, Russia; (Y.L.N.)
| | - Vladimir V. Sizonov
- Division of Pediatric Urology of the Department of Urology and Human Reproductive Health, Rostov State Medical University, 344022 Rostov-on-Don, Russia
- Division of Uroandrology, Regional Children’s Clinical Hospital, 664022 Rostov-on-Don, Russia
| |
Collapse
|
2
|
Simoni A, Schwartz L, Junquera GY, Ching CB, Spencer JD. Current and emerging strategies to curb antibiotic-resistant urinary tract infections. Nat Rev Urol 2024; 21:707-722. [PMID: 38714857 PMCID: PMC11540872 DOI: 10.1038/s41585-024-00877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/23/2024]
Abstract
Rising rates of antibiotic resistance in uropathogenic bacteria compromise patient outcomes and prolong hospital stays. Consequently, new strategies are needed to prevent and control the spread of antibiotic resistance in uropathogenic bacteria. Over the past two decades, sizeable clinical efforts and research advances have changed urinary tract infection (UTI) treatment and prevention strategies to conserve antibiotic use. The emergence of antimicrobial stewardship, policies from national societies, and the development of new antimicrobials have shaped modern UTI practices. Future UTI management practices could be driven by the evolution of antimicrobial stewardship, improved and readily available diagnostics, and an improved understanding of how the microbiome affects UTI. Forthcoming UTI treatment and prevention strategies could employ novel bactericidal compounds, combinations of new and classic antimicrobials that enhance bacterial killing, medications that prevent bacterial attachment to uroepithelial cells, repurposing drugs, and vaccines to curtail the rising rates of antibiotic resistance in uropathogenic bacteria and improve outcomes in people with UTI.
Collapse
Affiliation(s)
- Aaron Simoni
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
| | - Laura Schwartz
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- Department of Pediatrics, Division of Nephrology and Hypertension, Nationwide Children's, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Guillermo Yepes Junquera
- Department of Pediatrics, Division of Infectious Diseases, Nationwide Children's, Columbus, OH, USA
| | - Christina B Ching
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- Department of Urology, Nationwide Children's, Columbus, OH, USA
| | - John David Spencer
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA.
- Department of Pediatrics, Division of Nephrology and Hypertension, Nationwide Children's, Columbus, OH, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
3
|
Aitken KJ, Schröder A, Haddad A, Sidler M, Penna F, Fernandez N, Ahmed T, Marino V, Bechbache M, Jiang JX, Tolg C, Bägli DJ. Epigenetic insights to pediatric uropathology: Celebrating the fundamental biology vision of Tony Khoury. J Pediatr Urol 2024; 20 Suppl 1:S43-S57. [PMID: 38944627 DOI: 10.1016/j.jpurol.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024]
Abstract
INTRODUCTION Many pediatric urology conditions affect putatively normal tissues or appear too commonly to be based solely on specific DNA mutations. Understanding epigenetic mechanisms in pediatric urology, therefore, has many implications that can impact cell and tissue responses to settings, such as environmental and hormonal influences on urethral development, uropathogenic infections, obstructive stimuli, all of which originate externally or extracellularly. Indeed, the cell's response to external stimuli is often mediated epigenetically. In this commentary, we highlight work on the critical role that epigenetic machinery, such as DNA methyltransferases (DNMTs), Enhancer of Zeste Polycomb Repressive Complex 2 Subunit (EZH2), and others play in regulating gene expression and cellular functions in three urological contexts. DESIGN Animal and cellular constructs were used to model clinical pediatric uropathology. The hypertrophy, trabeculation, and fibrosis of the chronically obstructed bladder was explored using smooth muscle cell models employing disorganised vs. normal extracellular matrix (ECM), as well as a new animal model of chronic obstructive bladder disease (COBD) which retains its pathologic features even after bladder de-obstruction. Cell models from human and murine hypospadias or genital tubercles (GT) were used to illustrate developmental responses and epigenetic dependency of key developmental genes. Finally, using bladder urothelial and organoid culture systems, we examined activity of epigenetic machinery in response to non uropathogenic vs. uropathogenic E.coli (UPEC). DNMT and EZH2 expression and function were interrogated in these model systems. RESULTS Disordered ECM exerted a principal mitogenic and epigenetic role for on bladder smooth muscle both in vitro and in CODB in vivo. Key genes, e.g., BDNF and KCNB2 were under epigenetic regulation in actively evolving obstruction and COBD, though each condition showed distinct epigenetic responses. In models of hypospadias, estrogen strongly dysregulated WNT and Hox expression, which was normalized by epigenetic inhibition. Finally, DNA methylation machinery in the urothelium showed specific activation when challenged by uropathogenic E.coli. Similarly, UPEC induces hypermethylation and downregulation of the growth suppressor p16INK4A. Moreover, host cells exposed to UPEC produced secreted factors inducing epigenetic responses transmissible from one affected cell to another without ongoing bacterial presence. DISCUSSION Microenvironmental influences altered epigenetic activity in the three described urologic contexts. Considering that many obstructed bladders continue to display abnormal architecture and dysfunction despite relief of obstruction similar to after resection of posterior valves or BPH, the epigenetic mechanisms described highlight novel approaches for understanding the underlying smooth muscle myopathy of this crucial clinical problem. Similarly, there is evidence for an epigenetic basis of xenoestrogen on development of hypospadias, and UTI-induced pan-urothelial alteration of epigenetic marks and propensity for subsequent (recurrent) UTI. The impact of mechanical, hormonal, infectious triggers on genitourinary epigenetic machinery activity invite novel avenues for targeting epigenetic modifications associated with these non-cancer diseases in urology. This includes the use of deactivated CRISPR-based technologies for precise epigenome targeting and editing. Overall, we underscore the importance of understanding epigenetic regulation in pediatric urology for the development of innovative therapeutic and management strategies.
Collapse
Affiliation(s)
- K J Aitken
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; DIYbio Toronto, 1677 St. Clair West, Toronto, Ontario, Canada.
| | - Annette Schröder
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Urology and Pediatric Urology of the University Medical Center Mainz, Mainz, Rheinland-Pfalz, Germany
| | - Ahmed Haddad
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Martin Sidler
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Frank Penna
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicolas Fernandez
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tabina Ahmed
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Human Biology Programme, University of Toronto, Toronto, Ontario, Canada
| | - Vincent Marino
- DIYbio Toronto, 1677 St. Clair West, Toronto, Ontario, Canada
| | - Matthew Bechbache
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada
| | - Jia-Xin Jiang
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Human Biology Programme, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Cornelia Tolg
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada
| | - Darius J Bägli
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Physiology, Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Cho YJ, Shin B, Lee SH, Park S, Kim YK, Kim JJ, Kim E. Altered Urine Microbiome in Male Children and Adolescents with Attention-Deficit Hyperactivity Disorder. Microorganisms 2023; 11:2063. [PMID: 37630623 PMCID: PMC10458914 DOI: 10.3390/microorganisms11082063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
While interest in developing the human microbiome as a biomarker for attention-deficit hyperactivity disorder (ADHD) is increasing, there has been limited exploration in utilizing urine samples. In this study, we analysed urine microbiome profiles by extracting 16S ribosomal DNA from purified bacteria-derived extracellular membrane vesicles obtained from urine samples. Sequencing libraries were constructed by amplifying V3-V4 hypervariable regions sequenced using Illumina MiSeq. Profiles of male Korean children and adolescents with ADHD (n = 33) were compared with healthy sex-matched controls (n = 39). Statistically controlling for age, we found decreased alpha diversity in the urine bacteria of the ADHD group, as evidenced by reduced Shannon and Simpson indices (p < 0.05), and significant differences in beta diversity between the two groups (p < 0.001). The phyla Firmicutes and Actinobacteriota, as well as the genera Ralstonia and Afipia, were relatively more abundant in the ADHD group. The phylum Proteobacteria and the genera Corynebacterium and Peptoniphilus were more abundant in the control group. Notably, the genus Afipia exhibited significant correlations with the Child Behavior Checklist Attention Problems score and DSM-oriented ADHD subscale. This study is the first to propose the urine microbiome as a potential biomarker for pediatric ADHD.
Collapse
Affiliation(s)
- Yoon Jae Cho
- Department of Psychiatry, College of Medicine, Yonsei University, Seoul 06273, Republic of Korea
| | - Bokyoung Shin
- Department of Psychiatry, College of Medicine, Yonsei University, Seoul 06273, Republic of Korea
| | - Sung-Ha Lee
- Center for Happiness Studies, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangmin Park
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 08826, Republic of Korea
| | | | - Jae-Jin Kim
- Department of Psychiatry, College of Medicine, Yonsei University, Seoul 06273, Republic of Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Eunjoo Kim
- Department of Psychiatry, College of Medicine, Yonsei University, Seoul 06273, Republic of Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| |
Collapse
|
5
|
De Maio F, Grotti G, Mariani F, Buonsenso D, Santarelli G, Bianco DM, Posteraro B, Sanguinetti M, Rendeli C. Profiling the Urobiota in a Pediatric Population with Neurogenic Bladder Secondary to Spinal Dysraphism. Int J Mol Sci 2023; 24:ijms24098261. [PMID: 37175968 PMCID: PMC10178886 DOI: 10.3390/ijms24098261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The human bladder has been long thought to be sterile until that, only in the last decade, advances in molecular biology have shown that the human urinary tract is populated with microorganisms. The relationship between the urobiota and the development of urinary tract disorders is now of great interest. Patients with spina bifida (SB) can be born with (or develop over time) neurological deficits due to damaged nerves that originate in the lower part of the spinal cord, including the neurogenic bladder. This condition represents a predisposing factor for urinary tract infections so that the most frequently used approach to treat patients with neurogenic bladder is based on clean intermittent catheterization (CIC). In this study, we analyzed the urobiota composition in a pediatric cohort of patients with SB compared to healthy controls, as well as the urobiota characteristics based on whether patients received CIC or not.
Collapse
Affiliation(s)
- Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giacomo Grotti
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Mariani
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Danilo Buonsenso
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Centro di Salute Globale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giulia Santarelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Delia Mercedes Bianco
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Brunella Posteraro
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Claudia Rendeli
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
6
|
Hochstedler BR, Burnett L, Price TK, Jung C, Wolfe AJ, Brubaker L. Urinary microbiota of women with recurrent urinary tract infection: collection and culture methods. Int Urogynecol J 2022; 33:563-570. [PMID: 33852041 PMCID: PMC8514570 DOI: 10.1007/s00192-021-04780-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/24/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION AND HYPOTHESIS Many clinicians utilize standard culture of voided urine to guide treatment for women with recurrent urinary tract infections (RUTI). However, despite antibiotic treatment, symptoms may persist and events frequently recur. The cyclic nature and ineffective treatment of RUTI suggest that underlying uropathogens pass undetected because of the preferential growth of Escherichia coli. Expanded quantitative urine culture (EQUC) detects more clinically relevant microbes. The objective of this study was to assess how urine collection and culture methods influence microbial detection in RUTI patients. METHODS This cross-sectional study enrolled symptomatic adult women with an established RUTI diagnosis. Participants contributed both midstream voided and catheterized urine specimens for culture via both standard urine culture (SUC) and EQUC. Presence and abundance of microbiota were compared between culture and collection methods. RESULTS Forty-three symptomatic women participants (mean age 67 years) contributed specimens. Compared to SUC, EQUC detected more unique bacterial species and consistently detected more uropathogens from catheterized and voided urine specimens. For both collection methods, the most commonly detected uropathogens by EQUC were E. coli (catheterized: n = 8, voided: n = 12) and E. faecalis (catheterized: n = 7, voided: n = 17). Compared to catheterized urine samples assessed by EQUC, SUC often missed uropathogens, and culture of voided urines by either method yielded high false-positive rates. CONCLUSIONS In women with symptomatic RUTI, SUC and assessment of voided urines have clinically relevant limitations in uropathogen detection. These results suggest that, in this population, catheterized specimens analyzed via EQUC provide clinically relevant information for appropriate diagnosis.
Collapse
Affiliation(s)
- Baylie R. Hochstedler
- Maywood, IL. Dept. of Microbiology and Immunology, Loyola University Chicago, Maywood, IL
| | - Lindsey Burnett
- La Jolla, CA. Dept. of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA
| | - Travis K. Price
- Maywood, IL. Dept. of Microbiology and Immunology, Loyola University Chicago, Maywood, IL,Present address: University of California Los Angeles, Los Angeles, CA
| | - Carrie Jung
- La Jolla, CA. Dept. of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA,Present address: Dept. of Obstetrics and Gynecology, Division of Urogynecology, Kaiser Permanente, San Francisco, CA
| | - Alan J. Wolfe
- Maywood, IL. Dept. of Microbiology and Immunology, Loyola University Chicago, Maywood, IL
| | - Linda Brubaker
- La Jolla, CA. Dept. of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA
| |
Collapse
|
7
|
Kawalec A, Zwolińska D. Emerging Role of Microbiome in the Prevention of Urinary Tract Infections in Children. Int J Mol Sci 2022; 23:870. [PMID: 35055056 PMCID: PMC8775962 DOI: 10.3390/ijms23020870] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
The microbiome of the urinary tract plays a significant role in maintaining health through the impact on bladder homeostasis. Urobiome is of great importance in maintaining the urothelial integrity and preventing urinary tract infection (UTI), as well as promoting local immune function. Dysbiosis in this area has been linked to an increased risk of UTIs, nephrolithiasis, and dysfunction of the lower urinary tract. However, the number of studies in the pediatric population is limited, thus the characteristic of the urobiome in children, its role in a child's health, and pediatric urologic diseases are not completely understood. This review aims to characterize the healthy urobiome in children, the role of dysbiosis in urinary tract infection, and to summarize the strategies to modification and reshape disease-prone microbiomes in pediatric patients with recurrent urinary tract infections.
Collapse
Affiliation(s)
- Anna Kawalec
- Clinic of Pediatric Nephrology, University Hospital, 50-556 Wroclaw, Poland
| | - Danuta Zwolińska
- Department of Pediatric Nephrology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| |
Collapse
|
8
|
Jones-Freeman B, Chonwerawong M, Marcelino VR, Deshpande AV, Forster SC, Starkey MR. The microbiome and host mucosal interactions in urinary tract diseases. Mucosal Immunol 2021; 14:779-792. [PMID: 33542492 DOI: 10.1038/s41385-020-00372-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
The urinary tract consists of the bladder, ureters, and kidneys, and is an essential organ system for filtration and excretion of waste products and maintaining systemic homeostasis. In this capacity, the urinary tract is impacted by its interactions with other mucosal sites, including the genitourinary and gastrointestinal systems. Each of these sites harbors diverse ecosystems of microbes termed the microbiota, that regulates complex interactions with the local and systemic immune system. It remains unclear whether changes in the microbiota and associated metabolites may be a consequence or a driver of urinary tract diseases. Here, we review the current literature, investigating the impact of the microbiota on the urinary tract in homeostasis and disease including urinary stones, acute kidney injury, chronic kidney disease, and urinary tract infection. We propose new avenues for exploration of the urinary microbiome using emerging technology and discuss the potential of microbiome-based medicine for urinary tract conditions.
Collapse
Affiliation(s)
- Bernadette Jones-Freeman
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Michelle Chonwerawong
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Vanessa R Marcelino
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Aniruddh V Deshpande
- Priority Research Centre GrowUpWell, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.,Department of Pediatric Urology and Surgery, John Hunter Children's Hospital, New Lambton Heights, NSW, Australia.,Urology Unit, Department of Pediatric Surgery, Children's Hospital at Westmead, Sydney Children's Hospital Network, Westmead, NSW, Australia
| | - Samuel C Forster
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Malcolm R Starkey
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia. .,Priority Research Centre GrowUpWell, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
9
|
Kilis-Pstrusinska K, Rogowski A, Bienkowski P. Bacterial Colonization as a Possible Source of Overactive Bladder Symptoms in Pediatric Patients: A Literature Review. J Clin Med 2021; 10:jcm10081645. [PMID: 33924301 PMCID: PMC8069148 DOI: 10.3390/jcm10081645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Overactive Bladder (OAB) is a common condition that is known to have a significant impact on daily activities and quality of life. The pathophysiology of OAB is not completely understood. One of the new hypothetical causative factors of OAB is dysbiosis of an individual urinary microbiome. The major aim of the present review was to identify data supporting the role of bacterial colonization in overactive bladder symptoms in children and adolescents. The second aim of our study was to identify the major gaps in current knowledge and possible areas for future clinical research. There is a growing body of evidence indicating some relationship between qualitative and quantitative characteristics of individual urinary microbiome and OAB symptoms in adult patients. There are no papers directly addressing this issue in children or adolescents. After a detailed analysis of papers relating urinary microbiome to OAB, the authors propose a set of future preclinical and clinical studies which could help to validate the concept in the pediatric population.
Collapse
Affiliation(s)
- Katarzyna Kilis-Pstrusinska
- Department of Pediatric Nephrology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-7364400; Fax: +48-71-7364409
| | - Artur Rogowski
- Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, Collegium Medicum, Kazimierza Wóycickiego 1/3, 01-938 Warsaw, Poland;
- Department of Obstetrics and Gynecology, Mother and Child Institute, 01-211 Warsaw, Poland
| | - Przemysław Bienkowski
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska 27, 00-665 Warsaw, Poland;
| |
Collapse
|
10
|
Forster CS, Hsieh MH, Cabana MD. Perspectives from the Society for Pediatric Research: Probiotic use in urinary tract infections, atopic dermatitis, and antibiotic-associated diarrhea: an overview. Pediatr Res 2021; 90:315-327. [PMID: 33288875 PMCID: PMC8180529 DOI: 10.1038/s41390-020-01298-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023]
Abstract
Probiotics have received significant attention within both the scientific and lay communities for their potential health-promoting properties, including the treatment or prevention of various conditions in children. In this article, we review the published data on use of specific probiotic strains for three common pediatric conditions: the prevention of urinary tract infections and antibiotic-associated diarrhea and the treatment of atopic dermatitis. Research into the utility of specific probiotic strains is of varying quality, and data are often derived from small studies and case series. We discuss the scientific merit of these studies, their overall findings regarding the utility of probiotics for these indications, issues in reporting of methods, and results from these clinical trials, as well as future areas of investigation.
Collapse
Affiliation(s)
- Catherine S. Forster
- grid.239560.b0000 0004 0482 1586Department of Pediatrics, Children’s National Health System, Washington, DC USA
| | - Michael H. Hsieh
- grid.239560.b0000 0004 0482 1586Department of Pediatrics, Children’s National Health System, Washington, DC USA
| | - Michael D. Cabana
- grid.251993.50000000121791997Department of Pediatrics, Children’s Hospital at Montefiore and the Albert Einstein School of Medicine, Bronx, NY USA
| |
Collapse
|
11
|
Coleman CM, Ferreira D. Oligosaccharides and Complex Carbohydrates: A New Paradigm for Cranberry Bioactivity. Molecules 2020; 25:E881. [PMID: 32079271 PMCID: PMC7070526 DOI: 10.3390/molecules25040881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cranberry is a well-known functional food, but the compounds directly responsible for many of its reported health benefits remain unidentified. Complex carbohydrates, specifically xyloglucan and pectic oligosaccharides, are the newest recognized class of biologically active compounds identified in cranberry materials. Cranberry oligosaccharides have shown similar biological properties as other dietary oligosaccharides, including effects on bacterial adhesion, biofilm formation, and microbial growth. Immunomodulatory and anti-inflammatory activity has also been observed. Oligosaccharides may therefore be significant contributors to many of the health benefits associated with cranberry products. Soluble oligosaccharides are present at relatively high concentrations (~20% w/w or greater) in many cranberry materials, and yet their possible contributions to biological activity have remained unrecognized. This is partly due to the inherent difficulty of detecting these compounds without intentionally seeking them. Inconsistencies in product descriptions and terminology have led to additional confusion regarding cranberry product composition and the possible presence of oligosaccharides. This review will present our current understanding of cranberry oligosaccharides and will discuss their occurrence, structures, ADME, biological properties, and possible prebiotic effects for both gut and urinary tract microbiota. Our hope is that future investigators will consider these compounds as possible significant contributors to the observed biological effects of cranberry.
Collapse
Affiliation(s)
- Christina M. Coleman
- Department of BioMolecular Sciences, Division of Pharmacognosy, and the Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | |
Collapse
|
12
|
Kassiri B, Shrestha E, Kasprenski M, Antonescu C, Florea LD, Sfanos KS, Wang MH. A Prospective Study of the Urinary and Gastrointestinal Microbiome in Prepubertal Males. Urology 2019; 131:204-210. [PMID: 31195012 DOI: 10.1016/j.urology.2019.05.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/12/2019] [Accepted: 05/24/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To determine if urinary microbial communities similar to those described in adults exist in children and to profile the urinary and gastrointestinal microbiome in children presenting to urology for both routine and complex urologic procedures. METHODS Prepubertal boys (n = 20, ages 3 months-8 years; median age 15 months) who required elective urologic procedures were eligible. Urine samples were collected via sterile catheterization and fecal samples were obtained by rectal swabs. DNA was extracted from urine pellet and fecal samples and subjected to bacterial profiling via 16S rDNA Illumina sequencing and 16S rDNA quantitative polymerase chain reaction. We assessed within and between sample diversity and differential species abundance between samples. RESULTS Urine samples had low bacterial biomass that reflected the presence of bacterial populations. The most abundant genera detected in urine samples are not common to skin microbiota and several of the genera have been previously identified in the urinary microbiome of adults. We report presumably atypical compositional differences in both the urinary and gastrointestinal microbiome in children with prior antibiotic exposure and highlight an important case of a child who had undergone lifelong antibiotic treatment as prophylaxis for congenital abnormalities. CONCLUSION This study provides one of the first characterizations of the urinary microbiome in prepubertal males. Defining the baseline healthy microbiome in children may lay the foundation for understanding the long-term impact of factors such as antibiotic use in the development of a healthy microbiome as well as the development of future urologic and gastrointestinal diseases.
Collapse
Affiliation(s)
- Borna Kassiri
- Department of Urology, the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eva Shrestha
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Matthew Kasprenski
- Department of Urology, the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Corina Antonescu
- Department of Medicine, McKusick-Nathans Institute of Genetic Medicine, Baltimore, MD
| | - Liliana D Florea
- Department of Medicine, McKusick-Nathans Institute of Genetic Medicine, Baltimore, MD
| | - Karen S Sfanos
- Department of Urology, the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287.
| | - Ming-Hsien Wang
- Department of Urology, the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Urology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| |
Collapse
|
13
|
Kispal ZF, Vajda P, Kardos D, Klymiuk I, Moissl-Eichinger C, Castellani C, Singer G, Till H. The local microbiome after pediatric bladder augmentation: intestinal segments and the native urinary bladder host similar mucosal microbiota. J Pediatr Urol 2019; 15:30.e1-30.e7. [PMID: 30206025 DOI: 10.1016/j.jpurol.2018.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/26/2018] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Next-generation sequencing (NGS) techniques have provided novel insights into the microbiome of the urinary bladder (UB). In children after bladder augmentation using either ileum (ileocystoplasty, ICP) or colon (colocystoplasty, CCP), the fate of the mucosal microbiome introduced into the urinary tract remains unknown. OBJECTIVE The aim was to compare the mucosal microbiome of the native UB vs the augmented intestinal segment (IS) using NGS. STUDY DESIGN Twelve children after bladder augmentation (ICP n = 6, CCP n = 6) were included. Biopsies were taken during routine postoperative cystoscopy from the native UB and the IS. Specimens underwent whole-genome DNA extraction, 16S rRNA gene amplification, NGS, and Quantitative Insights Into Microbial Ecology (QIIME) data analysis. Downstream statistical data analyses were performed in Calypso. RESULTS Patients' median age at the time of surgery was 11 years (6-17 years), and the median interval between augmentation and sampling was 7 years (4-13 years). α-Diversity (Shannon diversity index) was not significantly different between IS vs UB, ICP vs CCP, and male vs female. No general differences in the overall bacterial pattern (β-diversity) were found between IS, UB, ICP, and CCP groups. The groups overlapped in principal coordinate analysis (PCoA) and non-metric multidimensional scaling (NMDS) analysis (Figure). Age at sampling had a statistically significant influence on β-diversity at the genus level. Corynebacterium, Pseudoxanthomonas, Lactobacillus, Flavobacterium, and Micrococcus were the most dominating taxa detected over all samples. There was an obvious dominance of the genus Corynebacterium in the samples taken from the UB and IS in both ICP and CCP patients. Limitations of this study include the relatively small number of patients. CONCLUSION After bladder augmentation, the native UB and augmented ISs (ICP and CCP) host similar microbiota despite their distinct differences of originating mucosal anatomy.
Collapse
Affiliation(s)
- Z F Kispal
- Department of Pediatric and Adolescent Surgery, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz, Austria
| | - P Vajda
- Department of Pediatrics, Surgical Division, University of Pecs, József A Str 7, 7623 Pecs, Hungary
| | - D Kardos
- Department of Pediatrics, Surgical Division, University of Pecs, József A Str 7, 7623 Pecs, Hungary
| | - I Klymiuk
- Center for Medical Research, Core Facility Molecular Biology, Medical University of Graz, Stiftingtalstraße 24, 8036 Graz, Austria
| | - C Moissl-Eichinger
- Department of Internal Medicine, Joint Facilities, Medical University of Graz, Stiftingtalstraße 24, 8036 Graz, Austria; BioTechMed, Mozartgasse 12/II, 8010 Graz, Austria
| | - C Castellani
- Department of Pediatric and Adolescent Surgery, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz, Austria
| | - G Singer
- Department of Pediatric and Adolescent Surgery, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz, Austria.
| | - H Till
- Department of Pediatric and Adolescent Surgery, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz, Austria
| |
Collapse
|