1
|
Tong Q, Cai J, Wang Z, Sun Y, Liang X, Xu Q, Mahamoud OA, Qian Y, Qian Z. Recent Advances in the Modification and Improvement of Bioprosthetic Heart Valves. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309844. [PMID: 38279610 DOI: 10.1002/smll.202309844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/10/2023] [Indexed: 01/28/2024]
Abstract
Valvular heart disease (VHD) has become a burden and a growing public health problem in humans, causing significant morbidity and mortality worldwide. An increasing number of patients with severe VHD need to undergo heart valve replacement surgery, and artificial heart valves are in high demand. However, allogeneic valves from donors are lacking and cannot meet clinical practice needs. A mechanical heart valve can activate the coagulation pathway after contact with blood after implantation in the cardiovascular system, leading to thrombosis. Therefore, bioprosthetic heart valves (BHVs) are still a promising way to solve this problem. However, there are still challenges in the use of BHVs. For example, their longevity is still unsatisfactory due to the defects, such as thrombosis, structural valve degeneration, calcification, insufficient re-endothelialization, and the inflammatory response. Therefore, strategies and methods are needed to effectively improve the biocompatibility and longevity of BHVs. This review describes the recent research advances in BHVs and strategies to improve their biocompatibility and longevity.
Collapse
Affiliation(s)
- Qi Tong
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Jie Cai
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Zhengjie Wang
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Yiren Sun
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Xuyue Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Qiyue Xu
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157011, P. R. China
| | - Oumar Abdel Mahamoud
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Yongjun Qian
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
2
|
Broadwin M, Imarhia F, Oh A, Stone CR, Sellke FW, Bhowmick S, Abid MR. Exploring Electrospun Scaffold Innovations in Cardiovascular Therapy: A Review of Electrospinning in Cardiovascular Disease. Bioengineering (Basel) 2024; 11:218. [PMID: 38534492 DOI: 10.3390/bioengineering11030218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of mortality worldwide. In particular, patients who suffer from ischemic heart disease (IHD) that is not amenable to surgical or percutaneous revascularization techniques have limited treatment options. Furthermore, after revascularization is successfully implemented, there are a number of pathophysiological changes to the myocardium, including but not limited to ischemia-reperfusion injury, necrosis, altered inflammation, tissue remodeling, and dyskinetic wall motion. Electrospinning, a nanofiber scaffold fabrication technique, has recently emerged as an attractive option as a potential therapeutic platform for the treatment of cardiovascular disease. Electrospun scaffolds made of biocompatible materials have the ability to mimic the native extracellular matrix and are compatible with drug delivery. These inherent properties, combined with ease of customization and a low cost of production, have made electrospun scaffolds an active area of research for the treatment of cardiovascular disease. In this review, we aim to discuss the current state of electrospinning from the fundamentals of scaffold creation to the current role of electrospun materials as both bioengineered extracellular matrices and drug delivery vehicles in the treatment of CVD, with a special emphasis on the potential clinical applications in myocardial ischemia.
Collapse
Affiliation(s)
- Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Frances Imarhia
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Amy Oh
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Christopher R Stone
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Sankha Bhowmick
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| | - M Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
3
|
Lansakara M, Unai S, Ozaki S. Ozaki procedure-re-construction of aortic valve leaflets using autologous pericardial tissue: a review. Indian J Thorac Cardiovasc Surg 2023; 39:260-269. [PMID: 38093925 PMCID: PMC10713953 DOI: 10.1007/s12055-023-01635-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 12/17/2023] Open
Abstract
The Ozaki procedure has emerged as a valuable option for treating various aortic valve pathologies. This review article delves into the intricacies of this innovative surgical approach by exploring its adaptation to the complex anatomy and physiology of the aortic root. The diverse etiologies of aortic valve diseases, ranging from congenital anomalies to degenerative changes, make treatment selection a complex challenge. Aortic valve replacement has traditionally been the gold standard, but emerging evidence supports valve repair techniques, emphasizing the importance of preserving native tissue. Nevertheless, issues like lifelong anticoagulation with mechanical valves and patient-prosthetic mismatch remain. The Ozaki procedure offers a compelling alternative by utilizing autologous pericardium or a tissue substitute to construct new aortic valve leaflets. This technique, standardized by Dr. Ozaki in 2007, provides a customizable and adaptable solution. The article highlights the anatomy of the aortic root, emphasizing the critical role of the sinus of Valsalva and interleaflet triangles in maintaining proper valve function. The procedure's unique adaptation to aortic root dynamics allows for reduced mechanical stress during systole and diastole, mimicking the natural valve's behavior. Furthermore, Ozaki leaflets exhibit promising hemodynamics and reduced risks of complications, such as permanent pacemaker implantation and patient-prosthetic mismatch. The use of autologous pericardium in the Ozaki procedure presents advantages, including enhanced tissue strength, minimal immunogenicity, and reduced risk of immune-mediated calcification. These factors contribute to the longevity and resilience of the reconstructed valve. This comprehensive review aims to shed light on the procedure's intricacies, its alignment with aortic root anatomy and physiology, and its potential as a valuable tool in the armamentarium of aortic surgeons.
Collapse
Affiliation(s)
| | - Shinya Unai
- The Peter and Elizabeth C. Tower and Family Endowed Chair in Cardiothoracic Research, Aortic Valve Center, Heart Vascular and Thoracic Institute, Cleveland Clinic, 9500 Euclid Ave., Desk J4-1, Cleveland, OH 44915 USA
| | - Shigeyuki Ozaki
- Department of Cardiovascular Surgery, Toho University Ohashi Hospital, 2-17-6 Ohashi, Meguro-Ku, Tokyo, 153-8515 Japan
| |
Collapse
|
4
|
Snyder Y, Jana S. Strategies for Development of Synthetic Heart Valve Tissue Engineering Scaffolds. PROGRESS IN MATERIALS SCIENCE 2023; 139:101173. [PMID: 37981978 PMCID: PMC10655624 DOI: 10.1016/j.pmatsci.2023.101173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The current clinical solutions, including mechanical and bioprosthetic valves for valvular heart diseases, are plagued by coagulation, calcification, nondurability, and the inability to grow with patients. The tissue engineering approach attempts to resolve these shortcomings by producing heart valve scaffolds that may deliver patients a life-long solution. Heart valve scaffolds serve as a three-dimensional support structure made of biocompatible materials that provide adequate porosity for cell infiltration, and nutrient and waste transport, sponsor cell adhesion, proliferation, and differentiation, and allow for extracellular matrix production that together contributes to the generation of functional neotissue. The foundation of successful heart valve tissue engineering is replicating native heart valve architecture, mechanics, and cellular attributes through appropriate biomaterials and scaffold designs. This article reviews biomaterials, the fabrication of heart valve scaffolds, and their in-vitro and in-vivo evaluations applied for heart valve tissue engineering.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
5
|
Cordoves EM, Vunjak-Novakovic G, Kalfa DM. Designing Biocompatible Tissue Engineered Heart Valves In Situ: JACC Review Topic of the Week. J Am Coll Cardiol 2023; 81:994-1003. [PMID: 36889879 PMCID: PMC10666973 DOI: 10.1016/j.jacc.2022.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 03/08/2023]
Abstract
Valvular heart disease is a globally prevalent cause of morbidity and mortality, with both congenital and acquired clinical presentations. Tissue engineered heart valves (TEHVs) have the potential to radically shift the treatment landscape for valvular disease by functioning as life-long valve replacements that overcome the current limitations of bioprosthetic and mechanical valves. TEHVs are envisioned to meet these goals by functioning as bioinstructive scaffolds that guide the in situ generation of autologous valves capable of growth, repair, and remodeling within the patient. Despite their promise, clinical translation of in situ TEHVs has proven challenging largely because of the unpredictable and patient-specific nature of the TEHV and host interaction following implantation. In light of this challenge, we propose a framework for the development and clinical translation of biocompatible TEHVs, wherein the native valvular environment actively informs the valve's design parameters and sets the benchmarks by which it is functionally evaluated.
Collapse
Affiliation(s)
- Elizabeth M Cordoves
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA; Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, New York, USA; Department of Medicine, Columbia University, New York, New York, USA.
| | - David M Kalfa
- Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian-Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, New York, USA.
| |
Collapse
|
6
|
Marei I, Ahmetaj-Shala B, Triggle CR. Biofunctionalization of cardiovascular stents to induce endothelialization: Implications for in- stent thrombosis in diabetes. Front Pharmacol 2022; 13:982185. [PMID: 36299902 PMCID: PMC9589287 DOI: 10.3389/fphar.2022.982185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Stent thrombosis remains one of the main causes that lead to vascular stent failure in patients undergoing percutaneous coronary intervention (PCI). Type 2 diabetes mellitus is accompanied by endothelial dysfunction and platelet hyperactivity and is associated with suboptimal outcomes following PCI, and an increase in the incidence of late stent thrombosis. Evidence suggests that late stent thrombosis is caused by the delayed and impaired endothelialization of the lumen of the stent. The endothelium has a key role in modulating inflammation and thrombosis and maintaining homeostasis, thus restoring a functional endothelial cell layer is an important target for the prevention of stent thrombosis. Modifications using specific molecules to induce endothelial cell adhesion, proliferation and function can improve stents endothelialization and prevent thrombosis. Blood endothelial progenitor cells (EPCs) represent a potential cell source for the in situ-endothelialization of vascular conduits and stents. We aim in this review to summarize the main biofunctionalization strategies to induce the in-situ endothelialization of coronary artery stents using circulating endothelial stem cells.
Collapse
Affiliation(s)
- Isra Marei
- Department of Pharmacology, Weill Cornell Medicine- Qatar, Doha, Qatar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- *Correspondence: Isra Marei, ; Chris R. Triggle,
| | | | - Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine- Qatar, Doha, Qatar
- *Correspondence: Isra Marei, ; Chris R. Triggle,
| |
Collapse
|
7
|
Natural Polymers in Heart Valve Tissue Engineering: Strategies, Advances and Challenges. Biomedicines 2022; 10:biomedicines10051095. [PMID: 35625830 PMCID: PMC9139175 DOI: 10.3390/biomedicines10051095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
In the history of biomedicine and biomedical devices, heart valve manufacturing techniques have undergone a spectacular evolution. However, important limitations in the development and use of these devices are known and heart valve tissue engineering has proven to be the solution to the problems faced by mechanical and prosthetic valves. The new generation of heart valves developed by tissue engineering has the ability to repair, reshape and regenerate cardiac tissue. Achieving a sustainable and functional tissue-engineered heart valve (TEHV) requires deep understanding of the complex interactions that occur among valve cells, the extracellular matrix (ECM) and the mechanical environment. Starting from this idea, the review presents a comprehensive overview related not only to the structural components of the heart valve, such as cells sources, potential materials and scaffolds fabrication, but also to the advances in the development of heart valve replacements. The focus of the review is on the recent achievements concerning the utilization of natural polymers (polysaccharides and proteins) in TEHV; thus, their extensive presentation is provided. In addition, the technological progresses in heart valve tissue engineering (HVTE) are shown, with several inherent challenges and limitations. The available strategies to design, validate and remodel heart valves are discussed in depth by a comparative analysis of in vitro, in vivo (pre-clinical models) and in situ (clinical translation) tissue engineering studies.
Collapse
|
8
|
Motta SE, Zaytseva P, Fioretta ES, Lintas V, Breymann C, Hoerstrup SP, Emmert MY. Endothelial Progenitor Cell-Based in vitro Pre-Endothelialization of Human Cell-Derived Biomimetic Regenerative Matrices for Next-Generation Transcatheter Heart Valves Applications. Front Bioeng Biotechnol 2022; 10:867877. [PMID: 35433657 PMCID: PMC9008229 DOI: 10.3389/fbioe.2022.867877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 01/22/2023] Open
Abstract
Hemocompatibility of cardiovascular implants represents a major clinical challenge and, to date, optimal antithrombotic properties are lacking. Next-generation tissue-engineered heart valves (TEHVs) made from human-cell-derived tissue-engineered extracellular matrices (hTEMs) demonstrated their recellularization capacity in vivo and may represent promising candidates to avoid antithrombotic therapy. To further enhance their hemocompatibility, we tested hTEMs pre-endothelialization potential using human-blood-derived endothelial-colony-forming cells (ECFCs) and umbilical vein cells (control), cultured under static and dynamic orbital conditions, with either FBS or hPL. ECFCs performance was assessed via scratch assay, thereby recapitulating the surface damages occurring in transcatheter valves during crimping procedures. Our study demonstrated: feasibility to form a confluent and functional endothelium on hTEMs with expression of endothelium-specific markers; ECFCs migration and confluency restoration after crimping tests; hPL-induced formation of neo-microvessel-like structures; feasibility to pre-endothelialize hTEMs-based TEHVs and ECFCs retention on their surface after crimping. Our findings may stimulate new avenues towards next-generation pre-endothelialized implants with enhanced hemocompatibility, being beneficial for selected high-risk patients.
Collapse
Affiliation(s)
- Sarah E. Motta
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Polina Zaytseva
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Emanuela S. Fioretta
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Valentina Lintas
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Christian Breymann
- Department of Obstetrics and Gynaecology, University Hospital Zurich, Obstetric Research, Feto- Maternal Haematology Research Group, Zurich, Switzerland
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University and ETH Zurich, Zurich, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- *Correspondence: Maximilian Y. Emmert,
| |
Collapse
|
9
|
Tissue Engineered Transcatheter Pulmonary Valved Stent Implantation: Current State and Future Prospect. Int J Mol Sci 2022; 23:ijms23020723. [PMID: 35054905 PMCID: PMC8776029 DOI: 10.3390/ijms23020723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Patients with the complex congenital heart disease (CHD) are usually associated with right ventricular outflow tract dysfunction and typically require multiple surgical interventions during their lives to relieve the right ventricular outflow tract abnormality. Transcatheter pulmonary valve replacement was used as a non-surgical, less invasive alternative treatment for right ventricular outflow tract dysfunction and has been rapidly developing over the past years. Despite the current favorable results of transcatheter pulmonary valve replacement, many patients eligible for pulmonary valve replacement are still not candidates for transcatheter pulmonary valve replacement. Therefore, one of the significant future challenges is to expand transcatheter pulmonary valve replacement to a broader patient population. This review describes the limitations and problems of existing techniques and focuses on decellularized tissue engineering for pulmonary valve stenting.
Collapse
|
10
|
Butany J, Schoen FJ. Cardiac valve replacement and related interventions. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
Qi SS, Kelly RF, Bianco R, Schoen FJ. Increased utilization of bioprosthetic aortic valve technology:Trends, drivers, controversies and future directions. Expert Rev Cardiovasc Ther 2021; 19:537-546. [PMID: 33928833 DOI: 10.1080/14779072.2021.1924676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Bioprosthetic valves (BPV) implanted surgically or by transcatheter valve implantation (TAVI) comprise an overwhelming majority of substitute aortic valves implanted worldwide.Areas Covered: Prominent drivers of this trend are: 1) BPV patients have generally better outcomes than those with a mechanical valve, and remain largely free of anticoagulation and its consequences; 2) BPV durability has improved over the years; and 3) the expanding use of TAVI and valve-in-valve (VIV) procedures permitting interventional management of structural valve degeneration (SVD). Nevertheless, key controversies exist: 1) optimal anticoagulation regimens for surgical and TAVI BPVs; 2) the incidence, mechanisms and mitigation strategies for SVD; 3) the use of VIV for treatment of SVD, and 4) valve selection recommendations for difficult cohorts, (e.g. patients 50-70 years, patients <50, childbearing age women). This communication reviews trends in and drivers of BPV utilization, current controversies, and future directions affecting BPV use.Expert Opinion: Long-term data are needed in several areas related to aortic BPV use, including anticoagulation/antiplatelet therapy, especially following TAVI. TAVI and especially VIV durability and optimal use warrant will benefit greatly from long-term data. Certain populations may benefit from such high-quality data on multi-year outcomes, particularly younger patients.
Collapse
Affiliation(s)
- Steven S Qi
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Rosemary F Kelly
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Richard Bianco
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Frederick J Schoen
- Professor of Pathology and Health Sciences and Technology, Harvard Medical School, Executive Vice Chairman, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
12
|
Nemoto S, Konishi H, Suzuki T, Shimada R, Katsumata T, Osawa S, Yamaguchi A. Long-term viability and extensibility of an in situ regenerated canine aortic wall using hybrid warp-knitted fabric. Interact Cardiovasc Thorac Surg 2021; 33:165-172. [PMID: 33880514 DOI: 10.1093/icvts/ivab064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Many surgical materials promoting tissue regeneration have been explored for use in paediatric cardiac surgery. The aim of this study is to evaluate the long-term viability and extensibility of the canine aortic wall regenerated using a novel synthetic hybrid fabric. METHODS The sheet is a warp-knitted fabric of biodegradable (poly-l-lactic acid) and non-biodegradable (polyethylene terephthalate) yarns coated with cross-linked gelatine. This material was implanted as a patch to fill an oval-shaped defect created in the canine descending aorta. The tissue samples were explanted after 12, 24 or 36 months (N = 3, 2, 2, respectively) for histological examination and biomechanical testing. RESULTS There was no shrinkage, rupture or aneurysmal change after 24 months. The regenerated wall showed prototypical vascular healing without material degeneration, chronic inflammation, calcification or abnormal intimal overgrowth. Bridging tissue across the patch was well-formed and had expanded over time. The biodegradable yarns had completely degraded at 24 months after implantation, as scheduled, but the regenerated aortic wall demonstrated satisfactory levels of mechanical strength and extensibility in tensile strength tests. CONCLUSIONS The sheet achieved good long-term viability and extensibility in the regenerated aortic wall. These findings suggest that it is a promising surgical material for repairing congenital heart defects. Further developments of the sheet are required, including clinical studies.
Collapse
Affiliation(s)
- Shintaro Nemoto
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College, Osaka, Japan
| | - Hayato Konishi
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College, Osaka, Japan
| | - Tatsuya Suzuki
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College, Osaka, Japan
| | - Ryo Shimada
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College, Osaka, Japan
| | - Takahiro Katsumata
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College, Osaka, Japan
| | - Satomi Osawa
- Toxicology Research Department, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Tokyo, Japan
| | - Ayuko Yamaguchi
- Healthcare Business Development-Medical Device, Teijin Limited, Tokyo, Japan
| |
Collapse
|
13
|
Stassen OMJA, Ristori T, Sahlgren CM. Notch in mechanotransduction - from molecular mechanosensitivity to tissue mechanostasis. J Cell Sci 2020; 133:133/24/jcs250738. [PMID: 33443070 DOI: 10.1242/jcs.250738] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue development and homeostasis are controlled by mechanical cues. Perturbation of the mechanical equilibrium triggers restoration of mechanostasis through changes in cell behavior, while defects in these restorative mechanisms lead to mechanopathologies, for example, osteoporosis, myopathies, fibrosis or cardiovascular disease. Therefore, sensing mechanical cues and integrating them with the biomolecular cell fate machinery is essential for the maintenance of health. The Notch signaling pathway regulates cell and tissue fate in nearly all tissues. Notch activation is directly and indirectly mechanosensitive, and regulation of Notch signaling, and consequently cell fate, is integral to the cellular response to mechanical cues. Fully understanding the dynamic relationship between molecular signaling, tissue mechanics and tissue remodeling is challenging. To address this challenge, engineered microtissues and computational models play an increasingly large role. In this Review, we propose that Notch takes on the role of a 'mechanostat', maintaining the mechanical equilibrium of tissues. We discuss the reciprocal role of Notch in the regulation of tissue mechanics, with an emphasis on cardiovascular tissues, and the potential of computational and engineering approaches to unravel the complex dynamic relationship between mechanics and signaling in the maintenance of cell and tissue mechanostasis.
Collapse
Affiliation(s)
- Oscar M J A Stassen
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, 20500 Turku, Finland.,Turku Bioscience Centre, Åbo Akademi University and University of Turku, 20520 Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Cecilia M Sahlgren
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, 20500 Turku, Finland .,Turku Bioscience Centre, Åbo Akademi University and University of Turku, 20520 Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
14
|
Long L, Wu C, Hu X, Wang Y. Biodegradable synthetic polymeric composite scaffold‐based tissue engineered heart valve with minimally invasive transcatheter implantation. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lin‐yu Long
- National Engineering Research Center for Biomaterials Sichuan University Chengdu China
| | - Can Wu
- National Engineering Research Center for Biomaterials Sichuan University Chengdu China
| | - Xue‐feng Hu
- National Engineering Research Center for Biomaterials Sichuan University Chengdu China
| | - Yun‐bing Wang
- National Engineering Research Center for Biomaterials Sichuan University Chengdu China
| |
Collapse
|
15
|
|
16
|
Animal Surgery and Care of Animals. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Kristen M, Ainsworth MJ. Fiber Scaffold Patterning for Mending Hearts: 3D Organization Bringing the Next Step. Adv Healthc Mater 2020; 9:e1900775. [PMID: 31603288 PMCID: PMC7116178 DOI: 10.1002/adhm.201900775] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/14/2019] [Indexed: 12/14/2022]
Abstract
Heart failure (HF) is a leading cause of death worldwide. The most common conditions that lead to HF are coronary artery disease, myocardial infarction, valve disorders, high blood pressure, and cardiomyopathy. Due to the limited regenerative capacity of the heart, the only curative therapy currently available is heart transplantation. Therefore, there is a great need for the development of novel regenerative strategies to repair the injured myocardium, replace damaged valves, and treat occluded coronary arteries. Recent advances in manufacturing technologies have resulted in the precise fabrication of 3D fiber scaffolds with high architectural control that can support and guide new tissue growth, opening exciting new avenues for repair of the human heart. This review discusses the recent advancements in the novel research field of fiber patterning manufacturing technologies for cardiac tissue engineering (cTE) and to what extent these technologies could meet the requirements of the highly organized and structured cardiac tissues. Additionally, future directions of these novel fiber patterning technologies, designs, and applicability to advance cTE are presented.
Collapse
Affiliation(s)
- Marleen Kristen
- Regenerative Medicine Center, University Medical Center Utrecht,
Utrecht 3584 CT, The Netherlands; Department of Orthopedics, University Medical
Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Madison J. Ainsworth
- Regenerative Medicine Center, University Medical Center Utrecht,
Utrecht 3584 CT, The Netherlands; Department of Orthopedics, University Medical
Center Utrecht, Utrecht 3584 CX, The Netherlands
| |
Collapse
|
18
|
Zhang BL, Bianco RW, Schoen FJ. Preclinical Assessment of Cardiac Valve Substitutes: Current Status and Considerations for Engineered Tissue Heart Valves. Front Cardiovasc Med 2019; 6:72. [PMID: 31231661 PMCID: PMC6566127 DOI: 10.3389/fcvm.2019.00072] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Tissue engineered heart valve (TEHV) technology may overcome deficiencies of existing available heart valve substitutes. The pathway by which TEHVs will undergo development and regulatory approval has several challenges. In this communication, we review: (1) the regulatory framework for regulation of medical devices in general and substitute heart valves in particular; (2) the special challenges of preclinical testing using animal models for TEHV, emphasizing the International Standards Organization (ISO) guidelines in document 5840; and (3) considerations that suggest a translational roadmap to move TEHV forward from pre-clinical to clinical studies and clinical implementation.
Collapse
Affiliation(s)
- Benjamin L Zhang
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Richard W Bianco
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Frederick J Schoen
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Santoro R, Venkateswaran S, Amadeo F, Zhang R, Brioschi M, Callanan A, Agrifoglio M, Banfi C, Bradley M, Pesce M. Acrylate-based materials for heart valve scaffold engineering. Biomater Sci 2018; 6:154-167. [PMID: 29148548 DOI: 10.1039/c7bm00854f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Calcific aortic valve disease (CAVD) is the most frequent cardiac valve pathology. Its standard treatment consists of surgical replacement either with mechanical (metal made) or biological (animal tissue made) valve prostheses, both of which have glaring deficiencies. In the search for novel materials to manufacture artificial valve tissue, we have conducted a high-throughput screening with subsequent up-scaling to identify non-degradable polymer substrates that promote valve interstitial cells (VICs) adherence/growth and, at the same time, prevent their evolution toward a pro-calcific phenotype. Here, we provide evidence that one of the two identified 'hit' polymers, poly(methoxyethylmethacrylate-co-diethylaminoethylmethacrylate), provided robust VICs adhesion and maintained the healthy VICs phenotype without inducing pro-osteogenic differentiation. This ability was also maintained when the polymer was used to coat a non-woven poly-caprolactone (PCL) scaffold using a novel solvent coating procedure, followed by bioreactor-assisted VICs seeding. Since we observed that VICs had an increased secretion of the elastin-maturing component MFAP4 in addition to other valve-specific extracellular matrix components, we conclude that valve implants constructed with this polyacrylate will drive the biological response of human valve-specific cells.
Collapse
Affiliation(s)
- Rosaria Santoro
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nemoto S, Konishi H, Shimada R, Suzuki T, Katsumata T, Yamada H, Sakurai J, Sakamoto Y, Kohno K, Onishi A, Ito M. In situ tissue regeneration using a warp-knitted fabric in the canine aorta and inferior vena cava†. Eur J Cardiothorac Surg 2018; 54:318-327. [DOI: 10.1093/ejcts/ezy045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/19/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- Shintaro Nemoto
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Hayato Konishi
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Ryo Shimada
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Tatsuya Suzuki
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Takahiro Katsumata
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Hideaki Yamada
- Production Development Section, Fukui Tateami Co., Ltd, Fukui, Japan
| | - Jun Sakurai
- Production Development Section, Fukui Tateami Co., Ltd, Fukui, Japan
| | - Yohei Sakamoto
- Toxicology Research Department, Teijin Institute for Biomedical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| | - Kazuteru Kohno
- Healthcare Business Development, Teijin Limited, Hino, Tokyo, Japan
| | - Atsuko Onishi
- Healthcare Business Development, Teijin Limited, Hino, Tokyo, Japan
| | - Masaya Ito
- Healthcare Business Development, Teijin Limited, Hino, Tokyo, Japan
| |
Collapse
|
21
|
Gabbott CM, Sun T. Comparison of Human Dermal Fibroblasts and HaCat Cells Cultured in Medium with or without Serum via a Generic Tissue Engineering Research Platform. Int J Mol Sci 2018; 19:ijms19020388. [PMID: 29382087 PMCID: PMC5855610 DOI: 10.3390/ijms19020388] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 12/16/2022] Open
Abstract
A generic research platform with 2-dimensional (2D) cell culture technology, a 3-dimensional (3D) in vitro tissue model, and a scaled-down cell culture and imaging system in between, was utilized to address the problematic issues associated with the use of serum in skin tissue engineering. Human dermal fibroblasts (HDFs) and immortalized keratinocytes (HaCat cells) mono- or co-cultured in serum or serum-free medium were compared and analyzed via the platform. It was demonstrated that serum depletion had significant influence on the attachment of HaCat cells onto tissue culture plastic (TCP), porous substrates and cellulosic scaffolds, which was further enhanced by the pre-seeded HDFs. The complex structures formed by the HDFs colonized within the porous substrates and scaffolds not only prevented the seeded HaCat cells from filtering through the open pores, but also acted as cellular substrates for HaCat cells to attach onto. When mono-cultured on TCP, both HDFs and HaCat cells were less proliferative in medium without serum than with serum. However, both cell types were successfully co-cultured in 2D using serum-free medium if the initial cell seeding density was higher than 80,000 cells/cm2 (with 1:1 ratio). Based on the results from 2D cultures, co-culture of both cell types on modular substrates with small open pores (125 μm) and cellulosic scaffolds with open pores of varying sizes (50–300 µm) were then conducted successfully in serum-free medium. This study demonstrated that the generic research platform had great potential for in-depth understanding of HDFs and HaCat cells cultivated in serum-free medium, which could inform the processes for manufacturing skin cells or tissues for clinical applications.
Collapse
Affiliation(s)
- Christopher Michael Gabbott
- Centre for Biological Engineering, Department of Chemical Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK.
| | - Tao Sun
- Centre for Biological Engineering, Department of Chemical Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK.
| |
Collapse
|