1
|
Mbah NE, Myers AL, Sajjakulnukit P, Chung C, Thompson JK, Hong HS, Giza H, Dang D, Nwosu ZC, Shan M, Sweha SR, Maydan DD, Chen B, Zhang L, Magnuson B, Zhu Z, Radyk M, Lavoie B, Yadav VN, Koo I, Patterson AD, Wahl DR, Franchi L, Agnihotri S, Koschmann CJ, Venneti S, Lyssiotis CA. Therapeutic targeting of differentiation-state dependent metabolic vulnerabilities in diffuse midline glioma. Nat Commun 2024; 15:8983. [PMID: 39419964 PMCID: PMC11487135 DOI: 10.1038/s41467-024-52973-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
H3K27M diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPG), exhibit cellular heterogeneity comprising less-differentiated oligodendrocyte precursors (OPC)-like stem cells and more differentiated astrocyte (AC)-like cells. Here, we establish in vitro models that recapitulate DMG-OPC-like and AC-like phenotypes and perform transcriptomics, metabolomics, and bioenergetic profiling to identify metabolic programs in the different cellular states. We then define strategies to target metabolic vulnerabilities within specific tumor populations. We show that AC-like cells exhibit a mesenchymal phenotype and are sensitized to ferroptotic cell death. In contrast, OPC-like cells upregulate cholesterol biosynthesis, have diminished mitochondrial oxidative phosphorylation (OXPHOS), and are accordingly more sensitive to statins and OXPHOS inhibitors. Additionally, statins and OXPHOS inhibitors show efficacy and extend survival in preclinical orthotopic models established with stem-like H3K27M DMG cells. Together, this study demonstrates that cellular subtypes within DMGs harbor distinct metabolic vulnerabilities that can be uniquely and selectively targeted for therapeutic gain.
Collapse
Affiliation(s)
- Nneka E Mbah
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Amy L Myers
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Peter Sajjakulnukit
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA
- Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, USA
| | - Chan Chung
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Ann Arbor, USA
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | | | - Hanna S Hong
- Graduate Program in Immunology, University of Michigan, Ann Arbor, USA
| | - Heather Giza
- Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, USA
| | - Derek Dang
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Ann Arbor, USA
- Graduate Program in Molecular & Cellular Pathology, University of Michigan, Ann Arbor, USA
| | - Zeribe C Nwosu
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Mengrou Shan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Stefan R Sweha
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Ann Arbor, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, USA
| | - Daniella D Maydan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Brandon Chen
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, USA
| | - Li Zhang
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Brian Magnuson
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Zirui Zhu
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, USA
| | - Megan Radyk
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Brooke Lavoie
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Viveka Nand Yadav
- The Department of Pediatrics, Children's Mercy Research Institute (CMRI), Kansas, USA
| | - Imhoi Koo
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, USA
| | - Andrew D Patterson
- Department of Biochemistry and Molecular Biology and Department of Veterinary and Biomedical Sciences, the Pennsylvania State University, University Park, USA
| | - Daniel R Wahl
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, USA
| | - Luigi Franchi
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, USA
| | | | - Carl J Koschmann
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, USA
| | - Sriram Venneti
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA.
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Ann Arbor, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, USA.
- Department of Pathology, University of Michigan Medical School, Ann Arbor, USA.
| | - Costas A Lyssiotis
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA.
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA.
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
2
|
Huchede P, Meyer S, Berthelot C, Hamadou M, Bertrand-Chapel A, Rakotomalala A, Manceau L, Tomine J, Lespinasse N, Lewandowski P, Cordier-Bussat M, Broutier L, Dutour A, Rochet I, Blay JY, Degletagne C, Attignon V, Montero-Carcaboso A, Le Grand M, Pasquier E, Vasiljevic A, Gilardi-Hebenstreit P, Meignan S, Leblond P, Ribes V, Cosset E, Castets M. BMP2 and BMP7 cooperate with H3.3K27M to promote quiescence and invasiveness in pediatric diffuse midline gliomas. eLife 2024; 12:RP91313. [PMID: 39373720 PMCID: PMC11458179 DOI: 10.7554/elife.91313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
Pediatric diffuse midline gliomas (pDMG) are an aggressive type of childhood cancer with a fatal outcome. Their major epigenetic determinism has become clear, notably with the identification of K27M mutations in histone H3. However, the synergistic oncogenic mechanisms that induce and maintain tumor cell phenotype have yet to be deciphered. In 20 to 30% of cases, these tumors have an altered BMP signaling pathway with an oncogenic mutation on the BMP type I receptor ALK2, encoded by ACVR1. However, the potential impact of the BMP pathway in tumors non-mutated for ACVR1 is less clear. By integrating bulk, single-cell, and spatial transcriptomic data, we show here that the BMP signaling pathway is activated at similar levels between ACVR1 wild-type and mutant tumors and identify BMP2 and BMP7 as putative activators of the pathway in a specific subpopulation of cells. By using both pediatric isogenic glioma lines genetically modified to overexpress H3.3K27M and patients-derived DIPG cell lines, we demonstrate that BMP2/7 synergizes with H3.3K27M to induce a transcriptomic rewiring associated with a quiescent but invasive cell state. These data suggest a generic oncogenic role for the BMP pathway in gliomagenesis of pDMG and pave the way for specific targeting of downstream effectors mediating the K27M/BMP crosstalk.
Collapse
Affiliation(s)
- Paul Huchede
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Swann Meyer
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Clement Berthelot
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Maud Hamadou
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Adrien Bertrand-Chapel
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Andria Rakotomalala
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER Cancer Heterogeneity Plasticity and Resistance to Therapies, Centre Oscar LambretLilleFrance
| | - Line Manceau
- Université Paris Cité, CNRS, Institut Jacques MonodParisFrance
| | - Julia Tomine
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Nicolas Lespinasse
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Paul Lewandowski
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER Cancer Heterogeneity Plasticity and Resistance to Therapies, Centre Oscar LambretLilleFrance
| | - Martine Cordier-Bussat
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Laura Broutier
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Aurelie Dutour
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Isabelle Rochet
- Multisite Institute of Pathology, Groupement Hospitalier Est du CHU de Lyon, Hôpital Femme-Mère EnfantBronFrance
| | - Jean-Yves Blay
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | | | | | - Angel Montero-Carcaboso
- Preclinical Therapeutics and Drug Delivery Research Program, Department of Oncology, Hospital Sant Joan de DéuBarcelonaSpain
| | - Marion Le Grand
- Centre de Recherche en Cancérologie de Marseille (CRCM), Université Aix-Marseille, Institut Paoli- Calmettes, Centre de Lutte Contre le Cancer de la région PACA, INSERM 1068, CNRS 7258MarseilleFrance
| | - Eddy Pasquier
- Centre de Recherche en Cancérologie de Marseille (CRCM), Université Aix-Marseille, Institut Paoli- Calmettes, Centre de Lutte Contre le Cancer de la région PACA, INSERM 1068, CNRS 7258MarseilleFrance
| | - Alexandre Vasiljevic
- Multisite Institute of Pathology, Groupement Hospitalier Est du CHU de Lyon, Hôpital Femme-Mère EnfantBronFrance
| | | | - Samuel Meignan
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER Cancer Heterogeneity Plasticity and Resistance to Therapies, Centre Oscar LambretLilleFrance
| | - Pierre Leblond
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
- Department of Pediatric Oncology, Institute of Pediatric Hematology and Oncology (IHOPe), Centre Léon BérardLyonFrance
| | - Vanessa Ribes
- Université Paris Cité, CNRS, Institut Jacques MonodParisFrance
| | - Erika Cosset
- GLIMMER Of lIght (GLIoblastoma MetabolisM, HetERogeneity, and OrganoIds) team, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Marie Castets
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| |
Collapse
|
3
|
Vitanza NA, Choe M, Brown C, Beebe A, Kong A, Rogers L, Jacob S, Mano E, Abuan K, Mgebroff S, Lindgren C, Gustafson JA, Wilson AL, Noll A, Ronsley R, Crotty EE, Leary SES, Foster JB, Pinto N, Gust J, Gardner RA, Park JR, Jensen MC. Locoregional CAR T Cells for the Treatment of CNS Tumors in Children: Investigational Drug Service Pharmacy Activities. JOURNAL OF HEMATOLOGY ONCOLOGY PHARMACY 2024; 14:148-154. [PMID: 39238483 PMCID: PMC11375759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
BACKGROUND A major obstacle in translating the therapeutic potential of chimeric antigen receptor (CAR) T cells to children with central nervous system (CNS) tumors is the blood-brain barrier. To overcome this limitation, preclinical and clinical studies have supported the use of repeated, locoregional intracranial CAR T-cell delivery. However, there is limited literature available describing the process for the involvement of an investigational drug service (IDS) pharmacy, particularly in the setting of a children's hospital with outpatient dosing for CNS tumors. OBJECTIVES To describe Seattle Children's Hospital's experience in clinically producing CAR T cells and the implementation of IDS pharmacy practices used to deliver more than 300 intracranial CAR T-cell doses to children, as well as to share how we refined the processing techniques from CAR T-cell generation to the thawing of fractionated doses for intracranial delivery. METHODS Autologous CD4+ and CD8+ T cells were collected and transduced to express HER2, EGFR, or B7-H3-specific CAR T cells. Cryopreserved CAR T cells were thawed by the IDS pharmacy before intracranial delivery to patients with recurrent/refractory CNS tumors or with diffuse intrinsic pontine glioma/diffuse midline glioma. RESULTS The use of a thaw-and-dilute procedure for cryopreserved individual CAR T-cell doses provides reliable viability and is more efficient than typical thaw-and-wash protocols. Cell viability with the thaw-and-dilute protocol was approximately 75% and was always within 10% of the viability assessed at cryopreservation. Cell viability was preserved through 6 hours after thawing, which exceeded the 1-hour time frame from thawing to infusion. CONCLUSION As the field of adoptive immunotherapy grows and continues to bring hope to patients with fatal CNS malignancies, it is critical to focus on improving the preparatory steps for CAR T-cell delivery.
Collapse
Affiliation(s)
- Nicholas A Vitanza
- University of Washington (UW), a Laboratory Principal Investigator (PI) at the Ben Towne Center for Childhood Cancer Research at Seattle Children's Research Institute (SCRI), and a Neuro-Oncologist at Seattle Children's Hospital (SCH)
| | - Michelle Choe
- Fred Hutch Cancer Center and an Assistant Professor of Pediatrics at UW
| | | | | | - Ada Kong
- Clinical Research Support Cores, SCH
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jessica B Foster
- Children's Hospital of Philadelphia and Pediatric Neuro-Oncologist at the University of Pennsylvania
| | | | - Juliane Gust
- Pediatrics at UW, a Laboratory PI at the Center for Integrated Brain Health at SCRI, and a Neurologist at SCH
| | - Rebecca A Gardner
- Pediatrics at UW, an Oncologist at SCH, and the Associate Medical Director of SCTx
| | - Julie R Park
- Pediatrics at UW, an Oncologist at SCH, and the Medical Director of SCTx
| | | |
Collapse
|
4
|
Valvi S, Manoharan N, Mateos MK, Hassall TE, Ziegler DS, McCowage GB, Dun MD, Eisenstat DD, Gottardo NG, Hansford JR. Management of patients with diffuse intrinsic pontine glioma in Australia and New Zealand: Australian and New Zealand Children's Haematology/Oncology Group position statement. Med J Aust 2024; 220:533-538. [PMID: 38699949 DOI: 10.5694/mja2.52295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
INTRODUCTION The main mission of the Australian and New Zealand Children's Haematology and Oncology Group (ANZCHOG) is to develop and facilitate local access to the world's leading evidence-based clinical trials for all paediatric cancers, including brain tumours, as soon as practically possible. Diffuse intrinsic pontine gliomas (DIPGs) - a subset of a larger group of tumours now termed diffuse midline glioma, H3K27-altered (DMG) - are paediatric brain cancers with less than 10% survival at two years. In the absence of any proven curative therapies, significant recent advancements have been made in pre-clinical and clinical research, leading many to seek integration of novel therapies early into standard practice. Despite these innovative therapeutic approaches, DIPG remains an incurable disease for which novel surgical, imaging, diagnostic, radiation and systemic therapy approaches are needed. MAIN RECOMMENDATIONS All patients with DIPG should be discussed in multidisciplinary neuro-oncology meetings (including pathologists, neuroradiologists, radiation oncologists, neurosurgeons, medical oncologists) at diagnosis and at relapse or progression. Radiation therapy to the involved field remains the local and international standard of care treatment. Proton therapy does not yield a superior survival outcome compared with photon therapy and patients should undergo radiation therapy with the available modality (photon or proton) at their treatment centre. Patients may receive concurrent chemotherapy or radiation-sensitising agents as part of a clinical trial. Biopsy should be offered to facilitate consideration of experimental therapies and eligibility for clinical trial participation. After radiation therapy, each patient should be managed individually with either observation or considered for enrolment on a clinical trial, if eligible, after full discussion with the family. Re-irradiation can be considered for progressive disease. CHANGES IN MANAGEMENT AS A RESULT OF THE GUIDELINE Every child diagnosed with DIPG should be offered enrolment on a clinical trial where available. Access to investigational drugs without biological rationale outside the clinical trial setting is not supported. In case of potentially actionable target identification with molecular profiling and absence of a suitable clinical trial, rational targeted therapies can be considered through compassionate access programs.
Collapse
Affiliation(s)
- Santosh Valvi
- Perth Children's Hospital, Perth, WA
- Telethon Kids Institute, Perth, WA
- University of Western Australia, Perth, WA
| | - Neevika Manoharan
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, Sydney, NSW
- University of New South Wales, Sydney, NSW
| | - Marion K Mateos
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, Sydney, NSW
- University of New South Wales, Sydney, NSW
| | - Timothy Eg Hassall
- Queensland Children's Hospital, Brisbane, QLD
- Frazer Institute, University of Queensland, Brisbane, QLD
| | - David S Ziegler
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, Sydney, NSW
- University of New South Wales, Sydney, NSW
| | | | - Matthew D Dun
- University of Newcastle, Newcastle, NSW
- Hunter Medical Research Institute, Newcastle, NSW
| | - David D Eisenstat
- Children's Cancer Centre, Royal Children's Hospital Melbourne, Melbourne, VIC
- Murdoch Children's Research Institute, Melbourne, VIC
- University of Melbourne, Melbourne, VIC
| | | | - Jordan R Hansford
- Women's and Children's Hospital, Adelaide, SA
- South Australian Health and Medical Research Institute, Adelaide, SA
- University of Adelaide, Adelaide, SA
| |
Collapse
|
5
|
Arms LM, Duchatel RJ, Jackson ER, Sobrinho PG, Dun MD, Hua S. Current status and advances to improving drug delivery in diffuse intrinsic pontine glioma. J Control Release 2024; 370:835-865. [PMID: 38744345 DOI: 10.1016/j.jconrel.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma - DIPG), is the primary cause of brain tumor-related death in pediatric patients. DIPG is characterized by a median survival of <12 months from diagnosis, harboring the worst 5-year survival rate of any cancer. Corticosteroids and radiation are the mainstay of therapy; however, they only provide transient relief from the devastating neurological symptoms. Numerous therapies have been investigated for DIPG, but the majority have been unsuccessful in demonstrating a survival benefit beyond radiation alone. Although many barriers hinder brain drug delivery in DIPG, one of the most significant challenges is the blood-brain barrier (BBB). Therapeutic compounds must possess specific properties to enable efficient passage across the BBB. In brain cancer, the BBB is referred to as the blood-brain tumor barrier (BBTB), where tumors disrupt the structure and function of the BBB, which may provide opportunities for drug delivery. However, the biological characteristics of the brainstem's BBB/BBTB, both under normal physiological conditions and in response to DIPG, are poorly understood, which further complicates treatment. Better characterization of the changes that occur in the BBB/BBTB of DIPG patients is essential, as this informs future treatment strategies. Many novel drug delivery technologies have been investigated to bypass or disrupt the BBB/BBTB, including convection enhanced delivery, focused ultrasound, nanoparticle-mediated delivery, and intranasal delivery, all of which are yet to be clinically established for the treatment of DIPG. Herein, we review what is known about the BBB/BBTB and discuss the current status, limitations, and advances of conventional and novel treatments to improving brain drug delivery in DIPG.
Collapse
Affiliation(s)
- Lauren M Arms
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Ryan J Duchatel
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Evangeline R Jackson
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Pedro Garcia Sobrinho
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
6
|
Mandorino M, Maitra A, Armenise D, Baldelli OM, Miciaccia M, Ferorelli S, Perrone MG, Scilimati A. Pediatric Diffuse Midline Glioma H3K27-Altered: From Developmental Origins to Therapeutic Challenges. Cancers (Basel) 2024; 16:1814. [PMID: 38791893 PMCID: PMC11120159 DOI: 10.3390/cancers16101814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG), now referred to as diffuse midline glioma (DMG), is a highly aggressive pediatric cancer primarily affecting children aged 4 to 9 years old. Despite the research and clinical trials conducted to identify a possible treatment for DIPG, no effective drug is currently available. These tumors often affect deep midline brain structures in young children, suggesting a connection to early brain development's epigenetic regulation targets, possibly affecting neural progenitor functions and differentiation. The H3K27M mutation is a known DIPG trigger, but the exact mechanisms beyond epigenetic regulation remain unclear. After thoroughly examining the available literature, we found that over 85% of DIPG tumors contain a somatic missense mutation, K27M, in genes encoding histone H3.3 and H3.1, leading to abnormal gene expression that drives tumor growth and spread. This mutation impacts crucial brain development processes, including the epithelial-mesenchymal transition (EMT) pathway, and may explain differences between H3K27M and non-K27M pediatric gliomas. Effects on stem cells show increased proliferation and disrupted differentiation. The genomic organization of H3 gene family members in the developing brain has revealed variations in their expression patterns. All these observations suggest a need for global efforts to understand developmental origins and potential treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Antonio Scilimati
- Research Laboratory for Woman and Child Health, Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy; (M.M.); (A.M.); (D.A.); (O.M.B.); (M.M.); (S.F.); (M.G.P.)
| |
Collapse
|
7
|
Saratsis AM, Knowles T, Petrovic A, Nazarian J. H3K27M mutant glioma: Disease definition and biological underpinnings. Neuro Oncol 2024; 26:S92-S100. [PMID: 37818718 PMCID: PMC11066930 DOI: 10.1093/neuonc/noad164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Indexed: 10/12/2023] Open
Abstract
High-grade glioma (HGG) is the most common cause of cancer death in children and the most common primary central nervous system tumor in adults. While pediatric HGG was once thought to be biologically similar to the adult form of disease, research has shown these malignancies to be significantly molecularly distinct, necessitating distinct approaches to their clinical management. However, emerging data have shown shared molecular events in pediatric and adult HGG including the histone H3K27M mutation. This somatic missense mutation occurs in genes encoding one of two isoforms of the Histone H3 protein, H3F3A (H3.3), or HIST1H3B (H3.1), and is detected in up to 80% of pediatric diffuse midline gliomas and in up to 60% of adult diffuse gliomas. Importantly, the H3K27M mutation is associated with poorer overall survival and response to therapy compared to patients with H3 wild-type tumors. Here, we review the clinical features and biological underpinnings of pediatric and adult H3K27M mutant glioma, offering a groundwork for understanding current research and clinical approaches for the care of patients suffering with this challenging disease.
Collapse
Affiliation(s)
| | | | - Antonela Petrovic
- DMG Research Center, Department of Oncology, University Children’s Hospital, University of Zürich, Zürich, Switzerland
| | - Javad Nazarian
- Research Center for Genetic Medicine, Children’s National Health System, Washington, District of Columbia, USA
- Brain Tumor Institute, Children’s National Health System, Washington, District of Columbia, USA
- DMG Research Center, Department of Pediatrics, University Children’s Hospital, University of Zurich, Zürich, Switzerland
| |
Collapse
|
8
|
Satgunaseelan L, Sy J, Shivalingam B, Sim HW, Alexander KL, Buckland ME. Prognostic and predictive biomarkers in central nervous system tumours: the molecular state of play. Pathology 2024; 56:158-169. [PMID: 38233331 DOI: 10.1016/j.pathol.2023.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 01/19/2024]
Abstract
Central nervous system (CNS) tumours were one of the first cancer types to adopt and integrate molecular profiling into routine clinical diagnosis in 2016. The vast majority of these biomarkers, used to discriminate between tumour types, also offered prognostic information. With the advent of The Cancer Genome Atlas (TCGA) and other large genomic datasets, further prognostic sub-stratification was possible within tumour types, leading to increased precision in CNS tumour grading. This review outlines the evolution of the molecular landscape of adult CNS tumours, through the prism of World Health Organization (WHO) Classifications. We begin our journey in the pre-molecular era, where high-grade gliomas were divided into 'primary' and 'secondary' glioblastomas. Molecular alterations explaining these clinicopathological observations were the first branching points of glioma diagnostics, with the discovery of IDH1/2 mutations and 1p/19q codeletion. Subsequently, the rigorous characterisation of paediatric gliomas led to the unearthing of histone H3 alterations as a key event in gliomagenesis, which also had implications for young adult patients. Simultaneously, studies investigating prognostic biomarkers within tumour types were undertaken. Certain genomic phenotypes were found to portend unfavourable outcomes, for example, MYCN amplification in spinal ependymoma. The arrival of methylation profiling, having revolutionised the diagnosis of CNS tumours, now promises to bring increased prognostic accuracy, as has been shown in meningiomas. While MGMT promoter hypermethylation has remained a reliable biomarker of response to cytotoxic chemotherapy, targeted therapy in CNS tumours has unfortunately not had the success of other cancers. Therefore, predictive biomarkers have lagged behind the identification of prognostic biomarkers in CNS tumours. Emerging research from new clinical trials is cause for guarded optimism and may shift our conceptualisation of predictive biomarker testing in CNS tumours.
Collapse
Affiliation(s)
- Laveniya Satgunaseelan
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia; Department of Neurosurgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Joanne Sy
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Brindha Shivalingam
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia; Department of Neurosurgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Hao-Wen Sim
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia; Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, NSW, Australia; Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Kimberley L Alexander
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Department of Neurosurgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Michael E Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Casillo SM, Gatesman TA, Chilukuri A, Varadharajan S, Johnson BJ, David Premkumar DR, Jane EP, Plute TJ, Koncar RF, Stanton ACJ, Biagi-Junior CAO, Barber CS, Halbert ME, Golbourn BJ, Halligan K, Cruz AF, Mansi NM, Cheney A, Mullett SJ, Land CV, Perez JL, Myers MI, Agrawal N, Michel JJ, Chang YF, Vaske OM, MichaelRaj A, Lieberman FS, Felker J, Shiva S, Bertrand KC, Amankulor N, Hadjipanayis CG, Abdullah KG, Zinn PO, Friedlander RM, Abel TJ, Nazarian J, Venneti S, Filbin MG, Gelhaus SL, Mack SC, Pollack IF, Agnihotri S. An ERK5-PFKFB3 axis regulates glycolysis and represents a therapeutic vulnerability in pediatric diffuse midline glioma. Cell Rep 2024; 43:113557. [PMID: 38113141 DOI: 10.1016/j.celrep.2023.113557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 07/28/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Metabolic reprogramming in pediatric diffuse midline glioma is driven by gene expression changes induced by the hallmark histone mutation H3K27M, which results in aberrantly permissive activation of oncogenic signaling pathways. Previous studies of diffuse midline glioma with altered H3K27 (DMG-H3K27a) have shown that the RAS pathway, specifically through its downstream kinase, extracellular-signal-related kinase 5 (ERK5), is critical for tumor growth. Further downstream effectors of ERK5 and their role in DMG-H3K27a metabolic reprogramming have not been explored. We establish that ERK5 is a critical regulator of cell proliferation and glycolysis in DMG-H3K27a. We demonstrate that ERK5 mediates glycolysis through activation of transcription factor MEF2A, which subsequently modulates expression of glycolytic enzyme PFKFB3. We show that in vitro and mouse models of DMG-H3K27a are sensitive to the loss of PFKFB3. Multi-targeted drug therapy against the ERK5-PFKFB3 axis, such as with small-molecule inhibitors, may represent a promising therapeutic approach in patients with pediatric diffuse midline glioma.
Collapse
Affiliation(s)
- Stephanie M Casillo
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Taylor A Gatesman
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Akanksha Chilukuri
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Srinidhi Varadharajan
- Department of Pediatric Hematology and Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brenden J Johnson
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Daniel R David Premkumar
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Esther P Jane
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tritan J Plute
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Robert F Koncar
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ann-Catherine J Stanton
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Carlos A O Biagi-Junior
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Callie S Barber
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Matthew E Halbert
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Brian J Golbourn
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Katharine Halligan
- Division of Hematology Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pittsburgh, PA 15261, USA; Division of Hematology Oncology, Department of Pediatrics, Albany Medical College, Albany, NY 12208, USA
| | - Andrea F Cruz
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Neveen M Mansi
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Allison Cheney
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; University of California, Santa Cruz Genomics Institute, Santa Cruz, CA 95064, USA
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Clinton Van't Land
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Rangos Metabolic Core Facility, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jennifer L Perez
- Department of Neurological Surgery, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Max I Myers
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Nishant Agrawal
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Joshua J Michel
- Rangos Flow Cytometry Core Laboratory, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Yue-Fang Chang
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Olena M Vaske
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; University of California, Santa Cruz Genomics Institute, Santa Cruz, CA 95064, USA
| | - Antony MichaelRaj
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Frank S Lieberman
- Adult Neuro-Oncology Program, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - James Felker
- Pediatric Neuro-Oncology Program, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Heart, Lung, Blood, and Vascular Medicine Institute, Department of Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Kelsey C Bertrand
- Department of Pediatric Hematology and Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nduka Amankulor
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Costas G Hadjipanayis
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kalil G Abdullah
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Pascal O Zinn
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Robert M Friedlander
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Javad Nazarian
- Brain Tumor Institute, Children's National Hospital, Washington, DC 20010, USA
| | - Sriram Venneti
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Stacy L Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Stephen C Mack
- Department of Pediatric Hematology and Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Pediatric Neuro-Oncology Program, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
| |
Collapse
|
10
|
Nammalwar B, Bunce RA. Recent Advances in Pyrimidine-Based Drugs. Pharmaceuticals (Basel) 2024; 17:104. [PMID: 38256937 PMCID: PMC10820437 DOI: 10.3390/ph17010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Pyrimidines have become an increasingly important core structure in many drug molecules over the past 60 years. This article surveys recent areas in which pyrimidines have had a major impact in drug discovery therapeutics, including anti-infectives, anticancer, immunology, immuno-oncology, neurological disorders, chronic pain, and diabetes mellitus. The article presents the synthesis of the medicinal agents and highlights the role of the biological target with respect to the disease model. Additionally, the biological potency, ADME properties and pharmacokinetics/pharmacodynamics (if available) are discussed. This survey attempts to demonstrate the versatility of pyrimidine-based drugs, not only for their potency and affinity but also for the improved medicinal chemistry properties of pyrimidine as a bioisostere for phenyl and other aromatic π systems. It is hoped that this article will provide insight to researchers considering the pyrimidine scaffold as a chemotype in future drug candidates in order to counteract medical conditions previously deemed untreatable.
Collapse
Affiliation(s)
- Baskar Nammalwar
- Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, CA 92121, USA;
| | - Richard A. Bunce
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
11
|
Brown EJ, Balaguer-Lluna L, Cribbs AP, Philpott M, Campo L, Browne M, Wong JF, Oppermann U, Carcaboso ÁM, Bullock AN, Farnie G. PRMT5 inhibition shows in vitro efficacy against H3K27M-altered diffuse midline glioma, but does not extend survival in vivo. Sci Rep 2024; 14:328. [PMID: 38172189 PMCID: PMC10764357 DOI: 10.1038/s41598-023-48652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
H3K27-altered Diffuse Midline Glioma (DMG) is a universally fatal paediatric brainstem tumour. The prevalent driver mutation H3K27M creates a unique epigenetic landscape that may also establish therapeutic vulnerabilities to epigenetic inhibitors. However, while HDAC, EZH2 and BET inhibitors have proven somewhat effective in pre-clinical models, none have translated into clinical benefit due to either poor blood-brain barrier penetration, lack of efficacy or toxicity. Thus, there remains an urgent need for new DMG treatments. Here, we performed wider screening of an epigenetic inhibitor library and identified inhibitors of protein arginine methyltransferases (PRMTs) among the top hits reducing DMG cell viability. Two of the most effective inhibitors, LLY-283 and GSK591, were targeted against PRMT5 using distinct binding mechanisms and reduced the viability of a subset of DMG cells expressing wild-type TP53 and mutant ACVR1. RNA-sequencing and phenotypic analyses revealed that LLY-283 could reduce the viability, clonogenicity and invasion of DMG cells in vitro, representing three clinically important phenotypes, but failed to prolong survival in an orthotopic xenograft model. Together, these data show the challenges of DMG treatment and highlight PRMT5 inhibitors for consideration in future studies of combination treatments.
Collapse
Affiliation(s)
- Elizabeth J Brown
- Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Leire Balaguer-Lluna
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Adam P Cribbs
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, UK
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
| | - Martin Philpott
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, UK
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
| | - Leticia Campo
- Department of Oncology, Experimental Cancer Medicine Centre, University of Oxford, Oxford, UK
| | - Molly Browne
- Department of Oncology, Experimental Cancer Medicine Centre, University of Oxford, Oxford, UK
| | - Jong Fu Wong
- Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Udo Oppermann
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, UK
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
| | - Ángel M Carcaboso
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Alex N Bullock
- Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, UK.
| | - Gillian Farnie
- Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, UK.
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK.
- Cancer Research Horizons, The Francis Crick Institute, London, UK.
| |
Collapse
|
12
|
Martinez PJ, Green AL, Borden MA. Targeting diffuse midline gliomas: The promise of focused ultrasound-mediated blood-brain barrier opening. J Control Release 2024; 365:412-421. [PMID: 38000663 PMCID: PMC10842695 DOI: 10.1016/j.jconrel.2023.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Diffuse midline gliomas (DMGs), including diffuse intrinsic pontine glioma, have among the highest mortality rates of all childhood cancers, despite recent advancements in cancer therapeutics. This is partly because, unlike some CNS tumors, the blood-brain barrier (BBB) of DMG tumor vessels remains intact. The BBB prevents the permeation of many molecular therapies into the brain parenchyma, where the cancer cells reside. Focused ultrasound (FUS) with microbubbles has recently emerged as an innovative and exciting technology that non-invasively permeabilizes the BBB in a small focal region with millimeter precision. In this review, current treatment methods and biological barriers to treating DMGs are discussed. State-of-the-art FUS-mediated BBB opening is then examined, with a focus on the effects of various ultrasound parameters and the treatment of DMGs.
Collapse
Affiliation(s)
- Payton J Martinez
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO 80303, United States; Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80303, United States.
| | - Adam L Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Mark A Borden
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO 80303, United States; Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80303, United States
| |
Collapse
|
13
|
Lo Cascio C, Margaryan T, Luna-Melendez E, McNamara JB, White CI, Knight W, Ganta S, Opachich Z, Cantoni C, Yoo W, Sanai N, Tovmasyan A, Mehta S. Quisinostat is a brain-penetrant radiosensitizer in glioblastoma. JCI Insight 2023; 8:e167081. [PMID: 37991020 PMCID: PMC10721329 DOI: 10.1172/jci.insight.167081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 10/13/2023] [Indexed: 11/23/2023] Open
Abstract
Histone deacetylase (HDAC) inhibitors have garnered considerable interest for the treatment of adult and pediatric malignant brain tumors. However, owing to their broad-spectrum nature and inability to effectively penetrate the blood-brain barrier, HDAC inhibitors have failed to provide substantial clinical benefit to patients with glioblastoma (GBM) to date. Moreover, global inhibition of HDACs results in widespread toxicity, highlighting the need for selective isoform targeting. Although no isoform-specific HDAC inhibitors are currently available, the second-generation hydroxamic acid-based HDAC inhibitor quisinostat possesses subnanomolar specificity for class I HDAC isoforms, particularly HDAC1 and HDAC2. It has been shown that HDAC1 is the essential HDAC in GBM. This study analyzed the neuropharmacokinetic, pharmacodynamic, and radiation-sensitizing properties of quisinostat in preclinical models of GBM. It was found that quisinostat is a well-tolerated and brain-penetrant molecule that extended survival when administered in combination with radiation in vivo. The pharmacokinetic-pharmacodynamic-efficacy relationship was established by correlating free drug concentrations and evidence of target modulation in the brain with survival benefit. Together, these data provide a strong rationale for clinical development of quisinostat as a radiosensitizer for the treatment of GBM.
Collapse
Affiliation(s)
- Costanza Lo Cascio
- Ivy Brain Tumor Center and
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - Tigran Margaryan
- Ivy Brain Tumor Center and
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ernesto Luna-Melendez
- Ivy Brain Tumor Center and
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - James B. McNamara
- Ivy Brain Tumor Center and
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - Connor I. White
- Ivy Brain Tumor Center and
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - William Knight
- Ivy Brain Tumor Center and
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - Saisrinidhi Ganta
- Ivy Brain Tumor Center and
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - Zorana Opachich
- Ivy Brain Tumor Center and
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - Claudia Cantoni
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - Wonsuk Yoo
- Ivy Brain Tumor Center and
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - Nader Sanai
- Ivy Brain Tumor Center and
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - Artak Tovmasyan
- Ivy Brain Tumor Center and
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - Shwetal Mehta
- Ivy Brain Tumor Center and
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
14
|
Gasanz Garicochea M, Martínez-Romera I, Osuna-Marco MP, López-Ibor Aliño B. Clinical experience with immunotherapy in patients with diffuse intrinsic pontine glioma. Eur J Hosp Pharm 2023:ejhpharm-2022-003511. [PMID: 37940368 DOI: 10.1136/ejhpharm-2022-003511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
The objective of the article is to report the case of three patients with diffuse intrinsic pontine glioma (DIPG) treated with immunotherapy. In particular we report the data related to the treatments' efficacy and tolerance.To achieve this, we review the medical records in the Paediatric Oncology and Haematology Unit of HM Hospitales/Centro Integral Oncológico Clara Campal (CIOCC). We focused on patients diagnosed with DIPG who were administered oncolytic viruses followed by immune checkpoint inhibitors (ICI) (pembrolizumab, anti PD-1) plus a concomitant antiangiogenic agent (bevacizumab).The results we obtained showed the three paediatric DIPG patients studied presented good tolerance, with disease stabilisation for approximately 5 months after immunotherapy. However, subsequent clinical worsening required clinicians to change the patients' treatment.In conclusion, immunotherapy combined with other conventional antineoplastic treatments (chemotherapy, radiotherapy) is postulated as a very promising future therapeutic option. However, further research is warranted in the paediatric population to demonstrate safety and effectiveness.
Collapse
Affiliation(s)
| | - Isabel Martínez-Romera
- Pediatric Oncology and Hematology Unit, Hospital Universitario La Paz, Madrid, Madrid, Spain
| | - Marta Pilar Osuna-Marco
- Pediatric Oncology and Hematology Unit, Hospital Universitario HM Montepríncipe, Boadilla del Monte, Madrid, Spain
| | - Blanca López-Ibor Aliño
- Pediatric Oncology and Hematology Unit, Hospital Universitario HM Montepríncipe, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
15
|
Thomas BC, Staudt DE, Douglas AM, Monje M, Vitanza NA, Dun MD. CAR T cell therapies for diffuse midline glioma. Trends Cancer 2023; 9:791-804. [PMID: 37541803 DOI: 10.1016/j.trecan.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/06/2023]
Abstract
Diffuse midline glioma (DMG) is a fatal pediatric cancer of the central nervous system (CNS). The location and infiltrative nature of DMG prevents surgical resection and the benefits of palliative radiotherapy are temporary; median overall survival (OS) is 9-11 months. The tumor immune microenvironment (TIME) is 'cold', and has a dominant immunosuppressive myeloid compartment with low levels of infiltrating lymphocytes and proinflammatory molecules. Because survival statistics have been stagnant for many decades, and therapies targeting the unique biology of DMG are urgently needed, this has prompted the clinical assessment of chimeric antigen receptor (CAR) T cell therapies in this setting. We highlight the current landscape of CAR T cell therapy for DMG, the role the TIME may play in the response, and strategies to overcome treatment obstacles.
Collapse
Affiliation(s)
- Bryce C Thomas
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Dilana E Staudt
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Alicia M Douglas
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Michelle Monje
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA; Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University, Stanford, CA, USA; Department of Neurosurgery, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Nicholas A Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Division of Pediatric Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Theme, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, NSW, Australia.
| |
Collapse
|
16
|
Noll A, Myers C, Biery MC, Meechan M, Tahiri S, Rajendran A, Berens ME, Paine D, Byron S, Zhang J, Winter C, Pakiam F, Leary SES, Cole BL, Jackson ER, Dun MD, Foster JB, Evans MK, Pattwell SS, Olson JM, Vitanza NA. Therapeutic HDAC inhibition in hypermutant diffuse intrinsic pontine glioma. Neoplasia 2023; 43:100921. [PMID: 37603953 PMCID: PMC10465940 DOI: 10.1016/j.neo.2023.100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023]
Abstract
Constitutional mismatch repair deficiency (CMMRD) is a cancer predisposition syndrome associated with the development of hypermutant pediatric high-grade glioma, and confers a poor prognosis. While therapeutic histone deacetylase (HDAC) inhibition of diffuse intrinsic pontine glioma (DIPG) has been reported; here, we use a clinically relevant biopsy-derived hypermutant DIPG model (PBT-24FH) and a CRISPR-Cas9 induced genetic model to evaluate the efficacy of HDAC inhibition against hypermutant DIPG. We screened PBT-24FH cells for sensitivity to a panel of HDAC inhibitors (HDACis) in vitro, identifying two HDACis associated with low nanomolar IC50s, quisinostat (27 nM) and romidepsin (2 nM). In vivo, quisinostat proved more efficacious, inducing near-complete tumor regression in a PBT-24FH flank model. RNA sequencing revealed significant quisinostat-driven changes in gene expression, including upregulation of neural and pro-inflammatory genes. To validate the observed potency of quisinostat in vivo against additional hypermutant DIPG models, we tested quisinostat in genetically-induced mismatch repair (MMR)-deficient DIPG flank tumors, demonstrating that loss of MMR function increases sensitivity to quisinostat in vivo. Here, we establish the preclinical efficacy of quisinostat against hypermutant DIPG, supporting further investigation of epigenetic targeting of hypermutant pediatric cancers with the potential for clinical translation. These findings support further investigation of HDAC inhibitors against pontine high-grade gliomas, beyond only those with histone mutations, as well as against other hypermutant central nervous system tumors.
Collapse
Affiliation(s)
- Alyssa Noll
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Molecular and Cellular Biology Graduate Program and Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Carrie Myers
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Matthew C Biery
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael Meechan
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sophie Tahiri
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Molecular Mechanisms of Disease Graduate Program, University of Washington, Seattle, WA, USA
| | - Asmitha Rajendran
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Biomedical Informatics and Medical Education Graduate Program, University of Washington, Seattle, WA, USA
| | - Michael E Berens
- Cancer & Cell Biology Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Danyelle Paine
- Cancer & Cell Biology Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Sara Byron
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Jiaming Zhang
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Conrad Winter
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Fiona Pakiam
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sarah E S Leary
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Bonnie L Cole
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Evangeline R Jackson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Jessica B Foster
- Division of Oncology, The Children's Hospital of Philadelphia, Philidelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Myron K Evans
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Siobhan S Pattwell
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - James M Olson
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Nicholas A Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
17
|
Miguel Llordes G, Medina Pérez VM, Curto Simón B, Castells-Yus I, Vázquez Sufuentes S, Schuhmacher AJ. Epidemiology, Diagnostic Strategies, and Therapeutic Advances in Diffuse Midline Glioma. J Clin Med 2023; 12:5261. [PMID: 37629304 PMCID: PMC10456112 DOI: 10.3390/jcm12165261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Object: Diffuse midline glioma (DMG) is a highly aggressive and lethal brain tumor predominantly affecting children and young adults. Previously known as diffuse intrinsic pontine glioma (DIPG) or grade IV brain stem glioma, DMG has recently been reclassified as "diffuse midline glioma" according to the WHO CNS5 nomenclature, expanding the DMG demographic. Limited therapeutic options result in a poor prognosis, despite advances in diagnosis and treatment. Radiotherapy has historically been the primary treatment modality to improve patient survival. Methods: This systematic literature review aims to comprehensively compile information on the diagnosis and treatment of DMG from 1 January 2012 to 31 July 2023. The review followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement and utilized databases such as PubMed, Cochrane Library, and SciELO. Results: Currently, molecular classification of DMG plays an increasingly vital role in determining prognosis and treatment options. Emerging therapeutic avenues, including immunomodulatory agents, anti-GD2 CAR T-cell and anti-GD2 CAR-NK therapies, techniques to increase blood-brain barrier permeability, isocitrate dehydrogenase inhibitors, oncolytic and peptide vaccines, are being explored based on the tumor's molecular composition. However, more clinical trials are required to establish solid guidelines for toxicity, dosage, and efficacy. Conclusions: The identification of the H3K27 genetic mutation has led to the reclassification of certain midline tumors, expanding the DMG demographic. The field of DMG research continues to evolve, with encouraging findings that underscore the importance of highly specific and tailored therapeutic strategies to achieve therapeutic success.
Collapse
Affiliation(s)
- Gloria Miguel Llordes
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Víctor Manuel Medina Pérez
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | | | - Irene Castells-Yus
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | | | - Alberto J. Schuhmacher
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Fundación Aragonesa para la Investigación y el Desarrollo (ARAID), 50018 Zaragoza, Spain
| |
Collapse
|
18
|
McNicholas M, De Cola A, Bashardanesh Z, Foss A, Lloyd CB, Hébert S, Faury D, Andrade AF, Jabado N, Kleinman CL, Pathania M. A Compendium of Syngeneic, Transplantable Pediatric High-Grade Glioma Models Reveals Subtype-Specific Therapeutic Vulnerabilities. Cancer Discov 2023; 13:1592-1615. [PMID: 37011011 PMCID: PMC10326601 DOI: 10.1158/2159-8290.cd-23-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Pediatric high-grade gliomas (pHGG) are lethal, incurable brain tumors frequently driven by clonal mutations in histone genes. They often harbor a range of additional genetic alterations that correlate with different ages, anatomic locations, and tumor subtypes. We developed models representing 16 pHGG subtypes driven by different combinations of alterations targeted to specific brain regions. Tumors developed with varying latencies and cell lines derived from these models engrafted in syngeneic, immunocompetent mice with high penetrance. Targeted drug screening revealed unexpected selective vulnerabilities-H3.3G34R/PDGFRAC235Y to FGFR inhibition, H3.3K27M/PDGFRAWT to PDGFRA inhibition, and H3.3K27M/PDGFRAWT and H3.3K27M/PPM1DΔC/PIK3CAE545K to combined inhibition of MEK and PIK3CA. Moreover, H3.3K27M tumors with PIK3CA, NF1, and FGFR1 mutations were more invasive and harbored distinct additional phenotypes, such as exophytic spread, cranial nerve invasion, and spinal dissemination. Collectively, these models reveal that different partner alterations produce distinct effects on pHGG cellular composition, latency, invasiveness, and treatment sensitivity. SIGNIFICANCE Histone-mutant pediatric gliomas are a highly heterogeneous tumor entity. Different histone mutations correlate with different ages of onset, survival outcomes, brain regions, and partner alterations. We have developed models of histone-mutant gliomas that reflect this anatomic and genetic heterogeneity and provide evidence of subtype-specific biology and therapeutic targeting. See related commentary by Lubanszky and Hawkins, p. 1516. This article is highlighted in the In This Issue feature, p. 1501.
Collapse
Affiliation(s)
- Michael McNicholas
- Department of Oncology and Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Antonella De Cola
- Department of Oncology and Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Zahedeh Bashardanesh
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Amelia Foss
- Department of Oncology and Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, United Kingdom
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Cameron B. Lloyd
- Department of Oncology and Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Steven Hébert
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Damien Faury
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Claudia L. Kleinman
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Manav Pathania
- Department of Oncology and Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Rechberger JS, Bouchal SM, Power EA, Nonnenbroich LF, Nesvick CL, Daniels DJ. Bench-to-bedside investigations of H3 K27-altered diffuse midline glioma: drug targets and potential pharmacotherapies. Expert Opin Ther Targets 2023; 27:1071-1086. [PMID: 37897190 PMCID: PMC11079776 DOI: 10.1080/14728222.2023.2277232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/26/2023] [Indexed: 10/29/2023]
Abstract
INTRODUCTION H3 K27-altered diffuse midline glioma (DMG) is the most common malignant brainstem tumor in the pediatric population. Despite enormous preclinical and clinical efforts, the prognosis remains dismal, with fewer than 10% of patients surviving for two years after diagnosis. Fractionated radiation remains the only standard treatment options for DMG. Developing novel treatments and therapeutic delivery methods is critical to improving outcomes in this devastating disease. AREAS COVERED This review addresses recent advances in molecularly targeted pharmacotherapy and immunotherapy in DMG. The clinical presentation, diagnostic workup, unique pathological challenges, and current clinical trials are highlighted throughout. EXPERT OPINION Promising pharmacotherapies targeting various components of DMG pathology and the application of immunotherapies have the potential to improve patient outcomes. However, novel approaches are needed to truly revolutionize treatment for this tumor. First, combinational therapy should be employed, as DMG can develop resistance to single-agent approaches and many therapies are susceptible to rapid clearance from the brain. Second, drug-tumor residence time, i.e. the time for which a therapeutic is present at efficacious concentrations within the tumor, must be maximized to facilitate a durable treatment response. Engineering extended drug delivery methods with minimal off-tumor toxicity should be a focus of future studies.
Collapse
Affiliation(s)
- Julian S. Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Samantha M. Bouchal
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Erica A. Power
- Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Leo F. Nonnenbroich
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Cody L. Nesvick
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - David J. Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| |
Collapse
|
20
|
Noon A, Galban S. Therapeutic avenues for targeting treatment challenges of diffuse midline gliomas. Neoplasia 2023; 40:100899. [PMID: 37030112 PMCID: PMC10119952 DOI: 10.1016/j.neo.2023.100899] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Diffuse midline glioma (DMG) is the leading cause of brain tumor-related deaths in children. DMG typically presents with variable neurologic symptoms between ages 3 and 10. Currently, radiation remains the standard therapy for DMG to halt progression and reduce tumor bulk to minimize symptoms. However, tumors recur in almost 100% of patients and thus, DMG is still considered an incurable cancer with a median survival of 9-12 months. Surgery is generally contraindicated due to the delicate organization of the brainstem, where DMG is located. Despite extensive research efforts, no chemotherapeutic agents, immune therapies, or molecularly targeted therapies have been approved to provide survival benefit. Furthermore, the efficacy of therapies is limited by poor blood-brain barrier penetration and inherent resistance mechanisms of the tumor. However, novel drug delivery approaches, along with recent advances in molecularly targeted therapies and immunotherapies, have advanced to clinical trials and may provide viable future treatment options for DMG patients. This review seeks to evaluate current therapeutics at the preclinical stage and those that have advanced to clinical trials and to discuss the challenges of drug delivery and inherent resistance to these therapies.
Collapse
Affiliation(s)
- Aleeha Noon
- College of Medicine, California Northstate University, 9700 W Taron Drive, Elk Grove, CA 95757, USA
| | - Stefanie Galban
- Center for Molecular Imaging, The University of Michigan Medical School, BSRB A502, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA; Department of Radiology, The University of Michigan Medical School, BSRB A502, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA; Rogel Cancer Center, The University of Michigan Medical School, 1500 E Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
21
|
Yao B, Delaidelli A, Vogel H, Sorensen PH. Pediatric Brain Tumours: Lessons from the Immune Microenvironment. Curr Oncol 2023; 30:5024-5046. [PMID: 37232837 PMCID: PMC10217418 DOI: 10.3390/curroncol30050379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
In spite of recent advances in tumour molecular subtyping, pediatric brain tumours (PBTs) remain the leading cause of cancer-related deaths in children. While some PBTs are treatable with favourable outcomes, recurrent and metastatic disease for certain types of PBTs remains challenging and is often fatal. Tumour immunotherapy has emerged as a hopeful avenue for the treatment of childhood tumours, and recent immunotherapy efforts have been directed towards PBTs. This strategy has the potential to combat otherwise incurable PBTs, while minimizing off-target effects and long-term sequelae. As the infiltration and activation states of immune cells, including tumour-infiltrating lymphocytes and tumour-associated macrophages, are key to shaping responses towards immunotherapy, this review explores the immune landscape of the developing brain and discusses the tumour immune microenvironments of common PBTs, with hopes of conferring insights that may inform future treatment design.
Collapse
Affiliation(s)
- Betty Yao
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hannes Vogel
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Poul H. Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
22
|
Murdaugh RL, Anastas JN. Applying single cell multi-omic analyses to understand treatment resistance in pediatric high grade glioma. Front Pharmacol 2023; 14:1002296. [PMID: 37205910 PMCID: PMC10191214 DOI: 10.3389/fphar.2023.1002296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
Despite improvements in cancer patient outcomes seen in the past decade, tumor resistance to therapy remains a major impediment to achieving durable clinical responses. Intratumoral heterogeneity related to genetic, epigenetic, transcriptomic, proteomic, and metabolic differences between individual cancer cells has emerged as a driver of therapeutic resistance. This cell to cell heterogeneity can be assessed using single cell profiling technologies that enable the identification of tumor cell clones that exhibit similar defining features like specific mutations or patterns of DNA methylation. Single cell profiling of tumors before and after treatment can generate new insights into the cancer cell characteristics that confer therapeutic resistance by identifying intrinsically resistant sub-populations that survive treatment and by describing new cellular features that emerge post-treatment due to tumor cell evolution. Integrative, single cell analytical approaches have already proven advantageous in studies characterizing treatment-resistant clones in cancers where pre- and post-treatment patient samples are readily available, such as leukemia. In contrast, little is known about other cancer subtypes like pediatric high grade glioma, a class of heterogeneous, malignant brain tumors in children that rapidly develop resistance to multiple therapeutic modalities, including chemotherapy, immunotherapy, and radiation. Leveraging single cell multi-omic technologies to analyze naïve and therapy-resistant glioma may lead to the discovery of novel strategies to overcome treatment resistance in brain tumors with dismal clinical outcomes. In this review, we explore the potential for single cell multi-omic analyses to reveal mechanisms of glioma resistance to therapy and discuss opportunities to apply these approaches to improve long-term therapeutic response in pediatric high grade glioma and other brain tumors with limited treatment options.
Collapse
Affiliation(s)
- Rebecca L. Murdaugh
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
- Program in Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Jamie N. Anastas
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
- Program in Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
23
|
Martinez P, Nault G, Steiner J, Wempe MF, Pierce A, Brunt B, Slade M, Mongin A, Song J, Song KH, Ellens N, Serkova N, Green A, Borden M. MRI-Guided Focused Ultrasound Blood-Brain Barrier Opening Increases Drug Delivery and Efficacy in a Diffuse Midline Glioma Mouse Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.534448. [PMID: 37066205 PMCID: PMC10104021 DOI: 10.1101/2023.04.05.534448] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is the most common and deadliest pediatric brainstem tumor and is difficult to treat with chemotherapy in part due to the blood-brain barrier (BBB). Focused ultrasound (FUS) and microbubbles (MBs) have been shown to cause BBB disruption (BBBD), allowing larger chemotherapeutics to enter the parenchyma. Panobinostat is an example of a promising in vitro agent in DIPG with poor clinical efficacy due to low BBB penetrance. In this study, we hypothesized that using FUS to disrupt the BBB allows higher concentrations of panobinostat to accumulate in the tumor, providing a therapeutic effect. Mice were orthotopically injected with a patient-derived DMG cell line, BT-245. MRI was used to guide FUS/MB (1.5 MHz, 0.615 MPa PNP, 1 Hz PRF, 10 ms PL, 3 min treatment time) / (25 µL/kg, IV) targeting to the tumor location. In animals receiving panobinostat (10 mg/kg, IP) in combination with FUS/MB, a 3-fold increase in tumor panobinostat concentration was observed, with only insignificant increase of the drug in the forebrain. In mice receiving three weekly treatments, the combination of panobinostat and FUS/MB led to a 71% reduction of tumor volumes by MRI ( p = 0.01). Furthermore, FUS/MB improved the mean survival from 21 to 31 days ( p < 0.0001). Our study demonstrates that FUS-mediated BBBD can increase the delivery of panobinostat to an orthotopic DMG tumor, providing a strong therapeutic effect and increased survival. One Sentence Summary FUS and microbubbles can increase the delivery of panobinostat to a patient-derived xenograft (PDX) orthotopic DMG tumor, providing a strong therapeutic effect and increased survival.
Collapse
|
24
|
Park J, Chung C. Epigenetic and Metabolic Changes in Diffuse Intrinsic Pontine Glioma. Brain Tumor Res Treat 2023; 11:86-93. [PMID: 37151150 PMCID: PMC10172016 DOI: 10.14791/btrt.2023.0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
Diffuse midline glioma (DMG), hitherto known as diffuse intrinsic pontine glioma (DIPG), is a rare and aggressive form of brain cancer that primarily affects children. Although the exact cause of DMG/DIPG is not known, a large proportion of DMG/DIPG tumors harbor mutations in the gene encoding the histone H3 protein, specifically the H3K27M mutation. This mutation decreases the level of H3K27me3, a histone modification that plays a vital role in regulating gene expression through epigenetic regulation. The mutation also alters the function of polycomb repressive complex 2 (PRC2), thereby preventing the repression of genes associated with cancer development. The decrease in H3K27me3 caused by the histone H3 mutation is accompanied by an increase in the level of H3K27ac, a post-translational modification related to active transcription. Dysregulation of histone modification markedly affects gene expression, contributing to cancer development and progression by promoting uncontrolled cell proliferation, tumor growth, and metabolism. DMG/DIPG alters the metabolism of methionine and the tricarboxylic acid cycle, as well as glucose and glutamine uptake. The role of epigenetic and metabolic changes in the development of DMG/DIPG has been studied extensively, and understanding these changes is critical to developing therapies targeting these pathways. Studies are currently underway to identify new therapeutic targets for DMG/DIPG, which may lead to the development of effective treatments for this devastating disease.
Collapse
Affiliation(s)
- Jiyoon Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
- New Biology Research Center (NBRC), Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Chan Chung
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
- New Biology Research Center (NBRC), Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea.
| |
Collapse
|
25
|
Elahmadawy MA, El-Ayadi M, Ahmed S, Refaat A, Eltaoudy MH, Maher E, Taha H, Elbeltagy M. F18-FET PET in pediatric brain tumors: integrative analysis of image derived parameters and clinico-pathological data. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2023; 67:46-56. [PMID: 33300749 DOI: 10.23736/s1824-4785.20.03267-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND F18-FET PET has an established diagnostic role in adult brain gliomas. In this study we analyzed image derived static and dynamic parameters with available conventional MRI, histological, clinical and follow-up data in assessment of pediatric brain tumor patients at different stages of the disease. METHODS Forty-four pediatric patients with median age 7 years, diagnosed with brain tumors and underwent forty-seven 18F-FET PET scans either initially (20 scans) or post-therapy (27 scans) were enrolled. Standardized analysis of summed FET PET images early from 10-20 min and late from 30-40 min post-injection were used for static (mean and maximum tumor to brain ratio [TBR] and biological tumor volume [BTV]) parameters evaluation as well as the time activity curve [TAC]. RESULTS Nineteen out of 20 initially assessed patients had pathologically and/or clinico-radiologically proven neoplastic lesions and one patient had pathologically proven abscess. Receiver operator curve (ROC) marked early TBR max 2.95, early TBR mean 1.76, late TBR max 2.5 and late TBR mean 1.74 as discriminator points with diagnostic accuracy reaching 90% when TBR max was combined with dynamic parameters. Significant association was found between initial FET scans, early and late BTV and event free survival (EFS) (P value=0.042 and 0.005 respectively). In post-therapy assessment, the diagnostic accuracy of conventional MRI was 81.48% when used alone and 96.30% when combined with F18-FET PET scan findings. A cutoff point of 3.2 cm3 for late BTV, in post-therapy scans, was successfully marked as a predictor for therapy response (P value 0.042) and was significantly associated with EFS (P value 0.002). In FET-avid / MRI non-enhancing lesions, early TBR max was able to detect highly malignant processes (high-grade tumors in initial scans and residue/recurrence in post-therapy scans) with 80% sensitivity and 100% specificity when cutoff value of 2.25 was used (P value=0.024). In patients with FET-avid brainstem lesions, whether enhancing or non-enhancing in MRI scans, 81.8% were associated with high risk diagnoses and 68.2% of them were associated with poor therapy outcome. The degree of FET uptake matched tumor-grading, but did not show significant association with OS or EFS (P value>0.05). CONCLUSIONS F18-FET PET seems to be an evolving pediatric neuro-imaging technique with valuable diagnostic and prognostic information at initial and post-therapy evaluation.
Collapse
Affiliation(s)
- Mai A Elahmadawy
- Unit of Nuclear Medicine, National Cancer Institute, Cairo University, Cairo, Egypt - .,Children's Cancer Hospital, Cairo, Egypt -
| | - Moatasem El-Ayadi
- Children's Cancer Hospital, Cairo, Egypt.,Department of Pediatric Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Soha Ahmed
- Department of Clinical Oncology, Aswan University, Aswan, Egypt.,Department of Radiation Oncology, Children's Cancer Hospital, Cairo, Egypt
| | - Amal Refaat
- Children's Cancer Hospital, Cairo, Egypt.,Department of Radio-Diagnosis, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Magdy H Eltaoudy
- Cyclotron Facility, Department of Nuclear Medicine, Children's Cancer Hospital, Cairo, Egypt
| | - Eslam Maher
- Department of Clinical Research, Children's Cancer Hospital, Cairo, Egypt
| | - Hala Taha
- Children's Cancer Hospital, Cairo, Egypt.,Department of Pathology, National Cancer Institute, Cairo, Egypt
| | - Mohamed Elbeltagy
- Department of Neurosurgery, Children's Cancer Hospital, Cairo, Egypt.,Kasr El-Ainy School of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
26
|
Parsels LA, Wahl DR, Koschmann C, Morgan MA, Zhang Q. Developing H3K27M mutant selective radiosensitization strategies in diffuse intrinsic pontine glioma. Neoplasia 2023; 37:100881. [PMID: 36724689 PMCID: PMC9918797 DOI: 10.1016/j.neo.2023.100881] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a rare but highly lethal pediatric and adolescent tumor located in the pons of the brainstem. DIPGs harbor unique and specific pathological and molecular alterations, such as the hallmark lysine 27-to-methionine (H3K27M) mutation in histone H3, which lead to global changes in the epigenetic landscape and drive tumorigenesis. While fractionated radiotherapy, the current standard of care, improves symptoms and delays tumor progression, DIPGs inevitably recur, and despite extensive efforts chemotherapy-driven radiosensitization strategies have failed to improve survival. Advances in our understanding of the role of epigenetics in the cellular response to radiation-induced DNA damage, however, offer new opportunities to develop combinational therapeutic strategies selective for DIPGs expressing H3K27M. In this review, we provide an overview of preclinical studies that explore potential radiosensitization strategies targeting the unique epigenetic landscape of H3K27M mutant DIPG. We further discuss opportunities to selectively radiosensitize DIPG through strategic inhibition of the radiation-induced DNA damage response. Finally, we discuss the potential for using radiation to induce anti-tumor immune responses that may be potentiated in DIPG by radiosensitizing-therapeutic strategies.
Collapse
Affiliation(s)
- Leslie A Parsels
- Department of Radiation Oncology, Rogel Cancer Center, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI, 48109, USA
| | - Daniel R Wahl
- Department of Radiation Oncology, Rogel Cancer Center, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI, 48109, USA
| | - Carl Koschmann
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Meredith A Morgan
- Department of Radiation Oncology, Rogel Cancer Center, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI, 48109, USA.
| | - Qiang Zhang
- Department of Radiation Oncology, Rogel Cancer Center, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
27
|
André N, Buyens G, Bouffet E, Walker D, Dun MD. Access to new drugs in paediatric oncology: can we learn from the ongoing ONC201 saga? Lancet Oncol 2023; 24:209-212. [PMID: 37052964 DOI: 10.1016/s1470-2045(23)00070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Nicolas André
- Department of Pediatric Oncology, La Timone University Hospital of Marseille, APHM, Marseille 13005, France; SMARTc Unit, CRCM Inserm 1068- CNRS UMR 7258 Aix-Marseille University, Marseille, France.
| | | | - Eric Bouffet
- Division of Neuro-oncology, Department of Pediatric Hematology-Oncology, Hospital for Sick Children, Toronto, ON, Canada
| | | | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
28
|
Past, present and future of Focused Ultrasound as an adjunct or complement to DIPG/DMG therapy: A consensus of the 2021 FUSF DIPG meeting. Neoplasia 2023; 37:100876. [PMID: 36709715 PMCID: PMC9900434 DOI: 10.1016/j.neo.2023.100876] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 01/29/2023]
Abstract
Diffuse Intrinsic Pontine Glioma (DIPG), now known as Diffuse Midline Glioma (DMG) is a devastating pediatric brain tumor with limited treatment options and a very poor prognosis. Despite more than 250 clinical trials aimed to treat children diagnosed with DMG, no curative therapies currently exist for this patient population. A major obstacle has been the intact blood brain barrier (BBB) which prevents most therapeutics from crossing into the tumor bed. Focused Ultrasound (FUS) is an emerging, noninvasive medical technology which has been shown in both preclinical and clinical research to disrupt the blood brain barrier safely and temporarily. FUS blood brain barrier opening has been studied in combination with chemotherapies in preclinical DMG models, and this technology is now being investigated in clinical trials for the treatment of pediatric brain tumors. Focused ultrasound has additional mechanisms of action, including sonodynamic therapy and radiation sensitization, that hold promise as future DMG therapies as well. This paper, largely based off the proceedings from a workshop held by the Focused Ultrasound Foundation in October of 2021, summarizes the current state of the field of focused ultrasound for DIPG/DMG, including preclinical, technical, and clinical summaries in addition to recommended next steps for continued advancement of the game changing technology of Focused Ultrasound.
Collapse
|
29
|
Vitanza NA, Wilson AL, Huang W, Seidel K, Brown C, Gustafson JA, Yokoyama JK, Johnson AJ, Baxter BA, Koning RW, Reid AN, Meechan M, Biery MC, Myers C, Rawlings-Rhea SD, Albert CM, Browd SR, Hauptman JS, Lee A, Ojemann JG, Berens ME, Dun MD, Foster JB, Crotty EE, Leary SE, Cole BL, Perez FA, Wright JN, Orentas RJ, Chour T, Newell EW, Whiteaker JR, Zhao L, Paulovich AG, Pinto N, Gust J, Gardner RA, Jensen MC, Park JR. Intraventricular B7-H3 CAR T Cells for Diffuse Intrinsic Pontine Glioma: Preliminary First-in-Human Bioactivity and Safety. Cancer Discov 2023; 13:114-131. [PMID: 36259971 PMCID: PMC9827115 DOI: 10.1158/2159-8290.cd-22-0750] [Citation(s) in RCA: 104] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/13/2022] [Accepted: 10/13/2022] [Indexed: 01/16/2023]
Abstract
Diffuse intrinsic pontine glioma (DIPG) remains a fatal brainstem tumor demanding innovative therapies. As B7-H3 (CD276) is expressed on central nervous system (CNS) tumors, we designed B7-H3-specific chimeric antigen receptor (CAR) T cells, confirmed their preclinical efficacy, and opened BrainChild-03 (NCT04185038), a first-in-human phase I trial administering repeated locoregional B7-H3 CAR T cells to children with recurrent/refractory CNS tumors and DIPG. Here, we report the results of the first three evaluable patients with DIPG (including two who enrolled after progression), who received 40 infusions with no dose-limiting toxicities. One patient had sustained clinical and radiographic improvement through 12 months on study. Patients exhibited correlative evidence of local immune activation and persistent cerebrospinal fluid (CSF) B7-H3 CAR T cells. Targeted mass spectrometry of CSF biospecimens revealed modulation of B7-H3 and critical immune analytes (CD14, CD163, CSF-1, CXCL13, and VCAM-1). Our data suggest the feasibility of repeated intracranial B7-H3 CAR T-cell dosing and that intracranial delivery may induce local immune activation. SIGNIFICANCE This is the first report of repeatedly dosed intracranial B7-H3 CAR T cells for patients with DIPG and includes preliminary tolerability, the detection of CAR T cells in the CSF, CSF cytokine elevations supporting locoregional immune activation, and the feasibility of serial mass spectrometry from both serum and CSF. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Nicholas A. Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington.,Corresponding Author: Nicholas A. Vitanza, Seattle Children's Research Institute, M/S JMB-8, 1900 9th Avenue, Seattle, WA 98101. Phone: 206-884-4084; E-mail:
| | | | - Wenjun Huang
- Seattle Children's Therapeutics, Seattle, Washington
| | - Kristy Seidel
- Seattle Children's Therapeutics, Seattle, Washington
| | - Christopher Brown
- Seattle Children's Therapeutics, Seattle, Washington.,Therapeutic Cell Production Core, Seattle Children's Research Institute, Seattle, Washington
| | | | | | | | | | | | | | - Michael Meechan
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Matthew C. Biery
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Carrie Myers
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | | | - Catherine M. Albert
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Samuel R. Browd
- Division of Neurosurgery, Seattle Children's Hospital and Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Jason S. Hauptman
- Division of Neurosurgery, Seattle Children's Hospital and Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Amy Lee
- Division of Neurosurgery, Seattle Children's Hospital and Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Jeffrey G. Ojemann
- Division of Neurosurgery, Seattle Children's Hospital and Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Michael E. Berens
- Cancer and Cell Biology Division, The Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Matthew D. Dun
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, Callaghan, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Jessica B. Foster
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Erin E. Crotty
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Sarah E.S. Leary
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Bonnie L. Cole
- Department of Laboratories, Seattle Children's Hospital, Seattle, Washington.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington
| | - Francisco A. Perez
- Department of Radiology, Seattle Children's Hospital, Seattle, Washington
| | - Jason N. Wright
- Department of Radiology, Seattle Children's Hospital, Seattle, Washington
| | - Rimas J. Orentas
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Tony Chour
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Evan W. Newell
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Lei Zhao
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Amanda G. Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Navin Pinto
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Juliane Gust
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington.,Division of Pediatric Neurology, Department of Neurology, University of Washington, Seattle, Washington
| | - Rebecca A. Gardner
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington.,Seattle Children's Therapeutics, Seattle, Washington
| | | | - Julie R. Park
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington.,Seattle Children's Therapeutics, Seattle, Washington
| |
Collapse
|
30
|
Martinez P, Nault G, Steiner J, Wempe MF, Pierce A, Brunt B, Slade M, Song JJ, Mongin A, Song KH, Ellens N, Serkova N, Green AL, Borden M. MRI-guided focused ultrasound blood-brain barrier opening increases drug delivery and efficacy in a diffuse midline glioma mouse model. Neurooncol Adv 2023; 5:vdad111. [PMID: 37795179 PMCID: PMC10547466 DOI: 10.1093/noajnl/vdad111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Background Diffuse intrinsic pontine glioma (DIPG) is the most common and deadliest pediatric brainstem tumor and is difficult to treat with chemotherapy in part due to the blood-brain barrier (BBB). Focused ultrasound (FUS) and microbubbles (MBs) have been shown to cause BBB opening, allowing larger chemotherapeutics to enter the parenchyma. Panobinostat is an example of a promising in vitro agent in DIPG with poor clinical efficacy due to low BBB penetrance. In this study, we hypothesized that using FUS to disrupt the BBB allows higher concentrations of panobinostat to accumulate in the tumor, providing a therapeutic effect. Methods Mice were orthotopically injected with a patient-derived diffuse midline glioma (DMG) cell line, BT245. MRI was used to guide FUS/MB (1.5 MHz, 0.615 MPa peak negative pressure, 1 Hz pulse repetition frequency, 10-ms pulse length, 3 min treatment time)/(25 µL/kg, i.v.) targeting to the tumor location. Results In animals receiving panobinostat (10 mg/kg, i.p.) in combination with FUS/MB, a 3-fold increase in tumor panobinostat concentration was observed, without significant increase of the drug in the forebrain. In mice receiving 3 weekly treatments, the combination of panobinostat and FUS/MB led to a 71% reduction of tumor volumes (P = .01). Furthermore, we showed the first survival benefit from FUS/MB improved delivery increasing the mean survival from 21 to 31 days (P < .0001). Conclusions Our study demonstrates that FUS-mediated BBB disruption can increase the delivery of panobinostat to an orthotopic DMG tumor, providing a strong therapeutic effect and increased survival.
Collapse
Affiliation(s)
- Payton Martinez
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Genna Nault
- Department of Radiology, Animal Imaging Shared Resource, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jenna Steiner
- Department of Radiology, Animal Imaging Shared Resource, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michael F Wempe
- Department of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angela Pierce
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Breauna Brunt
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Mathew Slade
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jane J Song
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Andrew Mongin
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado, USA
| | - Kang-Ho Song
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Nicholas Ellens
- Alpheus Medical, Inc., Chanhassen, Minnesota, USA
- Acertara Acoustic Labs, Longmont, Colorado, USA
| | - Natalie Serkova
- Department of Radiology, Animal Imaging Shared Resource, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Adam L Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Mark Borden
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
31
|
Biopsy of paediatric brainstem intrinsic tumours: Experience from a Singapore Children’s Hospital. J Clin Neurosci 2022; 106:8-13. [DOI: 10.1016/j.jocn.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/30/2022] [Indexed: 11/15/2022]
|
32
|
Rhodes A, Martin S, Toledo-Tamula MA, Loucas C, Glod J, Warren KE, Wolters PL. The neuropsychological profile of children with Diffuse Intrinsic Pontine Glioma (DIPG) before and after radiation therapy: A prospective longitudinal study. Child Neuropsychol 2022:1-25. [DOI: 10.1080/09297049.2022.2144189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Amanda Rhodes
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Staci Martin
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mary Anne Toledo-Tamula
- Clinical Research Directorate (CRD), Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Caitlyn Loucas
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - John Glod
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Katherine E. Warren
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Department of Pediatric Neuro-Oncology, Dana Farber Cancer Institute/Boston Children’s Hospital, Boston, MA, USA
| | - Pamela L. Wolters
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
33
|
A microRNA Prognostic Signature in Patients with Diffuse Intrinsic Pontine Gliomas through Non-Invasive Liquid Biopsy. Cancers (Basel) 2022; 14:cancers14174307. [PMID: 36077842 PMCID: PMC9454461 DOI: 10.3390/cancers14174307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Diffuse intrinsic pontine glioma (DIPG) is a neuro-radiologically defined tumor of the brainstem, primarily affecting children, with most diagnoses occurring between 5 and 7 years of age. Surgical removal in DIPGs is not feasible. Subsequent tumor progression is almost universal and no biomarker for predicting the course of the disease has entered into clinical practice so far. Under these premises, it is essential to develop reliable biomarkers that are able to improve outcomes and stratify patients using non-invasive methods to determine tumor profiles. We designed a study assessing circulating miRNA expression by a high-throughput platform and divided patients into training and validation phases in order to disclose a potential signature with clinical impact. Our results for the first time have proved the usefulness of blood-circulating nucleic acids as powerful, easy-to-assay molecular markers of disease status in DIPG. Abstract Diffuse midline gliomas (DMGs) originate in the thalamus, brainstem, cerebellum and spine. This entity includes tumors that infiltrate the pons, called diffuse intrinsic pontine gliomas (DIPGs), with a rapid onset and devastating neurological symptoms. Since surgical removal in DIPGs is not feasible, the purpose of this study was to profile circulating miRNA expression in DIPG patients in an effort to identify a non-invasive prognostic signature with clinical impact. Using a high-throughput platform, miRNA expression was profiled in serum samples collected at the time of MRI diagnosis and prior to radiation and/or systemic therapy from 47 patients enrolled in clinical studies, combining nimotuzumab and vinorelbine with concomitant radiation. With progression-free survival as the primary endpoint, a semi-supervised learning approach was used to identify a signature that was also tested taking overall survival as the clinical endpoint. A signature comprising 13 circulating miRNAs was identified in the training set (n = 23) as being able to stratify patients by risk of disease progression (log-rank p = 0.00014; HR = 7.99, 95% CI 2.38–26.87). When challenged in a separate validation set (n = 24), it confirmed its ability to predict progression (log-rank p = 0.00026; HR = 5.51, 95% CI 2.03–14.9). The value of our signature was also confirmed when overall survival was considered (log-rank p = 0.0021, HR = 4.12, 95% CI 1.57–10.8). We have identified and validated a prognostic marker based on the expression of 13 circulating miRNAs that can shed light on a patient’s risk of progression. This is the first demonstration of the usefulness of nucleic acids circulating in the blood as powerful, easy-to-assay molecular markers of disease status in DIPG. This study provides Class II evidence that a signature based on 13 circulating miRNAs is associated with the risk of disease progression.
Collapse
|
34
|
Gargett T, Ebert LM, Truong NTH, Kollis PM, Sedivakova K, Yu W, Yeo ECF, Wittwer NL, Gliddon BL, Tea MN, Ormsby R, Poonnoose S, Nowicki J, Vittorio O, Ziegler DS, Pitson SM, Brown MP. GD2-targeting CAR-T cells enhanced by transgenic IL-15 expression are an effective and clinically feasible therapy for glioblastoma. J Immunother Cancer 2022; 10:jitc-2022-005187. [PMID: 36167468 PMCID: PMC9516307 DOI: 10.1136/jitc-2022-005187] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/08/2022] Open
Abstract
Background Aggressive primary brain tumors such as glioblastoma are uniquely challenging to treat. The intracranial location poses barriers to therapy, and the potential for severe toxicity. Effective treatments for primary brain tumors are limited, and 5-year survival rates remain poor. Immune checkpoint inhibitor therapy has transformed treatment of some other cancers but has yet to significantly benefit patients with glioblastoma. Early phase trials of chimeric antigen receptor (CAR) T-cell therapy in patients with glioblastoma have demonstrated that this approach is safe and feasible, but with limited evidence of its effectiveness. The choices of appropriate target antigens for CAR-T-cell therapy also remain limited. Methods We profiled an extensive biobank of patients’ biopsy tissues and patient-derived early passage glioma neural stem cell lines for GD2 expression using immunomicroscopy and flow cytometry. We then employed an approved clinical manufacturing process to make CAR- T cells from patients with peripheral blood of glioblastoma and diffuse midline glioma and characterized their phenotype and function in vitro. Finally, we tested intravenously administered CAR-T cells in an aggressive intracranial xenograft model of glioblastoma and used multicolor flow cytometry, multicolor whole-tissue immunofluorescence and next-generation RNA sequencing to uncover markers associated with effective tumor control. Results Here we show that the tumor-associated antigen GD2 is highly and consistently expressed in primary glioblastoma tissue removed at surgery. Moreover, despite patients with glioblastoma having perturbations in their immune system, highly functional GD2-specific CAR-T cells can be produced from their peripheral T cells using an approved clinical manufacturing process. Finally, after intravenous administration, GD2-CAR-T cells effectively infiltrated the brain and controlled tumor growth in an aggressive orthotopic xenograft model of glioblastoma. Tumor control was further improved using CAR-T cells manufactured with a clinical retroviral vector encoding an interleukin-15 transgene alongside the GD2-specific CAR. These CAR-T cells achieved a striking 50% complete response rate by bioluminescence imaging in established intracranial tumors. Conclusions Targeting GD2 using a clinically deployed CAR-T-cell therapy has a sound scientific and clinical rationale as a treatment for glioblastoma and other aggressive primary brain tumors.
Collapse
Affiliation(s)
- Tessa Gargett
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia .,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lisa M Ebert
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Nga T H Truong
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Paris M Kollis
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kristyna Sedivakova
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Wenbo Yu
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia
| | - Erica C F Yeo
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia
| | - Nicole L Wittwer
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Briony L Gliddon
- Molecular Therapeutics Laboratory, Centre for Cancer Biology, Adelaide, South Australia, Australia
| | - Melinda N Tea
- Molecular Therapeutics Laboratory, Centre for Cancer Biology, Adelaide, South Australia, Australia
| | - Rebecca Ormsby
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Santosh Poonnoose
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.,Department of Neurosurgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Jake Nowicki
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.,Department of Neurosurgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia.,Kid's Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Stuart M Pitson
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Molecular Therapeutics Laboratory, Centre for Cancer Biology, Adelaide, South Australia, Australia
| | - Michael P Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
35
|
Immunogenic Cell Death Enhances Immunotherapy of Diffuse Intrinsic Pontine Glioma: From Preclinical to Clinical Studies. Pharmaceutics 2022; 14:pharmaceutics14091762. [PMID: 36145510 PMCID: PMC9502387 DOI: 10.3390/pharmaceutics14091762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is the most lethal tumor involving the pediatric central nervous system. The median survival of children that are diagnosed with DIPG is only 9 to 11 months. More than 200 clinical trials have failed to increase the survival outcomes using conventional cytotoxic or myeloablative chemotherapy. Immunotherapy presents exciting therapeutic opportunities against DIPG that is characterized by unique and heterogeneous features. However, the non-inflammatory DIPG microenvironment greatly limits the role of immunotherapy in DIPG. Encouragingly, the induction of immunogenic cell death, accompanied by the release of damage-associated molecular patterns (DAMPs) shows satisfactory efficacy of immune stimulation and antitumor strategies. This review dwells on the dilemma and advances in immunotherapy for DIPG, and the potential efficacy of immunogenic cell death (ICD) in the immunotherapy of DIPG.
Collapse
|
36
|
Yuile A, Khasraw M, Low JT, Walsh KM, Lipp E, Sy J, Satgunaseelan L, Kastelan MA, De Silva M, Lee A, Wheeler H. Patterns of care in adult histone mutant gliomas: results of an international survey. Neurooncol Pract 2022; 9:520-525. [DOI: 10.1093/nop/npac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Histone mutant gliomas (HMG) with histone H3 K27 and G34 mutations are recognized as biologically discrete entities with distinct anatomical locations, a younger age at presentation (in comparison to the most common high grade gliomas, IDH wild type glioblastoma) and poor prognosis. There is a paucity of data regarding management of adult HMG patients and no consensus for management. This study aims to identify current patterns of Australian and US neuro-oncology clinical practice for this entity.
Methods
Following institutional approvals, a patterns of care questionnaire designed to capture relevant clinical variables was circulated through the Cooperative Trials Group for Neuro-Oncology (COGNO) in Australia and the Caris Precision Oncology Alliance in the United States (US).
Results
Between 4/2021 and 10/2021, 43 responses were collected. 33% (n=14) of responders tested all patients for HMGs routinely; 40.92% (n=18) tested in select patients 26% (n=11) did not test for HMGs. The common indications for testing selected patients were midline anatomic location (n=18) and age (n=11) (<50 years). 23 used molecular sequencing, 22 used IHC at their centres.
Nine participants stated knowledge of histone H3 mutation did not affect their management of these gliomas, 11 said it affected their management at the time of recurrence, 23 stated it affected management of midline K27M patients, 11 participants stated it affected management of K27M mutant gliomas in other locations and 3 felt it affected management of G34R/V mutant gliomas.
Conclusion
Here we present a description of how the discovery of a new molecular subtype of primary glial tumours, histone mutated gliomas in adults, is being introduced into clinical practice.
Collapse
Affiliation(s)
- Alexander Yuile
- Medical Oncology Department Royal North Shore Hospital , Sydney, Australia
| | - Mustafa Khasraw
- The Preston Robert Tisch Brain Tumor Center, Duke Cancer Institute, Duke University , Durham, USA
| | - Justin T Low
- The Preston Robert Tisch Brain Tumor Center, Duke Cancer Institute, Duke University , Durham, USA
| | - Kyle M Walsh
- The Preston Robert Tisch Brain Tumor Center, Duke Cancer Institute, Duke University , Durham, USA
| | - Eric Lipp
- The Preston Robert Tisch Brain Tumor Center, Duke Cancer Institute, Duke University , Durham, USA
| | - Joanne Sy
- Department of Neuropathology, Royal Prince Alfred Hospital , Sydney, Australia
| | | | | | - Madhawa De Silva
- Medical Oncology Department Royal North Shore Hospital , Sydney, Australia
| | - Adrian Lee
- Medical Oncology Department Royal North Shore Hospital , Sydney, Australia
| | - Helen Wheeler
- Medical Oncology Department Royal North Shore Hospital , Sydney, Australia
| |
Collapse
|
37
|
Persson ML, Douglas AM, Alvaro F, Faridi P, Larsen MR, Alonso MM, Vitanza NA, Dun MD. The intrinsic and microenvironmental features of diffuse midline glioma; implications for the development of effective immunotherapeutic treatment strategies. Neuro Oncol 2022; 24:1408-1422. [PMID: 35481923 PMCID: PMC9435509 DOI: 10.1093/neuonc/noac117] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Diffuse midline glioma (DMG), including those of the brainstem (diffuse intrinsic pontine glioma), are pediatric tumors of the central nervous system (CNS). Recognized as the most lethal of all childhood cancers, palliative radiotherapy remains the only proven treatment option, however, even for those that respond, survival is only temporarily extended. DMG harbor an immunologically “cold” tumor microenvironment (TME) with few infiltrating immune cells. The mechanisms underpinning the cold TME are not well understood. Low expression levels of immune checkpoint proteins, including PD-1, PD-L1, and CTLA-4, are recurring features of DMG and likely contribute to the lack of response to immune checkpoint inhibitors (ICIs). The unique epigenetic signatures (including stem cell-like methylation patterns), a low tumor mutational burden, and recurring somatic mutations (H3K27M, TP53, ACVR1, MYC, and PIK3CA), possibly play a role in the reduced efficacy of traditional immunotherapies. Therefore, to circumvent the lack of efficacy thus far seen for the use of ICIs, adoptive cell transfer (including chimeric antigen receptor T cells) and the use of oncolytic viruses, are currently being evaluated for the treatment of DMG. It remains an absolute imperative that we improve our understanding of DMG’s intrinsic and TME features if patients are to realize the potential benefits offered by these sophisticated treatments. Herein, we summarize the limitations of immunotherapeutic approaches, highlight the emerging safety and clinical efficacy shown for sophisticated cell-based therapies, as well as the evolving knowledge underpinning the DMG-immune axis, to guide the development of immunotherapies that we hope will improve outcomes.
Collapse
Affiliation(s)
- Mika L Persson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia.,Precision Medicine Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Alicia M Douglas
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia.,Precision Medicine Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Frank Alvaro
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia.,Precision Medicine Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,John Hunter Children's Hospital, New Lambton Heights, NSW, Australia
| | - Pouya Faridi
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
| | - Martin R Larsen
- Department of Molecular Biology and Biochemistry, Protein Research Group, University of Southern Denmark, Odense, Denmark
| | - Marta M Alonso
- Department of Pediatrics, University Hospital of Navarra, Pamplona, Spain.,Program in Solid Tumors and Biomarkers, Foundation for Applied Medical Research (CIMA), Pamplona, Spain
| | - Nicholas A Vitanza
- The Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA.,Division of Pediatric Hematology, Oncology, Bone Marrow Transplant, and Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia.,Precision Medicine Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
38
|
Wang Y, Pan C, Xie M, Zuo P, Li X, Gu G, Li T, Jiang Z, Wu Z, Zhang J, Zhang L. Adult diffuse intrinsic pontine glioma: clinical, radiological, pathological, molecular features, and treatments of 96 patients. J Neurosurg 2022; 137:1628-1638. [PMID: 35395636 DOI: 10.3171/2022.2.jns211920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/07/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Unlike its pediatric counterpart, adult diffuse intrinsic pontine glioma (DIPG) remains largely unelucidated. In this study, the authors examined the clinical, radiological, pathological, molecular, and clinical aspects of 96 adult DIPGs. METHODS The National Brain Tumor Registry of China (April 2013-December 2019) was used to collect data on radiologically diagnosed adult DIPG patients. Survival analysis was conducted using Kaplan-Meier curves and univariate and multivariate Cox regression. The chi-square test/Wilcoxon rank-sum test and multivariable logistic regression were used to examine the clinical and radiological characteristics of patients with long-term survival (LTS). Interaction analyses between clinical factors were also conducted. RESULTS The median age at symptom onset was 33.5 years, and the median duration of symptoms was 4.5 months. The frequencies of H3K27M and IDH1 mutations were 37.2% and 26.5%, respectively. All adult DIPG patients had a median overall survival (OS) of 19.5 months, with 1-, 2-, and 3-year survival rates of 67.0%, 42.8%, and 36.0%, respectively. The median OS of 40 patients who did not undergo treatment was 13.4 months. Patients with H3K27M-mutant tumors had a poorer prognosis than those with IDH-mutant tumors (p < 0.001) and H3K27M(-)/IDH-wild-type tumors (p = 0.002), with a median OS of 11.4 months. The median OSs of patients with H3K27M-mutant tumors who received treatment and those who did not were 13.8 months and 7.5 months, respectively (p = 0.016). Among patients with and without a pathological diagnosis, H3K27M mutation (p < 0.001) and contrast enhancement on MRI (p = 0.003), respectively, imparted a worse prognosis. Treatments were the predictive factor for patients with H3K27M-mutant tumors (p = 0.038), whereas contrast enhancement on MRI was the prognostic factor for the H3K27M(-) group (p = 0.038). In addition, H3K27M mutation and treatment were significant predictors for patients with symptom duration ≤ 4 months (H3K27M, p = 0.020; treatment, p = 0.014) and tumors with no contrast enhancement (H3K27M, p = 0.003; treatment, p = 0.042). Patients with LTS were less likely to have cranial nerve palsy (p = 0.002) and contrast enhancement on MRI at diagnosis (p = 0.022). CONCLUSIONS It is recommended that all adult DIPG patients undergo genomic testing for H3K27M and IDH mutations. Despite the low prevalence, additional study is needed to better characterize the efficacy of various treatment modalities in adults with DIPG.
Collapse
Affiliation(s)
- Yi Wang
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Changcun Pan
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingguo Xie
- 2Department of Neurosurgery, Sanbo Brain Hospital, Beijing, China
| | - Pengcheng Zuo
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoou Li
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guocan Gu
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tian Li
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhuang Jiang
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhen Wu
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junting Zhang
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liwei Zhang
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,3China National Clinical Research Center for Neurological Diseases, Beijing, China; and.,4Beijing Key Laboratory of Brain Tumor, Beijing, China
| |
Collapse
|
39
|
Chorioallantoic membrane (CAM) assay to study treatment effects in diffuse intrinsic pontine glioma. PLoS One 2022; 17:e0263822. [PMID: 35157705 PMCID: PMC8843199 DOI: 10.1371/journal.pone.0263822] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/27/2022] [Indexed: 11/24/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a lethal pediatric brain tumor. While there are a number of in vivo rodent models for evaluating tumor biology and response to therapy, these models require significant time and resources. Here, we established the chick-embryo chorioallantoic (CAM) assay as an affordable and time efficient xenograft model for testing a variety of treatment approaches for DIPG. We found that patient-derived DIPG tumors develop in the CAM and maintain the same genetic and epigenetic characteristics of native DIPG tumors. We monitored tumor response to pharmaco- and radiation therapy by 3-D ultrasound volumetric and vasculature analysis. In this study, we established and validated the CAM model as a potential intermediate xenograft model for DIPG and its use for testing novel treatment approaches that include pharmacotherapy or radiation.
Collapse
|
40
|
Zaghloul MS, Nasr A, Tolba M, Refaat A, Youssef A, Moseab A, Enayet A, Arafa O, Maher E, Eldebawy E. Hypofractionated radiotherapy for Diffuse Intrinsic Pontine Glioma (DIPG): A non-inferiority prospective randomized study including 253 children. Int J Radiat Oncol Biol Phys 2022; 113:360-368. [PMID: 35150788 DOI: 10.1016/j.ijrobp.2022.01.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Pediatric Diffuse intrinsic pontine glioma (DIPG) is an orfen disease. The study aims at confirming the non-inferiority of hypofractionated (HF) radiotherapy. Identification of the prognostic factors that determine the overall survival (OS) and progression-free survival (PFS) is the secondary objective. METHODS 253 patients were randomized into 3 arms; HF1 receiving 39 Gy /13 fractions, HF2 receiving 45 Gy /15 fractions, and Conventional fractionation (CF) 54 Gy/30 fractions. The OS and PFS were calculated using Kaplan-Meier methods and the non-inferiority was estimated against the CF arm. RESULTS The median OS for the HF1, HF2, and CF were: 9.6, 8.2, and 8.7 months, respectively. The 1-, 1.5-, and 2- year OS were: 34.6 %, 17.9 %, and 10.7 % for HF1, 26.2 %, 13.1, and 4.8 % for HF2 compared to 25.3 %, 12.1 %, and 8.4 % for CF, respectively (p=0.3). The hazard ratio was 0.776 and 1.124 for HF1 and HF2, respectively. Considering the non-inferiority margin (Δ) of 15% and a power of 90%, the lower inferiority confident interval for HF1= -14.34% & HF2= 11.37% (both below Δ) confirming its non-inferiority at 18-months OS. Younger patients (2 - 5 years) have better median OS in the whole cohort (11.6 months), HF1(13.5), and CF (12.1) but not HF2 (6.2) (p=0.003). Furthermore, the overall survival rates at 1-,1.5- and 2- year for Children 2 - 5 years belonging to HF2 arm was lower than that for HF1 and CF arms. However, similar acute and late side effects were reported in the 3 arms. CONCLUSIONS Two Hypofractionated radiotherapy proved to be non-inferior to conventional fractionation. Young age (2 - 5 years) is the only prognostic factor determining both OS and PFS. The young age superiority was lost with a higher hypofractionated RT dose necessitating more caution in applying 45 Gy/15 fractions in younger (2 - 5 years) children.
Collapse
Affiliation(s)
- Mohamed S Zaghloul
- Radiation Oncology Department, National Cancer Institute, Cairo University, Egypt; Children's Cancer Hospital, Egypt.
| | - Azza Nasr
- Radiation Oncology Department, National Cancer Institute, Cairo University, Egypt; Children's Cancer Hospital, Egypt
| | | | - Amal Refaat
- Children's Cancer Hospital, Egypt; Radiodiagnosis Department, National Cancer Institute, Cairo University
| | - Ayda Youssef
- Children's Cancer Hospital, Egypt; Radiodiagnosis Department, National Cancer Institute, Cairo University
| | | | - Abdelrahman Enayet
- Children's Cancer Hospital, Egypt; Neurosurgery department, Faculty of Medicine, Cairo University
| | - Omar Arafa
- Children's Cancer Hospital, Egypt; Pediatric Oncology department, National Cancer Institute, Cairo University
| | | | - Eman Eldebawy
- Radiation Oncology Department, National Cancer Institute, Cairo University, Egypt; Children's Cancer Hospital, Egypt
| |
Collapse
|
41
|
Roig-Carles D, Jackson H, Loveson KF, Mackay A, Mather RL, Waters E, Manzo M, Alborelli I, Golding J, Jones C, Fillmore HL, Crea F. The Long Non-Coding RNA H19 Drives the Proliferation of Diffuse Intrinsic Pontine Glioma with H3K27 Mutation. Int J Mol Sci 2021; 22:ijms22179165. [PMID: 34502082 PMCID: PMC8431314 DOI: 10.3390/ijms22179165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an incurable paediatric malignancy. Identifying the molecular drivers of DIPG progression is of the utmost importance. Long non-coding RNAs (lncRNAs) represent a large family of disease- and tissue-specific transcripts, whose functions have not yet been elucidated in DIPG. Herein, we studied the oncogenic role of the development-associated H19 lncRNA in DIPG. Bioinformatic analyses of clinical datasets were used to measure the expression of H19 lncRNA in paediatric high-grade gliomas (pedHGGs). The expression and sub-cellular location of H19 lncRNA were validated in DIPG cell lines. Locked nucleic acid antisense oligonucleotides were designed to test the function of H19 in DIPG cells. We found that H19 expression was higher in DIPG vs. normal brain tissue and other pedHGGs. H19 knockdown resulted in decreased cell proliferation and survival in DIPG cells. Mechanistically, H19 buffers let-7 microRNAs, resulting in the up-regulation of oncogenic let-7 target (e.g., SULF2 and OSMR). H19 is the first functionally characterized lncRNA in DIPG and a promising therapeutic candidate for treating this incurable cancer.
Collapse
Affiliation(s)
- David Roig-Carles
- Cancer Research Group, School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK; (D.R.-C.); (H.J.); (R.L.M.); (E.W.); (J.G.)
| | - Holly Jackson
- Cancer Research Group, School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK; (D.R.-C.); (H.J.); (R.L.M.); (E.W.); (J.G.)
| | - Katie F. Loveson
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK; (K.F.L.); (H.L.F.)
| | - Alan Mackay
- Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, UK; (A.M.); (C.J.)
| | - Rebecca L. Mather
- Cancer Research Group, School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK; (D.R.-C.); (H.J.); (R.L.M.); (E.W.); (J.G.)
| | - Ella Waters
- Cancer Research Group, School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK; (D.R.-C.); (H.J.); (R.L.M.); (E.W.); (J.G.)
| | - Massimiliano Manzo
- Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland; (M.M.); (I.A.)
| | - Ilaria Alborelli
- Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland; (M.M.); (I.A.)
| | - Jon Golding
- Cancer Research Group, School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK; (D.R.-C.); (H.J.); (R.L.M.); (E.W.); (J.G.)
| | - Chris Jones
- Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, UK; (A.M.); (C.J.)
| | - Helen L. Fillmore
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK; (K.F.L.); (H.L.F.)
| | - Francesco Crea
- Cancer Research Group, School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK; (D.R.-C.); (H.J.); (R.L.M.); (E.W.); (J.G.)
- Correspondence:
| |
Collapse
|
42
|
Beyond the World Health Organization classification of central nervous system tumors 2016: what are the new developments for gliomas from a clinician's perspective? Curr Opin Neurol 2021; 33:701-706. [PMID: 33177376 DOI: 10.1097/wco.0000000000000871] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE OF REVIEW The World Health Organization (WHO) classification of central nervous system (CNS) tumors was revised in 2016 to include molecular biomarkers that are important for tumor classification and clinical decision making. Thereafter, the cIMPACT-NOW initiative further refined CNS tumor classification through a series of recommendations likely to shape the upcoming WHO classification 2021. RECENT FINDINGS Mutations in the isocitrate dehydrogenase (IDH) 1 or 2 genes continue to play a major role in glioma classification. Among IDH-mutant gliomas, loss of ATRX expression identifies IDH-mutant astrocytomas without necessity for 1p/19q codeletion testing. The nomenclature for IDH-mutant glioblastoma has been changed to astrocytoma, IDH-mutant, WHO grade 4, with CDKN2A homozygous deletion representing a novel molecular marker for these tumors. IDH-wildtype astrocytomas that lack microvascular proliferation or necrosis but exhibit telomerase reverse transcriptase promoter mutation, epidermal growth factor receptor amplification, and/or a +7/-10 genotype are now classified as IDH-wildtype glioblastoma. H3.3 G34-mutant diffuse hemispheric gliomas have been proposed as a new entity separate from IDH-wildtype glioblastoma. SUMMARY These changes increase diagnostic accuracy and refine clinical care by changing treatment recommendations, for example for patients with IDH-wildtype astrocytomas showing molecular features of glioblastoma. They also have major implications for clinical trial design.
Collapse
|
43
|
Einstein EH, Bonda D, Hosseini H, Harel A, Palmer JD, Giglio P, Barve R, Gould M, Lonser RR, D'Amico RS. Large Adult Spinal Diffuse Midline Histone H3 Lysine27-to-Methionine-Mutant Glioma With Intramedullary and Extramedullary Components Presenting With Progressive Hydrocephalus: A Case Report Highlighting Unique Imaging Findings and Treatment. Cureus 2021; 13:e15333. [PMID: 34235012 PMCID: PMC8240764 DOI: 10.7759/cureus.15333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2021] [Indexed: 11/26/2022] Open
Abstract
Diffuse midline glioma with histone H3 lysine27-to-methionine mutation (H3 K27M mutation) is a rare, aggressive tumor that is designated as World Health Organization (WHO) grade IV regardless of histologic features. Preoperative diagnosis remains challenging due to limited evidence regarding distinctive clinical and imaging characteristics. We describe the case of a young woman who presented with progressively worsening headaches due to communicating hydrocephalus. MR imaging with contrast of the cervical and thoracic spine revealed diffuse leptomeningeal enhancement with focal areas of intramedullary and subarachnoid T2 hyperintensity and enhancement, suggestive of a potential infectious process. Intraoperatively, no epidural pathology was identified, and with the differential diagnosis remaining broad, a second procedure was conducted involving intradural exploration and biopsy of a lesion. This was then identified as a diffuse midline glioma with H3 K27M mutation. The nonfocal clinical presentation in the setting of communicating hydrocephalus as well as the significant exophytic tumor growth and imaging findings made the initial diagnosis unique and challenging. This case, therefore, emphasizes the rare presentation of this tumor, and the need for further understanding of the clinical and imaging characteristics of this disease as well as the need for effective therapeutics.
Collapse
Affiliation(s)
- Evan H Einstein
- Neurosurgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, USA
| | - David Bonda
- Neurosurgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, USA
| | - Hossein Hosseini
- Pathology, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, USA
| | - Asaff Harel
- Neurology, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, USA
| | - Joshua D Palmer
- Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, USA, Columbus, USA
| | - Pierre Giglio
- Neuro-oncology, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Rahul Barve
- Neuro-oncology, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Megan Gould
- Neuro-oncology, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Russell R Lonser
- Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Randy S D'Amico
- Neurosurgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, USA
| |
Collapse
|
44
|
Khater AR, Abou-Antoun T. Mesenchymal Epithelial Transition Factor Signaling in Pediatric Nervous System Tumors: Implications for Malignancy and Cancer Stem Cell Enrichment. Front Cell Dev Biol 2021; 9:654103. [PMID: 34055785 PMCID: PMC8155369 DOI: 10.3389/fcell.2021.654103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Malignant nervous system cancers in children are the most devastating and worrisome diseases, specifically due to their aggressive nature and, in some cases, inoperable location in critical regions of the brain and spinal cord, and the impermeable blood-brain barrier that hinders delivery of pharmaco-therapeutic compounds into the tumor site. Moreover, the delicate developmental processes of the nervous system throughout the childhood years adds another limitation to the therapeutic modalities and doses used to treat these malignant cancers. Therefore, pediatric oncologists are charged with the daunting responsibility of attempting to deliver effective cures to these children, yet with limited doses of the currently available therapeutic options in order to mitigate the imminent neurotoxicity of radio- and chemotherapy on the developing nervous system. Various studies reported that c-Met/HGF signaling is affiliated with increased malignancy and stem cell enrichment in various cancers such as high-grade gliomas, high-risk medulloblastomas, and MYCN-amplified, high-risk neuroblastomas. Therapeutic interventions that are utilized to target c-Met signaling in these malignant nervous system cancers have shown benefits in basic translational studies and preclinical trials, but failed to yield significant clinical benefits in patients. While numerous pre-clinical data reported promising results with the use of combinatorial therapy that targets c-Met with other tumorigenic pathways, therapeutic resistance remains a problem, and long-term cures are rare. The possible mechanisms, including the overexpression and activation of compensatory tumorigenic mechanisms within the tumors or ineffective drug delivery methods that may contribute to therapeutic resistance observed in clinical trials are elaborated in this review.
Collapse
Affiliation(s)
- Amanda Rose Khater
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Tamara Abou-Antoun
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
45
|
A phase I/II study of bevacizumab, irinotecan and erlotinib in children with progressive diffuse intrinsic pontine glioma. J Neurooncol 2021; 153:263-271. [PMID: 33963476 PMCID: PMC8211596 DOI: 10.1007/s11060-021-03763-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/20/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION This study investigates the safety, tolerability, and preliminary efficacy of combined treatment with VEGF inhibitor bevacizumab, topoisomerase I inhibitor irinotecan, and EGFR inhibitor erlotinib in children with progressive diffuse intrinsic pontine glioma (DIPG). METHODS Biweekly bevacizumab (10 mg/kg) and irinotecan (125 mg/m2) were combined with daily erlotinib. Two cohorts received increasing doses of erlotinib (65 and 85 mg/m2) following a 3 + 3 dose-escalation schedule, until disease progression with a maximum of one year. Dose-limiting toxicities (DLT) were monitored biweekly. Secondary progression free survival (sPFS) and overall survival (OS) were determined based on clinical and radiological response measurements. Quality of life (QoL) during treatment was also assessed. RESULTS Between November 2011 and March 2018, nine patients with disease progression after initial radiotherapy were enrolled. Median PFS at start of the study was 7.3 months (range 3.5-10.0). In the first dose cohort, one patient experienced a DLT (grade III acute diarrhea), resulting in enrollment of three additional patients in this cohort. No additional DLTs were observed in consecutive patients receiving up to a maximum dose of 85 mg/m2. Median sPFS was 3.2 months (range 1.0-10.9), and median OS was 13.8 months (range 9.3-33.0). Overall QoL was stable during treatment. CONCLUSIONS Daily erlotinib is safe and well tolerated in doses up to 85 mg/m2 when combined with biweekly bevacizumab and irinotecan in children with progressive DIPG. Median OS of the study patients was longer than known form literature.
Collapse
|
46
|
Ruttens D, Messiaen J, Ferster A, Piette C, Schifflers S, Van Damme A, van der Werff Ten Bosch J, Verlooy J, Willems L, Jacobs S. Retrospective study of diffuse intrinsic pontine glioma in the Belgian population: a 25 year experience. J Neurooncol 2021; 153:293-301. [PMID: 33939103 DOI: 10.1007/s11060-021-03766-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Diffuse intrinsic pontine glioma is a rare disease with a high mortality. Our primary aim was to determine the incidence of this disease in Belgium. Secondly, we wanted to compare the treatment approach of Belgian pediatric oncology centres, to investigate possibilities for improvement. METHODS We retrospectively collected and analysed data on DIPG-patients diagnosed between 1994 and 2018 and recorded in the Belgian Cancer Registry. We included patients ≤ 18 years who were followed in one of the eight Belgian pediatric oncology centres. RESULTS We included 100 patients. Files were complete in 87 patients. We observed an increase in diagnoses with an incidence of 3.1 per 1,000,000 persons (aged 0-≤ 18) per year over the last 5 years compared to an overall incidence of 1.8. Biopsy was performed at diagnosis in 51.7% of patients. In one fifth this was study-related. Mutation analysis was known in eight patients, of which six showed the H3 K27M-mutation. 58.8% of patients received chemotherapy, without a significant survival benefit. 12.6% of patients were included in a clinical trial. Biopsy rate and the use of chemotherapy differed widely between centres. Mean OS and PFS were 10.49 and 4.87 months respectively. We observed an improved survival over time. CONCLUSIONS Over the past 25 years, we observed an increase of new DIPG-diagnoses. Outcome in our cohort is comparable with literature findings. We demonstrate an important heterogeneity in treatment approach between different centres and limited inclusion in clinical trials. Therefore, collaboration between centres and inclusion of patients in clinical trials is much needed.
Collapse
Affiliation(s)
- Dries Ruttens
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.
| | - Julie Messiaen
- Department of Pediatric Hematology-Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Alina Ferster
- Department of Pediatric Hematology-Oncology, Queen Fabiola Children's University Hospital, Brussels, Belgium
| | - Caroline Piette
- Department of Pediatrics, Division of Hematology-Oncology, CHU of Liège, Liège, Belgium
| | - Stefan Schifflers
- Department of Pediatric Hematology-Oncology, CHC MontLégia, Liège, Belgium
| | - An Van Damme
- Department of Pediatric Hematology-Oncology, Saint-Luc University Hospital, Brussels, Belgium
| | | | - Joris Verlooy
- Department of Pediatric Hematology-Oncology, University Hospital of Antwerp, Edegem, Belgium
| | - Leen Willems
- Department of Pediatric Hematology-Oncology, University Hospital Ghent, Ghent, Belgium
| | - Sandra Jacobs
- Department of Pediatric Hematology-Oncology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
47
|
Abstract
Diffuse midline gliomas harboring histone H3 K27M mutations are most commonly found in the brainstem of children. This mutation confers a WHO grade IV designation and is associated with a particularly poor prognosis. Although traditionally considered to be a disease of children and young adults, a number of recent reports have described H3 K27M mutations in older adults with diffuse midline gliomas. Here, we present the unusual case of a diffuse midline glioma in the pons and cerebellum of an 83-year-old woman and review the evolving clinical literature on this entity in adults. This case underscores that it may occur even in older adults, in whom prognostic and treatment paradigms used in pediatrics may not be directly applicable.
Collapse
Affiliation(s)
- Justin Thomas Low
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Shih-Hsiu Wang
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Katherine B Peters
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
48
|
Vitanza NA, Biery MC, Myers C, Ferguson E, Zheng Y, Girard EJ, Przystal JM, Park G, Noll A, Pakiam F, Winter CA, Morris SM, Sarthy J, Cole BL, Leary SES, Crane C, Lieberman NAP, Mueller S, Nazarian J, Gottardo R, Brusniak MY, Mhyre AJ, Olson JM. Optimal therapeutic targeting by HDAC inhibition in biopsy-derived treatment-naïve diffuse midline glioma models. Neuro Oncol 2021; 23:376-386. [PMID: 33130903 DOI: 10.1093/neuonc/noaa249] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diffuse midline gliomas (DMGs), including diffuse intrinsic pontine gliomas (DIPGs), have a dismal prognosis, with less than 2% surviving 5 years postdiagnosis. The majority of DIPGs and all DMGs harbor mutations altering the epigenetic regulatory histone tail (H3 K27M). Investigations addressing DMG epigenetics have identified a few promising drugs, including the HDAC inhibitor (HDACi) panobinostat. Here, we use clinically relevant DMG models to identify and validate other effective HDACi and their biomarkers of response. METHODS HDAC inhibitors were tested across biopsy-derived treatment-naïve in vitro and in vivo DMG models with biologically relevant radiation resistance. RNA sequencing was performed to define and compare drug efficacy and to map predictive biomarkers of response. RESULTS Quisinostat and romidepsin showed efficacy with low nanomolar half-maximal inhibitory concentration (IC50) values (~50 and ~5 nM, respectively). Comparative transcriptome analyses across quisinostat, romidepsin, and panobinostat showed a greater degree of shared biological effects between quisinostat and panobinostat, and less overlap with romidepsin. However, some transcriptional changes were consistent across all 3 drugs at similar biologically effective doses, such as overexpression of troponin T1 slow skeletal type (TNNT1) and downregulation of collagen type 20 alpha 1 chain (COL20A1), identifying these as potential vulnerabilities or on-target biomarkers in DMG. Quisinostat and romidepsin significantly (P < 0.0001) inhibited in vivo tumor growth. CONCLUSIONS Our data highlight the utility of treatment-naïve biopsy-derived models; establishes quisinostat and romidepsin as effective in vivo; illuminates potential mechanisms and/or biomarkers of DMG cell lethality due to HDAC inhibition; and emphasizes the need for brain tumor-penetrant versions of potentially efficacious agents.
Collapse
Affiliation(s)
- Nicholas A Vitanza
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | - Matt C Biery
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Carrie Myers
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Eric Ferguson
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ye Zheng
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Emily J Girard
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Giulia Park
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Alyssa Noll
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Molecular and Cellular Biology Graduate Program and Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
| | - Fiona Pakiam
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Conrad A Winter
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Shelli M Morris
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jay Sarthy
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Bonnie L Cole
- Department of Laboratories, Seattle Children's Hospital, Seattle, Washington, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Sarah E S Leary
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | - Courtney Crane
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Nicole A P Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Sabine Mueller
- University Children's Hospital Zurich, Zurich, Switzerland.,University of California San Francisco, San Francisco, California, USA
| | - Javad Nazarian
- University Children's Hospital Zurich, Zurich, Switzerland.,Department of Genetic Medicine Research, Children's National Medical Center, Washington DC, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Statistics, University of Washington, Seattle, Washington, USA
| | - Mi-Youn Brusniak
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Andrew J Mhyre
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - James M Olson
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| |
Collapse
|
49
|
Keane L, Cheray M, Blomgren K, Joseph B. Multifaceted microglia - key players in primary brain tumour heterogeneity. Nat Rev Neurol 2021; 17:243-259. [PMID: 33692572 DOI: 10.1038/s41582-021-00463-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
Microglia are the resident innate immune cells of the immune-privileged CNS and, as such, represent the first line of defence against tissue injury and infection. Given their location, microglia are undoubtedly the first immune cells to encounter a developing primary brain tumour. Our knowledge of these cells is therefore important to consider in the context of such neoplasms. As the heterogeneous nature of the most aggressive primary brain tumours is thought to underlie their poor prognosis, this Review places a special emphasis on the heterogeneity of the tumour-associated microglia and macrophage populations present in primary brain tumours. Where available, specific information on microglial heterogeneity in various types and subtypes of brain tumour is included. Emerging evidence that highlights the importance of considering the heterogeneity of both the tumour and of microglial populations in providing improved treatment outcomes for patients is also discussed.
Collapse
Affiliation(s)
- Lily Keane
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Mathilde Cheray
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Paediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
50
|
Tam LT, Yeom KW, Wright JN, Jaju A, Radmanesh A, Han M, Toescu S, Maleki M, Chen E, Campion A, Lai HA, Eghbal AA, Oztekin O, Mankad K, Hargrave D, Jacques TS, Goetti R, Lober RM, Cheshier SH, Napel S, Said M, Aquilina K, Ho CY, Monje M, Vitanza NA, Mattonen SA. MRI-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study. Neurooncol Adv 2021; 3:vdab042. [PMID: 33977272 PMCID: PMC8095337 DOI: 10.1093/noajnl/vdab042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Diffuse intrinsic pontine gliomas (DIPGs) are lethal pediatric brain tumors. Presently, MRI is the mainstay of disease diagnosis and surveillance. We identify clinically significant computational features from MRI and create a prognostic machine learning model. Methods We isolated tumor volumes of T1-post-contrast (T1) and T2-weighted (T2) MRIs from 177 treatment-naïve DIPG patients from an international cohort for model training and testing. The Quantitative Image Feature Pipeline and PyRadiomics was used for feature extraction. Ten-fold cross-validation of least absolute shrinkage and selection operator Cox regression selected optimal features to predict overall survival in the training dataset and tested in the independent testing dataset. We analyzed model performance using clinical variables (age at diagnosis and sex) only, radiomics only, and radiomics plus clinical variables. Results All selected features were intensity and texture-based on the wavelet-filtered images (3 T1 gray-level co-occurrence matrix (GLCM) texture features, T2 GLCM texture feature, and T2 first-order mean). This multivariable Cox model demonstrated a concordance of 0.68 (95% CI: 0.61–0.74) in the training dataset, significantly outperforming the clinical-only model (C = 0.57 [95% CI: 0.49–0.64]). Adding clinical features to radiomics slightly improved performance (C = 0.70 [95% CI: 0.64–0.77]). The combined radiomics and clinical model was validated in the independent testing dataset (C = 0.59 [95% CI: 0.51–0.67], Noether’s test P = .02). Conclusions In this international study, we demonstrate the use of radiomic signatures to create a machine learning model for DIPG prognostication. Standardized, quantitative approaches that objectively measure DIPG changes, including computational MRI evaluation, could offer new approaches to assessing tumor phenotype and serve a future role for optimizing clinical trial eligibility and tumor surveillance.
Collapse
Affiliation(s)
- Lydia T Tam
- Stanford University School of Medicine, Stanford, California, USA.,Department of Radiology, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, California, USA
| | - Kristen W Yeom
- Stanford University School of Medicine, Stanford, California, USA.,Department of Radiology, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, California, USA
| | - Jason N Wright
- Department of Radiology, Seattle Children's Hospital, Seattle, Washington, USA.,Harborview Medical Center, Seattle, Washington, USA
| | - Alok Jaju
- Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Alireza Radmanesh
- Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Michelle Han
- Stanford University School of Medicine, Stanford, California, USA.,Department of Radiology, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, California, USA
| | - Sebastian Toescu
- University College London, Great Ormond Street Institute of Child Health, London, UK
| | - Maryam Maleki
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Eric Chen
- Departments of Clinical Radiology & Imaging Sciences, Riley Children's Hospital, Indiana University, Indianapolis, Indiana, USA
| | - Andrew Campion
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, California, USA
| | - Hollie A Lai
- Department of Radiology, CHOC Children's Hospital, Orange, California, USA.,University of California, Irvine, California, USA
| | - Azam A Eghbal
- Department of Radiology, CHOC Children's Hospital, Orange, California, USA.,University of California, Irvine, California, USA
| | - Ozgur Oztekin
- Department of Neuroradiology, Bakircay University, Cigli Education and Research Hospital, Izmir, Turkey.,Department of Neuroradiology, Health Science University, Tepecik Education and Research Hospital, Izmir, Turkey
| | - Kshitij Mankad
- University College London, Great Ormond Street Institute of Child Health, London, UK.,Department of Radiology, Great Ormond Street Hospital for Children, London, UK
| | - Darren Hargrave
- University College London, Great Ormond Street Institute of Child Health, London, UK
| | - Thomas S Jacques
- University College London, Great Ormond Street Institute of Child Health, London, UK
| | - Robert Goetti
- Department of Medical Imaging, The Children's Hospital at Westmead, The University of Sydney, Westmead, Australia
| | - Robert M Lober
- Department of Neurosurgery, Dayton Children's Hospital, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Samuel H Cheshier
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Sandy Napel
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Mourad Said
- Radiology Department Centre International Carthage Médicale, Monastir, Tunisia
| | - Kristian Aquilina
- University College London, Great Ormond Street Institute of Child Health, London, UK
| | - Chang Y Ho
- Departments of Clinical Radiology & Imaging Sciences, Riley Children's Hospital, Indiana University, Indianapolis, Indiana, USA
| | - Michelle Monje
- Stanford University School of Medicine, Stanford, California, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
| | - Nicholas A Vitanza
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, Seattle, Washington, USA.,Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Sarah A Mattonen
- Department of Medical Biophysics, Western University, London, Onatrio, Canada.,Department of Oncology, Western University, London, Ontario, Canada
| |
Collapse
|