1
|
Görüşük EM, Lalikoglu M, Aşçı YS, Bener M, Bekdeşer B, Apak R. Novel tributyl phosphate-based deep eutectic solvent: Application in microwave assisted extraction of carotenoids. Food Chem 2024; 459:140418. [PMID: 39024868 DOI: 10.1016/j.foodchem.2024.140418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
A contribution to the use of deep eutectic solvents (DES) and microwave-assisted extraction (MAE) was made for bioactive compounds recovery, especially those with lipophilic character, from tomato and carrot samples rich in carotenoids. For the first time, a novel deep eutectic solvent was synthesized, comprising tributyl phosphate (TBP) as a hydrogen bond acceptor and acetic acid (AcOH) as a hydrogen bond donor. The total antioxidant capacity (TAC) of tomato and carrot extracts obtained by MAE, in which optimization of operational parameters and modeling were made with the use of Box-Behnken design of the response surface methodology (RSM), was evaluated using the Cupric Reducing Antioxidant Capacity (CUPRAC) method. For the highest TAC, operational parameters that best suit the MAE procedure were set at 80 °C, 35 min, and 25 mL/2.0 g. The TAC values of extracts obtained by MAE using TBP:AcOH, 1:2 (mol/mol) were examined against those of extracts acquired by classical solvent extraction using a mixture of hexane, ethanol and acetone (H:E:A, 2:1:1 (v/v/v)) mixture. TAC of extracts in DES varied between 5.10 and 0.71 lycopene equivalents (mmol LYC kg-1). The highest extraction yield comparable to conventional organic solvents was obtained with TBP:AcOH (1:2). It was observed that, in addition to lipophilic antioxidants, some hydrophilic antioxidant compounds were partially extracted with the proposed DES. Moreover, the extracted antioxidant compounds were identified and quantified by HPLC analysis. The proposed DES and MAE process will find potential application for hydrophobic antioxidant extraction from tomatoes and carrots on an industrial scale after further studies.
Collapse
Affiliation(s)
- Emine Münevver Görüşük
- Institute of Graduate Studies and Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Istanbul, Türkiye
| | - Melisa Lalikoglu
- Istanbul University, Faculty of Science, Department of Chemistry, Fatih 34134, Istanbul, Türkiye
| | - Yavuz Selim Aşçı
- Istanbul University, Faculty of Science, Department of Chemistry, Fatih 34134, Istanbul, Türkiye
| | - Mustafa Bener
- Istanbul University, Faculty of Science, Department of Chemistry, Fatih 34134, Istanbul, Türkiye
| | - Burcu Bekdeşer
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, Avcilar 34320, Istanbul, Türkiye.
| | - Reşat Apak
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, Avcilar 34320, Istanbul, Türkiye; Turkish Academy of Sciences (TUBA), 06690 Çankaya, Ankara, Turkey.
| |
Collapse
|
2
|
Ejaz A, Waliat S, Afzaal M, Saeed F, Ahmad A, Din A, Ateeq H, Asghar A, Shah YA, Rafi A, Khan MR. Biological activities, therapeutic potential, and pharmacological aspects of blackcurrants ( Ribes nigrum L): A comprehensive review. Food Sci Nutr 2023; 11:5799-5817. [PMID: 37823094 PMCID: PMC10563683 DOI: 10.1002/fsn3.3592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 10/13/2023] Open
Abstract
Blackcurrant possesses various health-endorsing attributes owing to its polyphenol profile. Recent studies have demonstrated its therapeutic potential against various health disorders. Various bioactives present in blackcurrants have different functional and pharmacological aspects including anti-inflammatory, antioxidant, and antimicrobial properties. The most dominant and important bioactive include anthocyanins, flavonols, phenolic acids, and polyunsaturated fatty acids. Food formats derived from blackcurrants comprise pomace, juice, powder, and extracts. All these food formats have industrial, prebiotic, and pharmacological benefits. In the current article, the nutritional composition, industrial applications, and therapeutic potential are discussed in the recent literature. Moreover, novel extraction techniques for the extraction of bioactive compounds present in blackcurrants and their safety concerns have been elaborated.
Collapse
Affiliation(s)
- Afaf Ejaz
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Sadaf Waliat
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmad
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Ahmad Din
- National Institute of Food Science & TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Huda Ateeq
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Asma Asghar
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Yasir Abbas Shah
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Ahmad Rafi
- National Institute of Food Science & TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Mahbubur Rahman Khan
- Department of Food Processing and PreservationHajee Mohammad Danesh Science & Technology UniversityDinajpurBangladesh
| |
Collapse
|
3
|
Vidana Gamage GC, Choo WS. Effect of hot water, ultrasound, microwave, and pectinase-assisted extraction of anthocyanins from black goji berry for food application. Heliyon 2023; 9:e14426. [PMID: 36942215 PMCID: PMC10024101 DOI: 10.1016/j.heliyon.2023.e14426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Lycium ruthenicum, commonly known as black goji berry, is a rich anthocyanin source containing a high amount of monoacylated anthocyanins. This study investigates the effect of different extraction methods to extract anthocyanins from black goji berry for food application. Different hot water extraction conditions were applied to investigate the effect of specific substrate: solvent ratio (1:15 and 1:20 (w/v)), extraction time (30 and 60 min) and extraction temperature (40, 50 and 60 °C) on the extraction yield, total anthocyanin content (TAC) and the total phenolic content (TPC) of the anthocyanin extracts. Best hot water extraction conditions for obtaining an anthocyanin extract with high TAC (13.8 ± 1.14 mg CGE/g), TPC (69.7 ± 2.50 mg of GAE/g), and extraction yield (48.3 ± 3.25%) consuming less solvent, time and heat were substrate: solvent ratio of 1: 15 (w/v), extraction temperature of 50 °C, and extraction time of 30 min. The effect of pectinase, ultrasound, and microwave on hot water extraction of anthocyanins from black goji berry was investigated using the best conditions for hot water extraction. Pectinase-assisted extraction [1.5% (w/v) pectinase, substrate: solvent ratio of 1:15 (w/v) at 50 °C for 30 min] was the best extraction method to extract black goji berry anthocyanins demonstrating higher extraction yield, TAC, TPC, and the highest percentage of petunidin-3-O-(trans-p-coumaroyl)-rutinoside-5-O-glucoside.
Collapse
|
4
|
Li Y, Hu K, Huang C, Hu Y, Ji H, Liu S, Gao J. Improvement of solubility, stability and antioxidant activity of carotenoids using deep eutectic solvent-based microemulsions. Colloids Surf B Biointerfaces 2022; 217:112591. [PMID: 35679734 DOI: 10.1016/j.colsurfb.2022.112591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023]
Abstract
Natural carotenoids have been widely used as colorants and antioxidants in process of food, medicine, and cosmetic. However, the carotenoids have low bioactivity in vivo due to poor water-solubility. To enhance the solubility, stability and antioxidant activity of carotenoids, novel microemulsions (MEs) composed with deep eutectic solvents (DESs), tween 80 and water were developed as alternatives to organic solvents. The phase diagrams and physicochemical properties (viscosity, pH, and diameter) of the DES-based MEs were investigated at different temperatures. Then the solubility distribution, storage stability and DPPH free radical-scavenging activity of three carotenoids (astaxanthin, astaxanthin ester and lutein) in the MEs were evaluated. Compared with ethanol, methanol, and acetone, all the DES-based MEs studied significantly enhanced the solubility of the carotenoids due to the stronger hydrogen bonding and Van der Waals interactions. The highest solubilities of 0.27, 473.63, and 12.50 mg/mL for astaxanthin, astaxanthin ester and lutein, respectively, were observed in the MEs containing DES (DL-menthol:acetic acid = 1:2) at 35 ℃. Moreover, astaxanthin ester can be well preserved in the MEs containing DES (DL-menthol:octanoic acid = 1:2) with a half-life of more than 69 days. In addition, the DPPH scavenging capacities of the three carotenoids in all the MEs were higher than the organic solvents. The results revealed that the DES-based MEs with low viscosity (<0.2 Pa•s) and mild acidic pH (4-5) are potential solvents for natural carotenoids in food processing and storage, medicine making, as well as biomaterials processing.
Collapse
Affiliation(s)
- Yan Li
- Collage of Food Science, Guangdong Pharmaceutical University, Zhongshan, PR China; Collage of Food Science and Technology, Guangdong Ocean University, Zhanjiang, PR China
| | - Kun Hu
- Collage of Food Science, Guangdong Pharmaceutical University, Zhongshan, PR China
| | - Chao Huang
- Collage of Food Science, Guangdong Pharmaceutical University, Zhongshan, PR China
| | - Yong Hu
- Collage of Food Science, Guangdong Pharmaceutical University, Zhongshan, PR China
| | - Hongwu Ji
- Collage of Food Science and Technology, Guangdong Ocean University, Zhanjiang, PR China
| | - Shucheng Liu
- Collage of Food Science and Technology, Guangdong Ocean University, Zhanjiang, PR China
| | - Jing Gao
- Collage of Food Science, Guangdong Pharmaceutical University, Zhongshan, PR China; Collage of Food Science and Technology, Guangdong Ocean University, Zhanjiang, PR China.
| |
Collapse
|
5
|
Benucci I, Lombardelli C, Mazzocchi C, Esti M. Natural colorants from vegetable food waste: Recovery, regulatory aspects, and stability—A review. Compr Rev Food Sci Food Saf 2022; 21:2715-2737. [DOI: 10.1111/1541-4337.12951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Ilaria Benucci
- Department of Agriculture and Forestry Science (DAFNE) Tuscia University Viterbo Italy
| | - Claudio Lombardelli
- Department of Agriculture and Forestry Science (DAFNE) Tuscia University Viterbo Italy
| | - Caterina Mazzocchi
- Department of Agriculture and Forestry Science (DAFNE) Tuscia University Viterbo Italy
| | - Marco Esti
- Department of Agriculture and Forestry Science (DAFNE) Tuscia University Viterbo Italy
| |
Collapse
|
6
|
Alternative Methods of Bioactive Compounds and Oils Extraction from Berry Fruit By-Products—A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031734] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Berry fruit by-products are a source of polyphenol compounds and highly nutritious oils and can be reused to fulfill the requirements of the circular economy model. One of the methods of obtaining polyphenol-rich extracts or oils is extraction. Applying conventional solvent extraction techniques may be insufficient to reach high polyphenol or lipid fraction yields and selectivity of specific compounds. Alternative extraction methods, mainly ultrasound-assisted extraction, pulsed electric field-assisted extraction, microwave-assisted extraction and supercritical fluid extraction, are ways to improve the efficiency of the isolation of bioactive compounds or oils from berry fruit by-products. Additionally, non-conventional techniques are considered as green extraction methods, as they consume less energy, solvent volume and time. The aim of this review is to summarize the studies on alternative extraction methods and their relationship to the composition of extracts or oils obtained from berry waste products.
Collapse
|
7
|
Sharma M, Dash KK. Microwave and ultrasound assisted extraction of phytocompounds from black jamun pulp: Kinetic and thermodynamics characteristics. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Zhou Y, Zhan N, Zhang M, Wang S. Optimization of extraction process of taurine from mussel meat with pulsed electric field assisted enzymatic hydrolysis. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yajun Zhou
- College of Food Science and Engineering Jilin University Changchun China
| | - Ni Zhan
- College of Food Science and Engineering Jilin University Changchun China
| | - Mingdi Zhang
- College of Food Science and Engineering Jilin University Changchun China
| | - Shujie Wang
- College of Food Science and Engineering Jilin University Changchun China
| |
Collapse
|
9
|
Recovery of bioactive components from avocado peels using microwave-assisted extraction. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Characterization of Food Packaging Films with Blackcurrant Fruit Waste as a Source of Antioxidant and Color Sensing Intelligent Material. Molecules 2021; 26:molecules26092569. [PMID: 33924920 PMCID: PMC8124232 DOI: 10.3390/molecules26092569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Chitosan and pectin films were enriched with blackcurrant pomace powder (10 and 20% (w/w)), as bio-based material, to minimize food production losses and to increase the functional properties of produced films aimed at food coatings and wrappers. Water vapor permeability of active films increased up to 25%, moisture content for 27% in pectin-based ones, but water solubility was not significantly modified. Mechanical properties (tensile strength, elongation at break and Young’s modulus) were mainly decreased due to the residual insoluble particles present in blackcurrant waste. FTIR analysis showed no significant changes between the film samples. The degradation temperatures, determined by DSC, were reduced by 18 °C for chitosan-based samples and of 32 °C lower for the pectin-based samples with blackcurrant powder, indicating a disturbance in polymer stability. The antioxidant activity of active films was increased up to 30-fold. Lightness and redness of dry films significantly changed depending on the polymer type. Significant color changes, especially in chitosan film formulations, were observed after exposure to different pH buffers. This effect is further explored in formulations that were used as color change indicators for intelligent biopackaging.
Collapse
|
11
|
Sharma M, Usmani Z, Gupta VK, Bhat R. Valorization of fruits and vegetable wastes and by-products to produce natural pigments. Crit Rev Biotechnol 2021; 41:535-563. [PMID: 33634717 DOI: 10.1080/07388551.2021.1873240] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synthetic pigments from petrochemicals have been extensively used in a wide range of food products. However, these pigments have adverse effects on human health that has rendered it obligatory to the scientific community in order to explore for much safer, natural, and eco-friendly pigments. In this regard, exploiting the potential of agri-food wastes presumes importance, extracted mainly by employing green processing and extraction technologies. Of late, pigments market size is growing rapidly owing to their extensive uses. Hence, there is a need for sustainable production of pigments from renewable bioresources. Valorization of vegetal wastes (fruits and vegetables) and their by-products (e.g. peels, seeds or pomace) can meet the demands of natural pigment production at the industrial levels for potential food, pharmaceuticals, and cosmeceuticals applications. These wastes/by-products are a rich source of natural pigments such as: anthocyanins, betalains, carotenoids, and chlorophylls. It is envisaged that these natural pigments can contribute significantly to the development of functional foods as well as impart rich biotherapeutic potential. With a sustainability approach, we have critically reviewed vital research information and developments made on natural pigments from vegetal wastes, greener extraction and processing technologies, encapsulation techniques and potential bioactivities. Designed with an eco-friendly approach, it is expected that this review will benefit not only the concerned industries but also be of use to health-conscious consumers.
Collapse
Affiliation(s)
- Minaxi Sharma
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Tartu, Estonia
| | - Zeba Usmani
- Department of Chemistry and Biotechnology, Tallinn University of Technology (TalTech), Tallinn, Estonia
| | - Vijai Kumar Gupta
- Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, UK.,Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, UK
| | - Rajeev Bhat
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
12
|
Tonova K, Lazarova M. Eurasian water milfoil: Composition, recovery of phenolics and anthocyanins, and saccharification. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.23990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Konstantza Tonova
- Institute of Chemical Engineering – Bulgarian Academy of Sciences Sofia Bulgaria
| | - Madlena Lazarova
- Institute of Chemical Engineering – Bulgarian Academy of Sciences Sofia Bulgaria
| |
Collapse
|
13
|
Extraction, Identification, and Health Benefits of Anthocyanins in Blackcurrants (Ribes nigrum L.). APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041863] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The fruit of the blackcurrant (Ribes nigrum L.) is round-shaped, dark purple, bittersweet, and seed-containing edible berries. The blackcurrant has been used as a traditional medicine in both Asia and European countries. It is known as a rich source of antioxidants, largely due to its high content of phenolic compounds, especially anthocyanins. Studies on anthocyanins from blackcurrants have adopted different extraction methods and a panel of anthocyanins has been identified in them. Research on the health benefits of blackcurrant anthocyanins has also grown. To present a general overview of research in blackcurrant anthocyanins, this review focuses on the extraction methods of anthocyanins from blackcurrants and the molecular mechanisms underlying their health benefits.
Collapse
|
14
|
Albuquerque BR, Oliveira MBPP, Barros L, Ferreira ICFR. Could fruits be a reliable source of food colorants? Pros and cons of these natural additives. Crit Rev Food Sci Nutr 2020; 61:805-835. [PMID: 32267162 DOI: 10.1080/10408398.2020.1746904] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Color additives are important for the food industry to improve sensory quality lost during food process and to expand the variety of products. In general, artificial colorants have lower cost and better stability than the natural ones. Nevertheless, studies have reported their association with some health disorders. Furthermore, consumers have given greater attention to food products with health beneficial effects, which has provided a new perspective for the use of natural colorants. In this context, fruits are an excellent alternative source of natural compounds, that allow the obtainment of a wide range of colorant molecules, such as anthocyanins, betalains, carotenoids, and chlorophylls. Furthermore, in addition to their coloring ability, they comprise different bioactive properties. However, the extraction and application of natural colorants from fruits is still a challenge, since these compounds show some stability problems, in addition to issues related to the sustainability of raw-materials providing. To overcome these limitations, several studies have reported optimized extraction and stabilization procedures. In this review, the major pigments found in fruits and their extraction and stabilization techniques for uses as food additives will be looked over.
Collapse
Affiliation(s)
- Bianca R Albuquerque
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - M Beatriz P P Oliveira
- REQUIMTE - Science Chemical Department, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
15
|
Phenolic Compounds Extraction of Arbutus unedo L.: Process Intensification by Microwave Pretreatment. Processes (Basel) 2020. [DOI: 10.3390/pr8030298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Arbutus unedo L., commonly known as the strawberry-tree fruit, is an endemic species of the Mediterranean flora. Microwave extraction technology has been considered as a fast and “green” method for the production of extracts rich in bioactive compounds, although the energy consumption is high. To overcome this bottleneck, microwave was used as a pretreatment procedure in short time periods. This technique promotes the burst of intracellular vacuoles leading to an increase in the lixiviation of phenolic compounds. Different approaches were tested, namely a solvent-free irradiation (SFI), a solvent-assisted irradiation (SAI) and a pressurized solvent-assisted irradiation (PSAI). After irradiation, a solid–liquid extraction procedure was performed using a mixture of water and ethanol. A kinetic evaluation of the total phenolic content (TPC) was performed using the Folin–Ciocalteu method. For the total anthocyanin content, a UV-spectrophotometric method was used. HPLC-UV and LC-MS were used for TPC and identification of present compounds. Microwave irradiation led to an increase in TPC of extracts after SAI (52%) and PSAI (66%) along with a reduction in time of extraction from 30 min to less than 2 min. The anthocyanin content also increased by 66% for the SAI and PSAI extractions.
Collapse
|
16
|
Kou P, Kang YF, Wang LT, Niu LJ, Xiao Y, Guo N, Cui Q, Li YY, Fu YJ. An integrated strategy for production of four anthocyanin compounds from Ribes nigrum L. by deep eutectic solvents and flash chromatography. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.08.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Roberts K, Diop A, St-Pierre A, Tardif M, Vialle A, Barnabé S. Comparing Polyphenolic Yields from the CrowberryEmpetrum nigrum L.on the Basse-Côte-Nord Du Québec via Solvent and Microwave-Assisted Extractions. Ind Biotechnol (New Rochelle N Y) 2019. [DOI: 10.1089/ind.2019.0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Karla Roberts
- Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Amadou Diop
- Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | | | | | | | - Simon Barnabé
- Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| |
Collapse
|
18
|
Liu W, Yang C, Zhou C, Wen Z, Dong X. An improved microwave-assisted extraction of anthocyanins from purple sweet potato in favor of subsequent comprehensive utilization of pomace. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Liu S, Zhang X, You L, Guo Z, Chang X. Changes in anthocyanin profile, color, and antioxidant capacity of hawthorn wine (Crataegus pinnatifida) during storage by pretreatments. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Koyu H, Kazan A, Demir S, Haznedaroglu MZ, Yesil-Celiktas O. Optimization of microwave assisted extraction of Morus nigra L. fruits maximizing tyrosinase inhibitory activity with isolation of bioactive constituents. Food Chem 2018; 248:183-191. [DOI: 10.1016/j.foodchem.2017.12.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/28/2017] [Accepted: 12/13/2017] [Indexed: 11/26/2022]
|
21
|
Ekezie FGC, Sun DW, Cheng JH. Acceleration of microwave-assisted extraction processes of food components by integrating technologies and applying emerging solvents: A review of latest developments. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.06.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Xu DP, Li Y, Meng X, Zhou T, Zhou Y, Zheng J, Zhang JJ, Li HB. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int J Mol Sci 2017; 18:E96. [PMID: 28067795 PMCID: PMC5297730 DOI: 10.3390/ijms18010096] [Citation(s) in RCA: 489] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/24/2016] [Accepted: 12/27/2016] [Indexed: 01/17/2023] Open
Abstract
Natural antioxidants are widely distributed in food and medicinal plants. These natural antioxidants, especially polyphenols and carotenoids, exhibit a wide range of biological effects, including anti-inflammatory, anti-aging, anti-atherosclerosis and anticancer. The effective extraction and proper assessment of antioxidants from food and medicinal plants are crucial to explore the potential antioxidant sources and promote the application in functional foods, pharmaceuticals and food additives. The present paper provides comprehensive information on the green extraction technologies of natural antioxidants, assessment of antioxidant activity at chemical and cellular based levels and their main resources from food and medicinal plants.
Collapse
Affiliation(s)
- Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Tong Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Jie Zheng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Jiao-Jiao Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
23
|
Oliveira GDAR, de Oliveira AE, da Conceição EC, Leles MIG. Multiresponse optimization of an extraction procedure of carnosol and rosmarinic and carnosic acids from rosemary. Food Chem 2016; 211:465-73. [PMID: 27283656 DOI: 10.1016/j.foodchem.2016.05.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 02/01/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
A green solvent-based optimization for rosmarinic acid (RA), carnosol (COH), and carnosic acid (CA) extraction, the three main antioxidants from rosemary, was performed. The conventional solid-liquid extraction was optimized using a central composite design (CCD) followed by the desirability approach. In the CCD analysis the quantitative effects of extraction time (4.8-55.2min), liquid-to-solid ratio (4.6-21.4mLg(-1)), and ethanol content (44.8-95.2% v/v) were determined for the extracted amount of antioxidants, their concentrations in the extract, and the extraction yield. Samples were analyzed by HPLC and the antioxidants were identified by comparison with pure standard retention times and UV spectra. The desirability function that simultaneously maximizes the antioxidants extraction and their concentrations in the final product was validated. The extraction using a hydroalcoholic solution 70% v/v, at low liquid-to-solid ratio (5mLg(-1)), and after 55-min yielded an antioxidant recovery rate of 89.8%, and a final product 4.75 times richer in the main antioxidants than the raw material.
Collapse
|
24
|
Zhou Y, He Q, Zhou D. Optimization Extraction of Protein from Mussel by High-Intensity Pulsed Electric Fields. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.12962] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yajun Zhou
- College of Food Science and Engineering; Jilin University; Changchun 130062 China
| | - Qin He
- College of Food Science and Engineering; Jilin University; Changchun 130062 China
| | - Dan Zhou
- Institute of Food Science and Engineering; Jilin Agricultural University; Changchun 130118 China
| |
Collapse
|
25
|
Ruiz-Aceituno L, García-Sarrió MJ, Alonso-Rodriguez B, Ramos L, Sanz ML. Extraction of bioactive carbohydrates from artichoke ( Cynara scolymus L.) external bracts using microwave assisted extraction and pressurized liquid extraction. Food Chem 2016; 196:1156-62. [DOI: 10.1016/j.foodchem.2015.10.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/06/2015] [Accepted: 10/10/2015] [Indexed: 10/22/2022]
|
26
|
Silva S, Costa EM, Calhau C, Morais RM, Pintado ME. Anthocyanin extraction from plant tissues: A review. Crit Rev Food Sci Nutr 2015; 57:3072-3083. [DOI: 10.1080/10408398.2015.1087963] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Microwave-assisted decomposition coupled with acidic food condiment as an efficient technology for ginger (Zingiber officinale Roscoe) processing. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.03.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Zhu Z, Liu Y, Guan Q, He J, Liu G, Li S, Ding L, Jaffrin MY. Purification of Purple Sweet Potato Extract by Dead-End Filtration and Investigation of Membrane Fouling Mechanism. FOOD BIOPROCESS TECH 2015. [DOI: 10.1007/s11947-015-1532-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Yang Y, Yuan X, Xu Y, Yu Z. Purification of Anthocyanins from Extracts of Red Raspberry Using Macroporous Resin. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2015. [DOI: 10.1080/10942912.2013.862632] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Teh SS, Niven BE, Bekhit AEDA, Carne A, Birch EJ. Microwave and pulsed electric field assisted extractions of polyphenols from defatted canola seed cake. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12749] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Sue-Siang Teh
- Department of Food Science; University of Otago; PO Box 56 Dunedin 9054 New Zealand
| | - Brian E. Niven
- Department of Mathematics and Statistics; University of Otago; PO Box 56 Dunedin 9054 New Zealand
| | | | - Alan Carne
- Biochemistry Department; University of Otago; PO Box 56 Dunedin 9054 New Zealand
| | - Edward John Birch
- Department of Food Science; University of Otago; PO Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
31
|
Zhou Y, Zhao X, Huang H. Effects of Pulsed Electric Fields on Anthocyanin Extraction Yield of Blueberry Processing By-Products. J FOOD PROCESS PRES 2015. [DOI: 10.1111/jfpp.12427] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yajun Zhou
- Department of Biological and Agricultural Engineering; Jilin University; Changchun 130022 China
| | - Xutong Zhao
- Department of Biological and Agricultural Engineering; Jilin University; Changchun 130022 China
| | - Hui Huang
- Department of Biological and Agricultural Engineering; Jilin University; Changchun 130022 China
| |
Collapse
|
32
|
Tao Y, Wu D, Zhang QA, Sun DW. Ultrasound-assisted extraction of phenolics from wine lees: modeling, optimization and stability of extracts during storage. ULTRASONICS SONOCHEMISTRY 2014; 21:706-15. [PMID: 24090833 DOI: 10.1016/j.ultsonch.2013.09.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 08/14/2013] [Accepted: 09/04/2013] [Indexed: 05/22/2023]
Abstract
The ultrasound-assisted extraction process of phenolics including anthocyanins from wine lees was modeled and optimized in this research. An ultrasound bath system with the frequency of 40 kHz was used and the acoustic energy density during extraction was identified to 48 W/L. The effects of extraction time, extraction temperature, solvent-to-solid ratio and the solvent composition on the extraction yields of total phenolics and total anthocyanins were taken into account. The extraction process was simulated and optimized by means of artificial neural network (ANN) and genetic algorithm (GA). The constructed ANN models were accurate to predict the extraction yields of both total phenolics and total anthocyanins according to the statistical analysis. Meanwhile, the input space of the ANN models was optimized by GA, so as to maximize the extraction yields. Under the optimal conditions, the experimental yields of total phenolics and total anthocyanins were 58.76 and 6.69 mg/g, respectively, which agreed with the predicted values. Furthermore, more amounts of total phenolics and total anthocyanins were extracted by ultrasound at the optimal conditions than by conventional maceration. On the other hand, the stability of phenolics in the liquid extracts obtained from ultrasound-assisted extraction during storage was evaluated. After 30-day storage, the total phenolic contents in extracts stored at 4 °C and 20 °C decreased by 12.5% and 12.1%, respectively. Moreover, anthocyanins were more stable at 4 °C while tartaric esters and flavonols exhibited a better stability at 20 °C. Overall, the loss of phenolics during storage found in this study could be acceptable.
Collapse
Affiliation(s)
- Yang Tao
- FRCFT, School of Biosystems Engineering, University College Dublin, National University of Ireland, Agriculture and Food Science Centre, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|