1
|
Cheng J, Zhang X, Miao Z, Wang H, Pang L, Pan Y. Hot air treatment alleviates chilling injury of sweet potato tuberous roots by regulating osmoregulatory substances and inducing antioxidant defense system. Food Chem 2024; 459:140393. [PMID: 39018623 DOI: 10.1016/j.foodchem.2024.140393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024]
Abstract
Sweet potato tuberous roots are susceptible to chilling injury (CI) when stored below 10 °C. In this study, we investigated the mitigating effects of hot air (HA) treatment on CI. Results showed that HA45°C-3h treatment delayed the CI and internal browning during cold storage. After HA45°C-3h treatment, the cells' structural integrity was maintained, malondialdehyde accumulation and ion leakage were inhibited. Additionally, the osmoregulatory substances, such as total soluble solids, proline were maintained, and soluble protein was enhanced. Higher activity of antioxidant enzymes including superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, and the antioxidant substances including ascorbic acid, glutathione, total phenols, and flavonoids were observed in sweet potato tuberous roots treated by HA45°C-3h than untreated group. Our study suggested that HA45°C-3h treatment could reduce CI and maintain a better quality of sweet potato tuberous roots following cold storage.
Collapse
Affiliation(s)
- Jinxiao Cheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xudong Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Ze Miao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hongyu Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lingling Pang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanfang Pan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
2
|
Zhong Y, Wu X, Zhang L, Zhang Y, Wei L, Liu Y. The roles of nitric oxide in improving postharvest fruits quality: Crosstalk with phytohormones. Food Chem 2024; 455:139977. [PMID: 38850982 DOI: 10.1016/j.foodchem.2024.139977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Nowadays, improving the quality of postharvest fruits has become a hot research topic. Nitric oxide (NO) is often regarded as a signaling molecule that delays the postharvest senescence of fruits. Moreover, phytohormones affect the postharvest senescence of fruits. This review mainly describes how NO improves the postharvest quality of fruits by delaying postharvest fruit senescence, mitigating fruit cold damage and controlling postharvest diseases. Furthermore, the crosstalk of NO and multiple plant hormones effectively delays the postharvest senescence of fruits, and the major crosstalk mechanisms include (1) mediating phytohormone signaling. (2) inhibiting ETH production. (3) stimulating antioxidant enzyme activity. (4) decreasing membrane lipid peroxidation. (5) maintaining membrane integrity. (6) inhibiting respiration rate. (7) regulating gene expression related to fruit senescence. This review concluded the roles and mechanisms of NO in delaying postharvest fruit senescence. In addition, the crosstalk mechanisms between NO and various phytohormones on the regulation of postharvest fruit quality are also highlighted, which provides new ideas for the subsequent research.
Collapse
Affiliation(s)
- Yue Zhong
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiuqiao Wu
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Lingling Zhang
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Yiming Zhang
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Lijuan Wei
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Yiqing Liu
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
3
|
Brindisi LJ, Simon JE. Preharvest and postharvest techniques that optimize the shelf life of fresh basil ( Ocimum basilicum L.): a review. FRONTIERS IN PLANT SCIENCE 2023; 14:1237577. [PMID: 37745993 PMCID: PMC10514919 DOI: 10.3389/fpls.2023.1237577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023]
Abstract
Basil (Ocimum basilicum L.) is a popular specialty crop known for its use as a culinary herb and medicinal plant around the world. However, its profitability and availability are limited by a short postharvest shelf life due to poor handling, cold sensitivity and microbial contamination. Here, we comprehensively review the research on pre- and postharvest techniques that extend the shelf life of basil to serve as a practical tool for growers, distributors, retailers and scientists. Modifications to postharvest storage conditions, pre- and postharvest treatments, harvest time and preharvest production methods have been found to directly impact the quality of basil and its shelf life. The most effective strategies for extending the shelf life and improving the quality of basil are discussed and promising strategies that research and industry employ are identified.
Collapse
Affiliation(s)
| | - James E. Simon
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology and the Center for Agricultural Food Ecosystems (RUCAFE), Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
4
|
Huang H, Wang L. Alteration of surface morphologies and chemical composition of cuticle in response to chilling injury in papaya (Carica papaya L.) after harvest. Food Chem 2023; 416:135751. [PMID: 36870151 DOI: 10.1016/j.foodchem.2023.135751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023]
Abstract
The alteration of surface microstructures and chemical composition in cuticle of papaya fruit in response to chilling stress were comparatively studied between cultivars of 'Risheng' and 'Suihuang' after harvest. Fruit surface was covered by fissured wax layers in both cultivars. The presence of granule crystalloids was cultivar dependent, with higher abundance in 'Risheng' and lower in 'Suihuang'. Various typical very-long-chain aliphatics i.e., fatty acids, aldehydes, n-alkanes, primary alcohols, and n-alkenes dominated waxes; and cutin monomers were prominently 9/10,16-dihydroxyhexadecanoic acid in papaya fruit cuticle. Chilling pitting symptom was accompanied by modification of granule crystalloids into flat appearance and decreased primary alcohols, fatty acids, and aldehydes in 'Risheng', but no evident changes in 'Suihuang'. The response of cuticle to chilling injury in papaya fruit might be not directly related to the overall amount of waxes and cutin monomers, but more likely to the alteration of appearance morphologies and chemical composition in cuticle.
Collapse
Affiliation(s)
- Hua Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, PR China.
| | - Ling Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| |
Collapse
|
5
|
Malakar M, Paiva PDDO, Beruto M, da Cunha Neto AR. Review of recent advances in post-harvest techniques for tropical cut flowers and future prospects: Heliconia as a case-study. FRONTIERS IN PLANT SCIENCE 2023; 14:1221346. [PMID: 37575938 PMCID: PMC10419226 DOI: 10.3389/fpls.2023.1221346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/30/2023] [Indexed: 08/15/2023]
Abstract
Aesthetic attributes and easy-to-grow nature of tropical cut flowers (TCFs) have contributedto their potential for increased production. The dearth of information regarding agronomic practices and lack of planting materials are the key hindrances against their fast expansion. Unconventional high-temperature storage requirements and the anatomy of the peduncle contribute topoor vase life performance, while troublesome packaging and transport due to unusual size and structureprimarily cause post-harvest quality deterioration. Nonetheless, the exotic floral structuresconsequently increase market demand, particularly in temperate countries. This boosts studies aimed at overcoming post-harvest hindrances. While a few TCFs (Anthurium, Strelitzia, Alpinia, and a few orchids) are under the spotlight, many others remain behind the veil. Heliconia, an emerging specialty TCF (False Bird-of-Paradise, family Heliconiaceae), is one of them. The structural uniquenessand dazzling hues of Heliconia genotypes facilitate shifting its position from the back to the forefrontof the world floriculture trade. The unsatisfactory state-of-the-art of Heliconia research and the absence of any review exclusively on it are the key impetus for structuring this review. In addition to the aforementioned setbacks, impaired water uptake capacity after harvest, high chilling sensitivity, and the proneness of xylem ducts to microbial occlusion may be counted as a few additional factors that hinder its commercialization. This review demonstrates the state-of-the-art of post-harvest research while also conceptualizing the implementation of advanced biotechnological aid to alleviate the challenges, primarily focusing on Heliconia (the model crop here) along with some relevant literature on its other allied members. Standard harvesting indices, grading, and packaging are also part of the entire post-harvest operational chain, but since these phases are barely considered in Heliconia and the majority of tropical ornamentals except a few, a comprehensive account of these aspects has also been given. The hypothesized cues to nip chilling injury, resorting to different bio-chemical treatments, nano-based technology, and advanced packaging techniques, may help overcome preservation difficulties and propel its transition from niche to the commercial flower market. In a nutshell, readers will gain a comprehensive overview of how optimum post-harvest handling practices can rewardingly characterize this unique group of TCFs as the most remunerative component.
Collapse
Affiliation(s)
- Moumita Malakar
- Department of Horticulture & Floriculture, Central University of Tamil Nadu, Thiruvarur, India
| | | | - Margherita Beruto
- International Society for Horticultural Science (ISHS), Ornamental Plant Division, San Remo, Italy
| | | |
Collapse
|
6
|
Li J, Azam M, Noreen A, Umer MA, Ilahy R, Akram MT, Qadri R, Khan MA, Rehman SU, Hussain I, Lin Q, Liu H. Application of Methyl Jasmonate to Papaya Fruit Stored at Lower Temperature Attenuates Chilling Injury and Enhances the Antioxidant System to Maintain Quality. Foods 2023; 12:2743. [PMID: 37509835 PMCID: PMC10380080 DOI: 10.3390/foods12142743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Papaya fruit has a limited shelf life due to its sensitivity to decay and chilling damage during cold storage. The application of methyl jasmonate (MeJA) is known to reduce the incidence of disease and chilling injury, and to maintain the overall quality of the papaya fruit when stored at low temperature. Consequently, the effects of postharvest MeJA (1 mM) immersion on papaya fruits during low-temperature storage (10 °C ± 2 °C) for 28 days were studied. The experiment revealed that MeJA treatment significantly decreased the papaya fruit's weight loss, disease incidence, and chilling injury index. Furthermore, the accumulation of malondialdehyde and hydrogen peroxide was markedly lower after the application of MeJA. In addition, MeJA treatment exhibited significantly higher total phenols, ascorbic acid, antioxidant activity, and titratable acidity in contrast to the control. Similarly, MeJA-treated papaya fruits showed higher antioxidant enzymatic activity (superoxide dismutase, catalase, and peroxidase enzymes) with respect to the control fruits. In addition, MeJA reduced the soluble solids content, ripening index, pH, and sugar contents compared to the control fruits. Furthermore, MeJA-treated papaya fruit exhibited higher sensory and organoleptic quality attributes with respect to untreated papaya fruits. These findings suggested that postharvest MeJA application might be a useful approach for attenuating disease incidence and preventing chilling injury by enhancing antioxidant activities along with enhanced overall quality of papaya fruits during low-temperature storage.
Collapse
Affiliation(s)
- Jianhui Li
- College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, China
| | - Muhammad Azam
- Pomology Laboratory, Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad 38040, Pakistan
| | - Amtal Noreen
- Pomology Laboratory, Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Ali Umer
- Pomology Laboratory, Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad 38040, Pakistan
| | - Riadh Ilahy
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Ariana 1054, Tunisia
| | - Muhammad Tahir Akram
- Department of Horticulture, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Rashad Qadri
- Pomology Laboratory, Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Arslan Khan
- Pomology Laboratory, Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad 38040, Pakistan
| | - Shoaib Ur Rehman
- Department of Horticulture, University of Agriculture, Faisalabad, Sub Campus Depalpur, Okara 53600, Pakistan
| | | | - Qiong Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Hongru Liu
- Institute of Crop Breeding & Cultivation Research, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
7
|
Maghoumi M, Amodio ML, Cisneros-Zevallos L, Colelli G. Prevention of Chilling Injury in Pomegranates Revisited: Pre- and Post-Harvest Factors, Mode of Actions, and Technologies Involved. Foods 2023; 12:foods12071462. [PMID: 37048282 PMCID: PMC10093716 DOI: 10.3390/foods12071462] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
The storage life of pomegranate fruit (Punica granatum L.) is limited by decay, chilling injury, weight loss, and husk scald. In particular, chilling injury (CI) limits pomegranate long-term storage at chilling temperatures. CI manifests as skin browning that expands randomly with surface spots, albedo brown discoloration, and changes in aril colors from red to brown discoloration during handling or storage (6-8 weeks) at <5-7 °C. Since CI symptoms affect external and internal appearance, it significantly reduces pomegranate fruit marketability. Several postharvest treatments have been proposed to prevent CI, including atmospheric modifications (MA), heat treatments (HT), coatings, use of polyamines (PAs), salicylic acid (SA), jasmonates (JA), melatonin and glycine betaine (GB), among others. There is no complete understanding of the etiology and biochemistry of CI, however, a hypothetical model proposed herein indicates that oxidative stress plays a key role, which alters cell membrane functionality and integrity and alters protein/enzyme biosynthesis associated with chilling injury symptoms. This review discusses the hypothesized mechanism of CI based on recent research, its association to postharvest treatments, and their possible targets. It also indicates that the proposed mode of action model can be used to combine treatments in a hurdle synergistic or additive approach or as the basis for novel technological developments.
Collapse
Affiliation(s)
- Mahshad Maghoumi
- Dipartimento di Scienze Agrarie, Degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Maria Luisa Amodio
- Dipartimento di Scienze Agrarie, Degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Giancarlo Colelli
- Dipartimento di Scienze Agrarie, Degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy
| |
Collapse
|
8
|
Mahmoudi R, Razavi F, Rabiei V, Palou L, Gohari G. Postharvest chitosan-arginine nanoparticles application ameliorates chilling injury in plum fruit during cold storage by enhancing ROS scavenging system activity. BMC PLANT BIOLOGY 2022; 22:555. [PMID: 36456938 PMCID: PMC9716680 DOI: 10.1186/s12870-022-03952-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/18/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Plum (Prunus domestica L.) has a short shelf-life period due to its high respiration rate and is sensitive to low storage temperatures, which can lead to the appearance of chilling injury symptoms. In this investigation, we applied new coating treatments based on chitosan (CTS) and arginine (Arg) to plum fruit (cv. 'Stanley'). RESULTS Fruit were treated with distilled water (control), Arg at 0.25 and 0.5 mM, CTS at 1% (w/v) or Arg-coated CTS nanoparticles (CTS-Arg NPs) at 0.5 and 1% (w/v), and then stored at 1 °C for days. The application of CTS-Arg NPs at 0.5% attenuated chilling injury, which was accompanied by accumulation of proline, reduced levels of electrolyte leakage and malondialdehyde, as well as suppressed the activity of polyphenol oxidase. Plums coated with CTS-Arg NPs (0.5%) showed higher accumulation of phenols, flavonoids and anthocyanins, due to the higher activity of phenylalanine ammonia-lyase, which in turn resulted in higher DPPH scavenging capacity. In addition, CTS-Arg NPs (0.5%) treatment delayed plum weight loss and retained fruit firmness and ascorbic acid content in comparison to control fruit. Furthermore, plums treated with CTS-Arg NPs exhibited lower H2O2 accumulation than control fruit due to higher activity of antioxidant enzymes, including CAT, POD, APX and SOD. CONCLUSIONS The present findings show that CTS-Arg NPs (0.5%) were the most effective treatment in delaying chilling injury and prolonging the shelf life of plum fruit.
Collapse
Affiliation(s)
- Roghayeh Mahmoudi
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Farhang Razavi
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
| | - Vali Rabiei
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Lluís Palou
- Postharvest Technology Center (CTP), Valencian Institute of Agrarian Research (IVIA), 46113, Montcada, Valencia, Spain
| | - Gholamreza Gohari
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| |
Collapse
|
9
|
Sun Y, Luo M, Ge W, Zhou X, Zhou Q, Wei B, Cheng S, Ji S. Phenylpropanoid metabolism in relation to peel browning development of cold-stored 'Nanguo' pears. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111363. [PMID: 35750293 DOI: 10.1016/j.plantsci.2022.111363] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/13/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Cold-stored 'Nanguo' pears are susceptible to peel browning during subsequent shelf life. In this study, 'Nanguo' pears were cold-stored for different periods to elucidate the metabolism of phenylpropanoid accompanying browning. Changes in phenolics and flavonoids and the crucial enzyme activity and related gene expression involved in the phenylpropanoid pathway were monitored. It was found that the fruit that underwent long-term storage showed peel browning symptoms prior to softening, and the symptom got worse with increasing shelf life. Meanwhile, the accumulation of reactive oxygen species (ROS) and the decrease of ROS scavenging ability were noted. The content of phenolics and flavonoids and the activity and expression of shikimate dehydrogenase (SKDH), phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL) involved in the phenylpropanoid pathway decreased with prolonged storage. Correlation analysis revealed that browning was positively correlated with ROS accumulation, and the content of phenolics and flavonoids directly affected ROS scavenging ability. In addition, the decrease in phenolics and flavonoids might be owing to the reduced activity of SKDH, PAL, and 4CL and the down-regulated expression of PuPAL and Pu4CL. Collectively, this study indicated that the metabolism of phenylpropanoid is associated with the browning response induced by low-temperature stress.
Collapse
Affiliation(s)
- Yangyang Sun
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| | - Manli Luo
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| | - Wanying Ge
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| | - Xin Zhou
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| | - Qian Zhou
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| | - Baodong Wei
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| | - Shunchang Cheng
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| | - Shujuan Ji
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| |
Collapse
|
10
|
Hu J, Dong T, Bu H, Sun T, Zhang J, Xu C, Yun X. Construction of gas permeable channel in poly(l-lactic acid) membrane and its control of the micro atmosphere in okra packaging. Int J Biol Macromol 2022; 219:519-529. [DOI: 10.1016/j.ijbiomac.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/05/2022]
|
11
|
Si J, Fan YY, Liu ZL, Wei W, Xiao XM, Yang YY, Shan W, Kuang JF, Lu WJ, Fan ZQ, Li LL, Chen JY. Comparative transcriptomic analysis reveals the potential mechanism of hot water treatment alleviated-chilling injury in banana fruit. Food Res Int 2022; 157:111296. [DOI: 10.1016/j.foodres.2022.111296] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/23/2023]
|
12
|
Qi C, Dong D, Li Y, Wang X, Guo L, Liu L, Dong X, Li X, Yuan X, Ren S, Zhang N, Guo YD. Heat shock-induced cold acclimation in cucumber through CsHSFA1d-activated JA biosynthesis and signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:85-102. [PMID: 35436390 DOI: 10.1111/tpj.15780] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Cucumber (Cucumis sativus) originated in tropical areas and is very sensitive to low temperatures. Cold acclimation is a universal strategy that improves plant resistance to cold stress. In this study, we report that heat shock induces cold acclimation in cucumber seedlings, via a process involving the heat-shock transcription factor HSFA1d. CsHSFA1d expression was improved by both heat shock and cold treatment. Moreover, CsHSFA1d transcripts accumulated more under cold treatment after a heat-shock pre-treatment than with either heat shock or cold treatment alone. After exposure to cold, cucumber lines overexpressing CsHSFA1d displayed stronger tolerance for cold stress than the wild type, whereas CsHSFA1d knockdown lines obtained by RNA interference were more sensitive to cold stress. Furthermore, both the overexpression of CsHSFA1d and heat-shock pre-treatment increased the endogenous jasmonic acid (JA) content in cucumber seedlings after cold treatment. Exogenous application of JA rescued the cold-sensitive phenotype of CsHSFA1d knockdown lines, underscoring that JA biosynthesis is key for CsHSFA1d-mediated cold tolerance. Higher JA content is likely to lead to the degradation of CsJAZ5, a repressor protein of the JA pathway. We also established that CsJAZ5 interacts with CsICE1. JA-induced degradation of CsJAZ5 would be expected to release CsICE1, which would then activate the ICE-CBF-COR pathway. After cold treatment, the relative expression levels of ICE-CBF-COR signaling pathway genes, such as CsICE1, CsCBF1, CsCBF2 and CsCOR1, in CsHSFA1d overexpression lines were significantly higher than in the wild type and knockdown lines. Taken together, our results help to reveal the mechanism underlying heat shock-induced cold acclimation in cucumber.
Collapse
Affiliation(s)
- Chuandong Qi
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, 430064, China
| | - Danhui Dong
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yafei Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuewei Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Luqin Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lun Liu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaonan Dong
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xingsheng Li
- Shandong Huasheng Agriculture Co. Ltd, Qingzhou, Shandong, 262500, China
| | - Xiaowei Yuan
- Shandong Huasheng Agriculture Co. Ltd, Qingzhou, Shandong, 262500, China
| | - Shuxin Ren
- School of Agriculture, Virginia State University, Petersburg, VA, USA
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
13
|
Gao F, Xie W, Zhang H, Li S, Li T. Molecular Mechanisms of Browning Process Encountered in Morels (Morchella sextelata) During Storage. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02865-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Mishra S, Chowdhary AA, Bhau BS, Srivastava V. Hydrogen sulphide-mediated alleviation and its interplay with other signalling molecules during temperature stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:569-575. [PMID: 35238126 DOI: 10.1111/plb.13406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The sessile habit of plants does not provide choices to escape the environmental constraints, leading to negative impacts on their growth and development. This causes significant losses in the agriculture sector and raises serious issues on global food security. Extreme temperatures (high or low) influence several aspects of plant life and can cause reproduction malfunction. Therefore, a strategy for temperature amelioration is necessary for the management of agricultural productivity. Supplementation with various chemicals (e.g. phytohormones, gasotransmitters, osmolytes) is considered a good choice to manage plant stress. Gasotransmitters are well-recognized for stress mitigation in plants, among which hydrogen sulphide (H2 S) has proved promising to alleviate stress. Temperature (heat/cold) stress can stimulate the endogenous production of H2 S in plants, and many studies have reported the significance of H2 S for temperature stress amelioration. Here, H2 S led to positive changes in plant physiological, biochemical and molecular responses, which are usually compromised during stress. Further, H2 S also coordinate with other signalling components that act either upstream or downstream during stress mitigation. This review focuses on the significance of H2 S for mitigation of temperature stress, with a comprehensive discussion on cross-talk with other signalling components or supplements (e.g. NO, H2 O2 , salicylic acid, trehalose, proline). Finally, the review provides a rational assessment and holistic understanding of H2 S-mediated mitigation of extreme temperature stress and addresses the prospects for development of an effective strategy to manage temperature stress.
Collapse
Affiliation(s)
- S Mishra
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| | - A A Chowdhary
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| | - B S Bhau
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| | - V Srivastava
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| |
Collapse
|
15
|
Luo M, Sun H, Ge W, Sun Y, Zhou X, Zhou Q, Ji S. Effect of Glycine Betaine Treatment on Aroma Production of ‘Nanguo’ Pears After Long-Term Cold Storage–Possible Involvement of Ethylene Synthesis and Signal Transduction Pathways. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Monitoring Freeze-Damage in Grapefruit by Electric Bioimpedance Spectroscopy and Electric Equivalent Models. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Grapefruit is a cold-sensitive citrus fruit, and freezing can spoil the harvest when the fruit is still on the tree and even later during manufacturing and transport due to inappropriate postharvest management. This study performed a specific Electric Impedance Spectroscopy (EIS) analysis and statistical data treatment to obtain an EIS and Artificial Neural Networks (ANN)-based model for early freeze-damage detection in grapefruit showing a Correct Correlation Rate of 100%. Additionally, Cryo-Field Emission Scanning Electron Microscopy observations were conducted on both fresh and frozen/thawed samples, analyzing the different impedance responses in order to understand the biological changes in the tissue. Finally, a modified Hayden electric equivalent model was parameterized to simulate the impedance response electrically and link the electric behavior of biological tissue to the change in its properties due to freezing. The developed technique is introduced as an alternative to the traditional ones, as it is fast, economic, and easy to carry out.
Collapse
|
17
|
Zhang X, Liu T, Zhu S, Wang D, Sun S, Xin L. Short‐term hypobaric treatment alleviates chilling injury by regulating membrane fatty acids metabolism in peach fruit. J Food Biochem 2022; 46:e14113. [DOI: 10.1111/jfbc.14113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/27/2021] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Affiliation(s)
| | - Tao Liu
- Huangdao Customs District P. R. China Qingdao PR China
| | - Shuhua Zhu
- College of Chemistry and Material Science Shandong Agricultural University Tai’an PR China
| | - Dan Wang
- Shandong Institute of Pomology Tai’an PR China
| | - Shan Sun
- Shandong Institute of Pomology Tai’an PR China
| | - Li Xin
- Shandong Institute of Pomology Tai’an PR China
| |
Collapse
|
18
|
Reyes Jara AM, Gómez Lobato ME, Civello PM, Martínez GA. Phenylalanine ammonia lyase is more relevant than Chalcone synthase and Chalcone isomerase in the biosynthesis of flavonoids during postharvest senescence of broccoli. J Food Biochem 2022; 46:e14054. [PMID: 35034357 DOI: 10.1111/jfbc.14054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
Abstract
Broccoli contains a high content of nutraceutical compounds, such as glucosinolates and flavonoids. In this work, the effect of different treatments that modulate postharvest senescence of broccoli was evaluated and flavonoid metabolism during postharvest storage was analyzed at 20°C. A decrease in hue angle (HUE°) and chlorophylls and an increase in flavonoid content were detected during senescence. It observed that most of the treatments that delayed senescence also decreased flavonoid content, except visible light and UV-C treatments. In all cases, a direct correlation between those treatments that increased flavonoid biosynthesis and BoPAL gene expression was detected. This response was not detected in the expression of the other two flavonoid synthesis relevant genes BoCHS and BoCHI, suggesting that BoPAL has a greater influence on the regulation of the via, during broccoli senescence. PRACTICAL APPLICATIONS: Broccoli is a vegetable with valuable nutritional properties. Because it is in full development at the time of harvest, it has a short shelf life. In this work, it is showed that visible light and UV-C treatments not only delayed the senescence of broccoli, but also increased flavonoid content. Our results suggest that the most important enzyme in the phenylpropanoid biosynthesis pathway during broccoli postharvest is phenylalanine ammonia lyase, and that this may be a key point in regulating the biosynthesis of these nutritionally valuable compounds.
Collapse
Affiliation(s)
| | | | - Pedro M Civello
- Instituto de Fisiología Vegetal (INFIVE) UNLP-CONICET, La Plata, Argentina.,Facultad de Ciencias Exactas UNLP, La Plata, Argentina
| | - Gustavo A Martínez
- Instituto de Fisiología Vegetal (INFIVE) UNLP-CONICET, La Plata, Argentina.,Facultad de Ciencias Exactas UNLP, La Plata, Argentina
| |
Collapse
|
19
|
Additional Blue LED during Cultivation Induces Cold Tolerance in Tomato Fruit but Only to an Optimum. BIOLOGY 2022; 11:biology11010101. [PMID: 35053099 PMCID: PMC8773245 DOI: 10.3390/biology11010101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/26/2022]
Abstract
Simple Summary LED lighting is increasingly applied to increase yield and quality of greenhouse produced crops, especially tomatoes. Tomatoes cannot be stored at cold temperatures due to chilling injury that manifests as quick quality deterioration during shelf life. The aim of this study is to investigate whether additional blue LED lighting can mitigate the negative effects of cold storage for ‘Foundation’ tomatoes. We applied three treatments, 0, 12 or 24% additional blue light during cultivation, and investigated quality attributes at harvest, after cold storage and subsequent shelf-life. We observed that red harvested tomatoes cultivated with 12% additional blue light acquired cold tolerance. Interestingly, these tomatoes were slightly less red colored at harvest and showed a faster loss of red color during cold storage. The measured red color is closely related to the lycopene concentration. We hypothesize that lycopene, a known antioxidant, present in 12% additional blue cultivated tomatoes mitigates chilling injury. Other antioxidants present in tomatoes were only affected by the ripeness at harvest and were therefore not involved in the acquired cold tolerance. The cultivation of tomatoes using additional blue LED is an attractive way to produce tomatoes that can withstand long transport at cold temperatures at the expense of a slightly less red tomato at the consumer. Abstract Tomato is a chilling-sensitive fruit. The aim of this study is to examine the role of preharvest blue LED lighting (BL) to induce cold tolerance in ‘Foundation’ tomatoes. Blue and red supplemental LED light was applied to achieve either 0, 12 or 24% additional BL (0B, 12B and 24B). Mature green (MG) or red (R) tomatoes were harvested and cold stored at 4 °C for 0, 5, 10, 15 and 20 d, and then stored for 20 d at 20 °C (shelf life). Chilling injury (CI) indices, color and firmness, hydrogen peroxide, malondialdehyde, ascorbic acid and catalase activity were characterized. At harvest, R tomatoes cultivated at 12B were firmer and showed less coloration compared to fruit of other treatments. These fruits also showed higher loss of red color during cold storage and lower CI symptoms during shelf-life. MG tomatoes cultivated at 12B showed delayed coloring (non-chilled) and decreased weight loss (long cold stored) during shelf life compared to fruit in the other treatments. No effects of light treatments, both for MG and R tomatoes, were observed for the selected antioxidant capacity indicators. Improved cold tolerance for R tomatoes cultivated at 12B points to lycopene having higher scavenging activity at lower concentrations to mitigate chilling injury.
Collapse
|
20
|
Delgado-Vargas F, Vega-Álvarez M, Landeros Sánchez A, López-Angulo G, Salazar-Salas NY, Quintero-Soto MF, Pineda-Hidalgo KV, López-Valenzuela JA. Metabolic changes associated with chilling injury tolerance in tomato fruit with hot water pretreatment. J Food Biochem 2022; 46:e14056. [PMID: 34981528 DOI: 10.1111/jfbc.14056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/13/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022]
Abstract
Hot water treatment (HWT) of tomato (Solanum lycopersicum L.) fruit reduces the symptoms of chilling injury (CI). The aim of this study was to identify metabolites associated with HWT-induced CI tolerance in tomato fruit cv. Imperial. Mature green tomatoes with HWT (42°C/5 min) and control were stored under chilling conditions (5°C/20 days) and then ripened (21°C/7 days). Methanol extracts from pericarp were analyzed for total phenolics (TP), antioxidant activity (AoxA), and metabolic profiling by UPLC-DAD-MS and GC-MS. After cold storage and ripening, HWT fruit showed less CI, higher TP, and AoxA than control. It also showed an increased accumulation of phenolics, sugars, and some alkaloids that may be mediated by azelaic acid, glutamine, and tryptophan. The levels of N-feruloyl putrescine, esculeoside AII, and hydroxy-α-tomatine II were reduced. The better metabolic performance of HWT fruit under cold storage was associated with a higher accumulation of several metabolites (e.g., antioxidants and osmolytes) in ripening fruit. PRACTICAL APPLICATION: The identification of metabolites associated with the reduction of chilling injury (CI) symptoms in HWT tomato fruit extends the understanding of the mechanisms involved in CI tolerance. This information provides targets that could be used to develop strategies for preventing CI (e.g., genetic improvement of tomato, direct application of key metabolites). The application of such strategies will increase the economic value and decrease postharvest losses.
Collapse
Affiliation(s)
- Francisco Delgado-Vargas
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - Milton Vega-Álvarez
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - Alexis Landeros Sánchez
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - Gabriela López-Angulo
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - Nancy Y Salazar-Salas
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - María F Quintero-Soto
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - Karen V Pineda-Hidalgo
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México.,Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - José A López-Valenzuela
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México.,Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| |
Collapse
|
21
|
Alleviating Chilling Injury in Stored Pomegranate Using a Single Intermittent Warming Cycle: Fatty Acid and Polyamine Modifications. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:2931353. [PMID: 34805395 PMCID: PMC8601853 DOI: 10.1155/2021/2931353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022]
Abstract
Pomegranate is a perishable superfruit with important human health-promoting phytochemicals. The use of cold storage is inevitable for its long-term preservation. As pomegranate is sensitive to temperatures below 5°C, it is therefore necessary and worthwhile to introduce a postharvest technique that is safe, applicable, and commercially acceptable to maintain the fruit quality under a cold storage condition. The efficacy of intermittent warming (IW) in the form of a single warming period (1 day at 20°C with 70% relative humidity (RH) before returning the treated fruit to storage) during the cold storage of ‘Rabab-e-Neyriz' pomegranate (70 days at 2 ± 0.5°C and 90 ± 5% RH) was evaluated. To find the best treatment time, warming was performed at 4 temporary interruption points in storage (after 15, 25, 35, or 45 days of storage). For each interruption date, the treated fruit were compared to the controls twice, once immediately after treatment and once at the end of the storage period. It was founded that a single warming period at the right time during cold storage (before irreversible damage occurs) activated multiple mechanisms and physiological responses in pomegranate fruit peel that are significantly responsible for alleviating the severity of chilling damage to this commodity. In other words, warming on the 15th day was the most efficient treatment, resulting in better preservation of unsaturated fatty acids from peroxidation, lower malondialdehyde (MDA) production, and preservation of the unsaturated/saturated fatty acids (UFAs/SFAs) ratio (membrane integrity index) in the peel during storage and lower chilling injury symptoms. Moreover, the content of spermine (Spm) and putrescine (Put) (as important antioxidants acting as membrane safety agents) was significantly increased immediately after treatment, followed by a continuous increase in Spm and a higher level of Put compared to control until the end of storage.
Collapse
|
22
|
Extension of Solanaceae Food Crops Shelf Life by the Use of Elicitors and Sustainable Practices During Postharvest Phase. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02713-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Affandi FY, Verschoor JA, Paillart MJM, Verdonk JC, Woltering EJ, Schouten RE. Low Oxygen Storage Improves Tomato Postharvest Cold Tolerance, Especially for Tomatoes Cultivated with Far-Red LED Light. Foods 2021; 10:foods10081699. [PMID: 34441475 PMCID: PMC8391604 DOI: 10.3390/foods10081699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023] Open
Abstract
We investigated the effects of low oxygen storage on chilling injury development, colour development, respiration and H2O2 levels of ‘Merlice’ tomatoes cultivated with and without far red (FR) LED lighting during 20 days of shelf-life. Mature green (MG) and red (R) tomatoes were stored at 2 °C in combination with 0.5, 2.5, 5 and 21 kPa O2 for 15 days (experiment 1). MG tomatoes cultivated under either white LED or white LED light with FR LED light were stored at 2 °C in combination with 1, 5 and 21 O2 kPa for 14 days (experiment 2). Chilled MG and R tomatoes from experiment 1 showed decay, firmness loss and higher weight loss during shelf-life which were reduced under low oxygen conditions. FR during cultivation improved chilling tolerance of MG tomatoes. Fastest colour development and lowest respiration rate during shelf-life were observed for MG fruit cultivated with FR lighting prior to storage at 1 kPa O2/0 kPa CO2. H2O2 levels during the shelf-life were not affected during cold storage. The improved cold tolerance of MG tomatoes cultivated with FR lighting is likely due to lower oxygen uptake that led to both higher lycopene synthesis and less softening.
Collapse
Affiliation(s)
- Fahrizal Yusuf Affandi
- Horticulture and Product Physiology, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (J.C.V.); (E.J.W.); (R.E.S.)
- Bioresource Technology and Veterinary Department, Vocational College, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Correspondence:
| | - Jan A. Verschoor
- Food & Biobased Research, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (J.A.V.); (M.J.M.P.)
| | - Maxence J. M. Paillart
- Food & Biobased Research, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (J.A.V.); (M.J.M.P.)
| | - Julian C. Verdonk
- Horticulture and Product Physiology, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (J.C.V.); (E.J.W.); (R.E.S.)
| | - Ernst J. Woltering
- Horticulture and Product Physiology, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (J.C.V.); (E.J.W.); (R.E.S.)
- Food & Biobased Research, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (J.A.V.); (M.J.M.P.)
| | - Rob E. Schouten
- Horticulture and Product Physiology, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (J.C.V.); (E.J.W.); (R.E.S.)
| |
Collapse
|
24
|
Zhang W, Jiang H, Cao J, Jiang W. Advances in biochemical mechanisms and control technologies to treat chilling injury in postharvest fruits and vegetables. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Alegria C, Gonçalves EM, Moldão-Martins M, Abreu M. Influence of a heat-shock pre-treatment on wound-induced phenolic biosynthesis as an alternative strategy towards fresh-cut carrot processing. FOOD SCI TECHNOL INT 2021; 28:421-429. [PMID: 34078129 DOI: 10.1177/10820132211020837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In fresh-cut vegetables, plant tissues are often challenged by (a)biotic stresses that act in combination, and the response to combinatorial stresses differs from that triggered by each individually. Phenolic induction by wounding is a known response contributing to increase products phenolic content. Heat application is a promising treatment in minimal processing, and its interference on the wound-induced response is produce-dependent. In carrot, two-combined stress effects were evaluated: peel removal vs. shredding, and heat application (100 °C/45 s) vs. shredding, on changes in total phenolic content (TPC) during 10 days (5 °C). By applying the first stress combination, a decrease in TPC was verified on day 0 (∼50%), ascribed to the high phenolic content of peels. Recovery of initial fresh carrot levels was achieved after 7 days owing to phenolic biosynthesis induced by shredding. For the second combination, changes in TPC, phenylalanine-ammonia-lyase (PAL), and peroxidase (POD) activity of untreated (Ctr) and heat-treated (HS) peeled shredded carrot samples were evaluated during 10 days. The heat-shock did not suppress phenolic biosynthesis promoted by PAL, although there was a two-day delay in TPC increments. Notwithstanding, phenolic accumulation after 10 days exceeded raw material TPC content. Also, the decrease in POD activity (30%) could influence quality degradation during storage.
Collapse
Affiliation(s)
- Carla Alegria
- Centre for Ecology, Evolution and Environmental Changes, Universidade de Lisboa, Lisboa, Portugal.,INIAV - Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
| | - Elsa M Gonçalves
- INIAV - Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal.,GeoBioTec - GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Margarida Moldão-Martins
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Abreu
- INIAV - Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal.,LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
26
|
Zhang F, Zhang J, Di H, Xia P, Zhang C, Wang Z, Li Z, Huang S, Li M, Tang Y, Luo Y, Li H, Sun B. Effect of Long-Term Frozen Storage on Health-Promoting Compounds and Antioxidant Capacity in Baby Mustard. Front Nutr 2021; 8:665482. [PMID: 33889595 PMCID: PMC8055821 DOI: 10.3389/fnut.2021.665482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
This study investigated the effects of blanching and subsequent long-term frozen storage on the retention of health-promoting compounds and antioxidant capacity in frozen lateral buds of baby mustard. Results showed that all glucosinolates were well preserved during frozen storage, and 72.48% of total glucosinolate content was retained in the unblanched treatment group after 8 months, as were chlorophylls, carotenoids, ascorbic acid, total phenolics, soluble sugars, soluble proteins, and antioxidant capacity. The loss of nutritional qualities mainly occurred in the 1st month of frozen storage, and nutritional qualities in the unblanched treatment group were significantly better than those in the blanched treatment group during frozen storage. Blanching before freezing reduced contents of high-content glucosinolates and ascorbic acid, as well as antioxidant capacity levels. Therefore, we recommend using long-term frozen storage to preserve the quality of baby mustard to achieve annual supply, and freezing without blanching.
Collapse
Affiliation(s)
- Fen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jiaqi Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Hongmei Di
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Pingxin Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Chenlu Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Zihan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Zhiqing Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Shuya Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yi Tang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Huanxiu Li
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
27
|
Intermittent warming as an efficient postharvest treatment affects the enzymatic and non-enzymatic responses of pomegranate during cold storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00607-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Imahori Y, Bai J, Ford BL, Baldwin EA. Effect of storage temperature on chilling injury and activity of antioxidant enzymes in carambola “Arkin” fruit. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yoshihiro Imahori
- Laboratory of Postharvest Physiology, Graduate School of Life and Environmental Sciences Osaka Prefecture University Sakai Japan
| | - Jinhe Bai
- USDA‐ARS Horticultural Research Laboratory Ft. Pierce FL USA
| | - Bryan L. Ford
- USDA‐ARS Horticultural Research Laboratory Ft. Pierce FL USA
| | | |
Collapse
|
29
|
Polenta GA, Guidi SM, Ambrosi V, Denoya GI. Comparison of different analytical methods to evaluate the heat shock protein (HSP) response in fruits. Application to tomatoes subjected to stress treatments. Curr Res Food Sci 2020; 3:329-338. [PMID: 33364606 PMCID: PMC7750176 DOI: 10.1016/j.crfs.2020.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Heat shock proteins (HSP) are synthesized in living tissues exposed to transient increase in temperature and play a central role in the protective response against heat and other stresses. In fruits, this response to heat treatment provides resistance to a physiological alteration known as chilling injury. Despite the physiological importance of this group of proteins, publications comparing different methodological alternatives for their analysis are rather scarce. In the present paper, we conducted a comparative study using different electrophoretic and immunological techniques to evaluate the HSP response in fruits. Proteins were extracted from tomato fruit exposed to an HSP-inducing temperature (38 °C) for different times (0, 3, 20, and 27 h). Different alternatives of analysis (SDS-PAGE, SDS-PAGE followed by IEF, Western blot, and dot blot) were performed, and their potential application discussed. The study was complemented with a practical application, in which tomatoes were subjected to heat and anaerobic treatments and then stored in a chill-inducing temperature. This application evidences the relevance of knowing the level of proteins attained by stress treatments which correlates with the acquired tolerance. HSP evaluation can be used for practical purposes. To assess the HSP response in fruits, different complementary methods should be used. A simple method (dot blot) can quantify HSP induced in fruits by heat exposure. HSP level induced by stress treatments correlates with acquired physiological tolerance.
Collapse
Affiliation(s)
- Gustavo A Polenta
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto Tecnología de Alimentos, Argentina.,Facultad de Agronomía y Cs. Agroalimentarias, Universidad de Morón, Morón, Buenos Aires, Argentina.,Instituto de Biotecnología, Universidad Nacional de Hurlingham (UNAHUR), Argentina
| | - Silvina M Guidi
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto Tecnología de Alimentos, Argentina.,Facultad de Agronomía y Cs. Agroalimentarias, Universidad de Morón, Morón, Buenos Aires, Argentina
| | - Vanina Ambrosi
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto Tecnología de Alimentos, Argentina.,Facultad de Agronomía y Cs. Agroalimentarias, Universidad de Morón, Morón, Buenos Aires, Argentina
| | - Gabriela I Denoya
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto Tecnología de Alimentos, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Argentina.,Instituto de Biotecnología, Universidad Nacional de Hurlingham (UNAHUR), Argentina
| |
Collapse
|
30
|
|
31
|
Zhou X, Tan Z, Zhou Q, Shi F, Yao M, Wei B, Cheng S, Ji S. Effect of Intermittent Warming on Aroma-Related Esters of ‘Nanguo’ Pears Through Regulation of Unsaturated Fatty Acid Synthesis After Cold Storage. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02469-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
32
|
Pott DM, Vallarino JG, Osorio S. Metabolite Changes during Postharvest Storage: Effects on Fruit Quality Traits. Metabolites 2020; 10:metabo10050187. [PMID: 32397309 PMCID: PMC7281412 DOI: 10.3390/metabo10050187] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolic changes occurring in ripe or senescent fruits during postharvest storage lead to a general deterioration in quality attributes, including decreased flavor and ‘off-aroma’ compound generation. As a consequence, measures to reduce economic losses have to be taken by the fruit industry and have mostly consisted of storage at cold temperatures and the use of controlled atmospheres or ripening inhibitors. However, the biochemical pathways and molecular mechanisms underlying fruit senescence in commercial storage conditions are still poorly understood. In this sense, metabolomic platforms, enabling the profiling of key metabolites responsible for organoleptic and health-promoting traits, such as volatiles, sugars, acids, polyphenols and carotenoids, can be a powerful tool for further understanding the biochemical basis of postharvest physiology and have the potential to play a critical role in the identification of the pathways affected by fruit senescence. Here, we provide an overview of the metabolic changes during postharvest storage, with special attention to key metabolites related to fruit quality. The potential use of metabolomic approaches to yield metabolic markers useful for chemical phenotyping or even storage and marketing decisions is highlighted.
Collapse
Affiliation(s)
| | - José G. Vallarino
- Correspondence: (J.G.V.); (S.O.); Tel.: +34-952134271 (J.G.V. & S.O.)
| | - Sonia Osorio
- Correspondence: (J.G.V.); (S.O.); Tel.: +34-952134271 (J.G.V. & S.O.)
| |
Collapse
|
33
|
Shi F, Li X, Meng H, Wei W, Wang Y. Reduction in chilling injury symptoms by hot electrolyzed functional water treatment may function by regulating ROS metabolism in Satsuma orange fruit. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
Song J, Wu G, Li T, Liu C, Li D. Changes in the sugars, amino acids and organic acids of postharvest spermine-treated immature vegetable soybean (Glycine max L. Merr.) as determined by 1H NMR spectroscopy. FOOD PRODUCTION, PROCESSING AND NUTRITION 2020. [DOI: 10.1186/s43014-020-00021-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
1H NMR spectroscopy was adopted to determine compositional changes (mainly sugars, organic acids and amino acids) involved in cold-stored immature soybean grains after exogenous spermine treatment. Significant changes of sugars, including sucrose, galactose, myo-inositol, glucose and fructose were detected in soybean after spermine treatment. As for the organic acids related to tricarboxylic acid cycle, the levels of malic and fumaric acids decreased but the level of citric acid increased. However, no significant changes were observed for amino acids in spermine-treated soybeans. By using metabolic profile analysis, a difference was observed between the aging of soybean grains as such and those treated with spermine. This study provides an insight into the accumulation of metabolites in postharvest immature soybeans after exogenous spermine-treatment.
Graphical abstract
Collapse
|
35
|
Effects of Brassinosteroids on Postharvest Physiology of Horticultural Crops: A Concise Review. ACTA ACUST UNITED AC 2019. [DOI: 10.46653/jhst190203062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Brassinosteroids are natural polyhydroxylated steroidal plant growth regulators or phyto-hormones. These are ubiquitous in plant kingdom and influence a wide variety of molecular, physiological and biochemical responses of plants. Brassinosteroids have also been applied and their possible role has been investigated on postharvest physiology of various horticultural crops. Brassinosteroids regulate ripening of different non-climacteric and climacteric fruits and influence colour metabolism. They inhibit activities of peroxidase and polyphenol oxidase enzymes and delay enzymatic browning. Exogenous application of brassinosteroids inhibits cell wall degradation and delays softening of fruits. In addition, their application regulates sugar and energy metabolism in different fruit and vegetable crops. They suppress lipoxygenase and phospholipase D enzyme activities and conserve higher unsaturated fatty acid contents, suppress electrolyte leakage, inhibit lipid peroxidation and maintain higher membrane integrity eventually leading to suppressed chilling injury during postharvest storage. These alleviate oxidative stress and prolong storage life potential of various horticultural crops. So, the present review summarizes various roles and mechanism of action of brassinosteroids in extending postharvest life and maintaining quality of different horticultural crops.
Collapse
|
36
|
Palma JM, Freschi L, Rodríguez-Ruiz M, González-Gordo S, Corpas FJ. Nitric oxide in the physiology and quality of fleshy fruits. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4405-4417. [PMID: 31359063 DOI: 10.1093/jxb/erz350] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/18/2019] [Indexed: 05/21/2023]
Abstract
Fruits are unique to flowering plants and confer a selective advantage as they facilitate seed maturation and dispersal. In fleshy fruits, development and ripening are associated with numerous structural, biochemical, and physiological changes, including modifications in the general appearance, texture, flavor, and aroma, which ultimately convert the immature fruit into a considerably more attractive and palatable structure for seed dispersal by animals. Treatment with exogenous nitric oxide (NO) delays fruit ripening, prevents chilling damage, promotes disease resistance, and enhances the nutritional value. The ripening process is influenced by NO, which operates antagonistically to ethylene, but it also interacts with other regulatory molecules such as abscisic acid, auxin, jasmonic acid, salicylic acid, melatonin, and hydrogen sulfide. NO content progressively declines during fruit ripening, with concomitant increases in protein nitration and nitrosation, two post-translational modifications that are promoted by reactive nitrogen species. Dissecting the intimate interactions of NO with other ripening-associated factors, including reactive oxygen species, antioxidants, and the aforementioned phytohormones, remains a challenging subject of research. In this context, integrative 'omics' and gene-editing approaches may provide additional knowledge of the impact of NO in the regulatory processes involved in controlling physiology and quality traits in both climacteric and non-climacteric fruits.
Collapse
Affiliation(s)
- José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Luciano Freschi
- Laboratório de Fisiologia do Desenvolvimento Vegetal, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Marta Rodríguez-Ruiz
- Laboratório de Fisiologia do Desenvolvimento Vegetal, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, Granada, Spain
| |
Collapse
|
37
|
Pan Y, Zhang S, Yuan M, Song H, Wang T, Zhang W, Zhang Z. Effect of glycine betaine on chilling injury in relation to energy metabolism in papaya fruit during cold storage. Food Sci Nutr 2019; 7:1123-1130. [PMID: 30918655 PMCID: PMC6418457 DOI: 10.1002/fsn3.957] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 11/28/2022] Open
Abstract
"Zhongbai" papaya fruit were treated with 15 mmol/L glycine betaine (GB) and then refrigerated at 6°C for 40 days to study the influence of GB on chilling injury (CI) and possible mechanism associated with energy metabolism. The results exhibited that GB treatment remarkably reduced the CI severity as indicated by lower CI index during storage. GB treatment lowered electrolyte leakage and malondialdehyde content, which accounted for maintenance of membrane integrity and reduced lipid peroxidation. Moreover, GB treatment improved the energy status as revealed by increased adenosine triphosphate (ATP) level, energy charge, and activities of energy metabolism-related enzymes including mitochondrial membrane H+-adenosine triphosphatase (H+-ATPase) and Ca2+-adenosine triphosphatase (Ca2+-ATPase), succinate dehydrogenase (SDH), and cytochrome C oxidase (CCO). The results indicate that enhanced chilling tolerance in papaya fruit by GB treatment during cold storage might be ascribed to improved energy status in association with increased activities of energy metabolism-related enzymes.
Collapse
Affiliation(s)
- Yonggui Pan
- College of Food Science and TechnologyHainan UniversityHaikouChina
| | - Shanying Zhang
- College of Food Science and TechnologyHainan UniversityHaikouChina
| | - Mengqi Yuan
- College of Food Science and TechnologyHainan UniversityHaikouChina
| | - Hanliang Song
- College of Food Science and TechnologyHainan UniversityHaikouChina
| | - Tian Wang
- College of Food Science and TechnologyHainan UniversityHaikouChina
| | - Weimin Zhang
- College of Food Science and TechnologyHainan UniversityHaikouChina
| | - Zhengke Zhang
- College of Food Science and TechnologyHainan UniversityHaikouChina
| |
Collapse
|
38
|
Impact of Exogenous Melatonin Application on Chilling Injury in Tomato Fruits During Cold Storage. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-2247-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
39
|
|
40
|
Diaz JT, Pérez-Díaz IM, Messer N, Safferman SI. Physical properties of NaCl-free cucumber fermentation cover brine containing CaCl 2and glycerin and apparent freezing injury of the brined fruits. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joscelin T. Diaz
- Department of Food, Bioprocessing and Nutrition Sciences; North Carolina State University; Raleigh, North Carolina 27695
| | - Ilenys M. Pérez-Díaz
- USDA-ARS, Food Science Research Unit, Department of Food, Bioprocessing and Nutrition Sciences; North Carolina State University; Raleigh, North Carolina 27695
| | | | - Steven I. Safferman
- Department of Biosystems and Agricultural Engineering; Michigan State University; East Lansing, Michigan 48824
| |
Collapse
|
41
|
Roles of C-Repeat Binding Factors-Dependent Signaling Pathway in Jasmonates-Mediated Improvement of Chilling Tolerance of Postharvest Horticultural Commodities. J FOOD QUALITY 2018. [DOI: 10.1155/2018/8517018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
C-repeat binding factor- (CBF-) dependent signaling pathway is proposed to be a key responder to low temperature stress in plant. Jasmonates (JAs), the endogenous signal molecules in plant, participate in plant defense against (a)biotic stresses; however, the mechanism has not been fully clarified so far. With the progress made in JAs biopathway, signal transduction, and their relationship with CBF-dependent signaling pathway, our knowledge of the roles of the CBF-dependent signaling pathway in JAs-mediated improvement of chilling tolerance accumulates. In this review, we firstly briefly review the chilling injury (CI) characteristics of postharvest horticultural commodities, then introduce the biopathway and signal transduction of JAs, subsequently summarize the roles of the CBF-dependent signaling pathway under low temperature stress, and finally describe the linkage between JAs signal transduction and the CBF-dependent signaling pathway.
Collapse
|
42
|
Increasing Cold Tolerance of Cactus Pear Fruit by High-Temperature Conditioning and Film Wrapping. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1917-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Raak N, Symmank C, Zahn S, Aschemann-Witzel J, Rohm H. Processing- and product-related causes for food waste and implications for the food supply chain. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 61:461-472. [PMID: 28038904 DOI: 10.1016/j.wasman.2016.12.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 11/21/2016] [Accepted: 12/17/2016] [Indexed: 06/06/2023]
Abstract
Reducing food waste is one of the prominent goals in the current research, which has also been set by the United Nations to achieve a more sustainable world by 2030. Given that previous studies mainly examined causes for food waste generation related to consumers, e.g., expectations regarding quality or uncertainties about edibility, this review aims at providing an overview on losses in the food industry, as well as on natural mechanisms by which impeccable food items are converted into an undesired state. For this, scientific literature was reviewed based on a keyword search, and information not covered was gathered by conducting expert interviews with representatives from 13 German food processing companies. From the available literature, three main areas of food waste generation were identified and discussed: product deterioration and spoilage during logistical operations, by-products from food processing, and consumer perception of quality and safety. In addition, expert interviews revealed causes for food waste in the processing sector, which were categorised as follows: losses resulting from processing operations and quality assurance, and products not fulfilling quality demands from trade. The interviewees explained a number of strategies to minimise food losses, starting with alternative tradeways for second choice items, and ending with emergency power supplies to compensate for power blackouts. It became clear that the concepts are not universally applicable for each company, but the overview provided in the present study may support researchers in finding appropriate solutions for individual cases.
Collapse
Affiliation(s)
- Norbert Raak
- Chair of Food Engineering, Technische Universität Dresden, Bergstraβe 120, 01062 Dresden, Germany.
| | - Claudia Symmank
- Chair of Food Engineering, Technische Universität Dresden, Bergstraβe 120, 01062 Dresden, Germany
| | - Susann Zahn
- Chair of Food Engineering, Technische Universität Dresden, Bergstraβe 120, 01062 Dresden, Germany
| | - Jessica Aschemann-Witzel
- MAPP - Centre for Research on Customer Relations in the Food Sector, Aarhus University, Bartholinsalle 10, 8000 Aarhus, Denmark
| | - Harald Rohm
- Chair of Food Engineering, Technische Universität Dresden, Bergstraβe 120, 01062 Dresden, Germany
| |
Collapse
|
44
|
Zeng JK, Li X, Zhang J, Ge H, Yin XR, Chen KS. Regulation of loquat fruit low temperature response and lignification involves interaction of heat shock factors and genes associated with lignin biosynthesis. PLANT, CELL & ENVIRONMENT 2016; 39:1780-9. [PMID: 27006258 DOI: 10.1111/pce.12741] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/11/2016] [Accepted: 03/12/2016] [Indexed: 05/25/2023]
Abstract
Transcriptional regulatory mechanisms underlying lignin metabolism have been widely studied in model plants and woody trees, as well as fruit, such as loquat (Eriobotrya japonica). Unlike the well-known NAC, MYB and AP2/ERF transcription factors, the roles of heat shock factors (HSFs) in lignin regulation have been rarely reported. Two treatments (heat treatment, HT; low temperature conditioning, LTC) were applied to alleviate low temperature-induced lignification in loquat fruit. Gene expression analysis indicated that EjHSF1 transcript abundance, in parallel with heat shock protein genes (EjHsp), was induced by HT, while expression of EjHSF3 was repressed by LTC. Using dual-luciferase assays, EjHSF1 and EjHSF3 trans-activated the promoters of EjHsp genes and lignin biosynthesis-related genes, respectively. Thus, two distinct regulatory mechanisms of EjHSF transcription factors in chilling injury-induced fruit lignification are proposed: EjHSF1 transcriptionally regulated EjHsp genes are involved in chilling tolerance, while EjHSF3 transcriptionally regulated lignin biosynthesis. Furthermore, the relations between EjHSF3 and previously characterized fruit lignification regulators, including EjAP2-1, EjMYB1 and EjMYB2, were also investigated. Yeast-two hybrid (Y2H) and biomolecular fluorescence complementation (BiFC) assays demonstrated protein-protein interaction between EjHSF3 and EjAP2-1. Thus, the involvement of EjHSF3 in fruit lignification is via both lignin biosynthetic genes and the regulator, EjAP2-1.
Collapse
Affiliation(s)
- Jiao-Ke Zeng
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Xian Li
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Jing Zhang
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Hang Ge
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Xue-Ren Yin
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Kun-Song Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| |
Collapse
|
45
|
Sui Y, Droby S, Zhang D, Wang W, Liu Y. Reduction of Fusarium rot and maintenance of fruit quality in melon using eco-friendly hot water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:13956-13963. [PMID: 25030787 DOI: 10.1007/s11356-014-3302-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/06/2014] [Indexed: 06/03/2023]
Abstract
Significant losses in harvested fruit can be directly attributable to decay fungi and quality deterioration. Hot water treatment (HWT) has been demonstrated to be an effective and economic environment-friendly approach for managing postharvest decay and maintaining fruit quality. In this study, the effects of HWT (45 °C for 10, 15, 20, and 25 min) on in vitro growth of Fusarium oxysporum, in vivo Fusarium rot, and natural decay of melon were investigated. HWT inhibited spore germination and germ tube elongation of F. oxysporum. Protein impairment and ATP consumption triggered by HWT contributed to the inhibitory effect. Results of in vivo studies showed that HWT effectively controlled Fusarium rot and natural decay of melon. Correspondingly, HWT induced a significant increase in content of total phenolic compounds and lignin of melon. These findings indicate that the effects of HWT on Fusarium rot may be associated with the direct fungal inhibition and the elicitation of defense responses in fruit. Importantly, HWT used in this study had beneficial effects on fruit quality as well. HWT may represent an effective non-chemical approach for management of postharvest Fusarium rot.
Collapse
Affiliation(s)
- Yuan Sui
- School of Biotechnology and Food Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | | | | | | | | |
Collapse
|